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Abstract: Light-field video provides a detailed representation of scenes captured from different per-
spectives. This results in a visualisation modality that enhances the immersion and engagement of the
viewers with the depicted environment. In order to perform research on compression, transmission
and signal processing of light field data, datasets with light-field contents of different categories and
acquired with different modalities are required. In particular, the development of machine learning
models for quality assessment and for light-field processing, including the generation of new views,
require large amounts of data. Most existing datasets consist of static scenes and, in many cases, syn-
thetic contents. This paper presents a novel light-field plenoptic video dataset, KULFR8, involving
six real-world scenes with moving objects and 336 distorted light-field videos derived from the origi-
nal contents; in total, the original scenes in the dataset contain 1800 distinctive frames, with angular
resolution of 5 × 5 with and total spatial resolution of 9600 × 5400 pixels (considering all the views);
overall, the dataset consists of 45,000 different views with spatial resolution of 1920 × 1080 pixels.
We analyse the content characteristics based on the dimensions of the captured objects and via the
acquired videos using the central views extracted from each quilted frame. Additionally, we encode
and decode the contents using various video encoders across different bitrate ranges. For quality
assessments, we consider all the views, utilising frames measuring 9600 × 5400 pixels, and employ
two objective quality metrics: PSNR and SSIM.

Keywords: light field; dataset; content characterisation; objective quality assessment

1. Introduction

As new technologies develop, the demand for exciting 3D content is growing. Unlike
2D content, 3D content involves more details. For instance, for light-field representation,
the three position coordinates (x, y, z) of the object, ray angle coordinates (θ, ϕ), as well
as time coordinate (t) and wavelength of the light ray (λ), all work together to create a
light-field function with seven components L(x, y, z, θ, ϕ, t, λ). However, assuming that
time and wavelength are constant [1] (for a video frame and a colour component), the
function reduces to five components L(x, y, z, θ, ϕ).

To simplify the light-field function, a function based on two 2D planes was introduced
by [2]. In the function L(u, v, r, s) of four independent variables, (u, v) and (r, s) represent
the coordinates of the intersection of the light ray in the two planes. Light-field technology
offers unique advantages in object representation, as it captures different dimensions of a
scene through light-field cameras. This capability provides valuable additional information;
for instance, for medical applications, where a thorough analysis of the target objects is
essential for disease diagnosis. Moreover, light-field contents, particularly video contents,
introduce intriguing features to video games. In the case of robotic agriculture, light-field
technology helps with the detection of harvest objects, as each frame in light-field video
content offers perspectives of the target object from various dimensions, facilitating easier
object detection.
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The applications of light-field datasets are extensive. Various research projects have
investigated image super-resolution (SR) analysis using deep learning or machine learning
techniques. For instance, Wang et al. [3] employed a light-field dataset as SR content to
enhance the resolution of light-field data that had undergone standard bicubic degradation.
Many recent research papers have demonstrated researchers’ growing interest in exploring
the concept of light fields. Consequently, the primary requirement is access to valid light
field datasets. For machine learning (ML) applications, Schambach and Heizmann [4]
introduced a synthetic dataset. However, this dataset includes neither light-field video
datasets nor real-scene content. Moreover, Jin et al. explored light-field spatial super-
resolution in their paper [5], in which they utilised a light-field dataset for their analysis.
These recent research papers highlight the significance of light-field datasets across various
research levels. However, they also underscore the scarcity of diverse light-field video
datasets, with most analyses focusing on image-based datasets.

Contributions

At the time of writing this paper, the dataset created is currently the sole light-field
video dataset captured with a plenoptic camera and featuring distinct real-world and self-
motion scenes. Significantly, no external instruments, such as a turntable, were employed
to impose a consistent speed on the objects within the scenes. These scenes have been
meticulously evaluated for their motion displacement, spatial information (SI), temporal
information (TI), and colourfulness (CF) characteristics. Additionally, the video quality of
the compressed versions of the scenes in the dataset has been objectively assessed using
two quality metrics: Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index
(SSIM). This evaluation was conducted following encoding and decoding processes across
a range of video encoders, including Advanced Video Coding (AVC) [6], High-Efficiency
Video Coding (HEVC) [7], Video Codec 9 (VP9) [8], AOMedia Video 1 (AV1) [9], and
Versatile Video Coding (VVC) [10,11] at four different preset speeds (slower, slow, fast, and
faster) for seven different bit-rate values (1, 5, 10, 15, 20, 25, 30) Mbps. The dataset consists
of 1800 quilted frames (9600 × 5400 pixel) and an impressive 45,000 (1920 × 1080 pixel)
views. This novel dataset stands as a unique resource for future research endeavours in
the fields of deep learning and machine learning. Its extensive array of views and diverse
contents significantly enhance the potential for the development of highly accurate artificial
intelligence (AI) models. The only publicly available video dataset captured via the Raytrix
R8 plenoptic video camera preceding our creation was developed by Guillo et al. [12],
consists of three videos.These scenes were generated by utilizing a turntable to induce
controlled motion within the scenes. Another video dataset obtained with a Lytro Illum
plenoptic camera is actually composed of several continuous still light-field images, which
are processed manually to obtain a light-field video sequence [13].

One of the main challenges with light-field content is real-time communication, due
to the large data size of light-field files. To make transmission feasible, data sizes need
to be reduced using either traditional compression techniques or ML-based methods.
Additionally, interpolation techniques can be employed to generate skipped views or
frames on the recipient side, thus lightening the data volume during transmission. Both
compression and interpolation can benefit significantly from deep learning or ML-based
algorithms. The dataset introduced in this paper offers two major advantages:

1. Video Sequence Dataset: Unlike typical light-field image datasets, which focus on
individual frames, our dataset includes 300-frame sequences for each light-field video.
This not only aids in interpolation by providing more temporal data but also allows
for the development of algorithms that leverage consecutive frames, an aspect which
is absent in image-based datasets.

2. Uncontrolled Speed Features: Our dataset captures different objects with various
uncontrolled speed features. In ML and deep learning, accurate prediction is crucial.
Using controlled speed scenes can make predictions easier but less reliable. Our
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dataset’s inclusion of scenes with uncontrolled speeds and behaviours results in more
robust and valid algorithm performance, as it mirrors real-world unpredictability.

The subsequent sections of the paper are outlined as follows: Section 2 provides a
review of related work concerning existing light-field datasets and quality assessment
methods. Section 3 explores the content acquisition process. In Section 4, content char-
acterisation evaluations are presented. Section 5 offers a detailed analysis of the results
outlined in Section 4. Section 6 provides an extensive overview of the quality assessments
performed on the dataset content, together with an in-depth analysis of the results achieved.
Finally, Section 7 discusses conclusions and future work.

2. Related Work
2.1. Light-Field Datasets

A detailed review and taxonomy of publicly available light-field datasets is provided
in [14]. A brief overview of relevant works is reported below. Wanner et al. [15] presented
a light-field dataset containing 13 samples with the aim of providing a reference dataset
for related evaluations. Additionally, alongside the dataset, they provided depth maps
and dense samples of the contents. The dataset consists of seven computer-generated
light-field images, while the rest were captured using a gantry. Tao et al. [16] explained
the process of using light-field content to create depth maps. Additionally, to achieve
better depth map results, their presented algorithm utilised a combination of defocused
and correspondence depth cues from the light-field images. The dataset they created
comprises samples captured with the Lytro Illum light-field plenoptic camera, covering
both indoor and outdoor scenes. The need for saliency detection of light-field contents
led Li et al. [17] to create their own light-field dataset, consisting of 100 light-field image
contents. This dataset comprises 60 indoor light-field images and 40 outdoor light-field
images, all captured by the Lytro light-field plenoptic camera. Creating deep learning
models based on light-field contents requires a sufficient number of samples. Yoon et al. [18]
addressed this need by creating a light-field image dataset containing over 300 samples.
These samples have an angular resolution of 5 × 5 and spatial resolutions of 383 × 383,
all captured by the Lytro Illum light-field plenoptic camera. Rerabek and Ebrahimi [19]
created a Lytro Illum light-field image dataset consisting of 118 samples. The acquired
content of the dataset was classified into ten categories based on various characteristics.
The resolution for each light-field raw (LFR) file, which is the Lytro plenoptic camera file
format, is 5368 × 7728 pixels. Paudyal et al. [20] utilised the Lytro Illum plenoptic camera
to produce 15 light-field images within a dataset named SMART. Following the convention
for light-field contents generated by Lytro cameras, the dataset adopted the LFR file format.
For subsequent processing purposes, the MATLAB Light Field Toolbox v0.4 was used.
A method in which a light-field dataset was used to assist with the creation of video
content through a mesh of multi-array cameras was proposed by Sabater et al. [21]. The
dataset was generated using a rig comprising 16 cameras operating at 30 fps, with a spatial
resolution of 2048× 1088 pixels for each frame. Also, the calibration process for the cameras
within the rig was comprehensively explained. Honauer et al. [22] created a light-field
dataset benchmark consisting of 24 synthetic light-field images, primarily focusing on depth
estimation. The dataset was divided into three categories: test images, training images,
and additional light-field scenes. Shekhar et al. [23] created a dataset comprising both
real-world and synthetic horizontally parallax-contained light-field samples. To capture
real-world content, DSLR cameras were utilised along with a motorised controllable rail
operated by a stepper motor controlled by an Arduino board. Faria et al. [24] created
a publicly available light-field image dataset of skin lesions captured by the Raytrix R8
plenoptic camera, named SKINL2 v1.0. It contains 250 light-field images categorised into
eight different categories. Additionally, the spatial information (SI) and colourfulness (CF)
of the dataset were measured, and the results were presented. Wang et al. [25] used a
10 × 10 rig that contained 100 cameras with a resolution of 1920 × 1056 pixels. The dataset
comprised nine light-field video groups. For video streaming, the H.265 / HEVC video
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encoder was utilised, with a frame resolution set to 1920 × 1056 and a frame rate of 24 fps.
Sheng et al. [26] created a dataset of urban light-field images with semantic segmentation,
consisting of 1074 samples, which contains images of real-world and synthetic light-field in
14 semantic classes. All real-world content was captured using Lytro Illum cameras, and
for further processing, the MATLAB Light Field Toolbox was utilised.

As mentioned in the introduction, at the time of writing this paper, only one other
study has been published on video light-field datasets captured via a plenoptic video
camera. Guillo et al. [12] utilised the Raytrix R8 light-field plenoptic camera to create a
dataset comprising three types of content. Two of them involve objects revolving on a
turntable at a constant speed, while the third features a static object with the camera rotating
around it. A total of 300 frames were collected for each file, with a frame rate of 30 fps.
The remaining light-field video datasets have primarily been created using camera array
systems, wherein a multitude of digital cameras is installed, e.g., on a rectangular frame to
form a multi-position camera array. The latter solution enables the capture of larger objects.
Sabater et al. [21] introduced a light-field synchronised video sequences dataset captured
with a 4 × 4 camera mesh. Another example is the 10 × 10 camera rig introduced by Hu
et al. [25], where each view in the dataset has a resolution of 1920 × 1056 pixels, comprising
nine indoor and outdoor light-field real-world contents. Wang et al. [27] presented a
light-field video dataset utilizing both the Illum plenoptic camera with a low frame rate of
3 fps and a DSLR camera with a higher frame rate of 30 fps. These cameras were coupled
to each other, feeding the system with content from the plenoptic camera with a low frame
rate alongside video content from the DSLR camera with a higher frame rate. The plenoptic
camera with 3 fps captures angular information, while the DSLR camera captures temporal
information of the scene. This combination generates a high frame rate light-field video
with full angular information on the output side.

2.2. Light-Field Quality Assessment

Several works use PSNR and SSIM of the views due to their simplicity. Sakamoto et al. [28]
explored compression methods and employed the Discrete Wavelet Transform (DWT) in-
stead of the Discrete Cosine Transform (DCT) compression technique on light-field content.
Subsequently, they calculated the PSNR and SSIM quality assessment metrics, demon-
strating that DWT produced superior quality results compared to the DCT compression
technique. Marwah et al. [29] proposed a compression design for the camera by introduc-
ing the optical architecture. They evaluated the light-field quality using the PSNR quality
metric, considering factors such as the distance to the camera aperture. Tambe et al. [30]
designed and implemented a light-field camera and reconstructed the captured contents,
which were evaluated using PSNR versus the number of frames for quality assessment.
Cristian Perra [31] applied compression methods primarily to the content of the plenoptic
light-field. The degraded results were assessed using the quality metrics of PSNR and
SSIM. Choudhury et al. [32] utilised the code snapshot and learned dictionary compres-
sion technique applied to light-field contents to evaluate the quality compared to two
compression techniques, JPEG2000 and MPEG-4 (H.264), using the PSNR quality metric.
Thomaz et al. [33] applied different encoders, including Sparse Prediction for Light-Field
Image Compression (WaSP) and the Multidimensional Light-Field Encoder (MuLE), to
the light-field contents of SKINL2 [24]. They evaluated the achieved results after the re-
construction of the light-field contents using two quality assessment metrics: PSNR-Y and
SSIM-Y. Hedayati et al. [34] employed a JPEG learning-based technique that was used to
compress and reconstruct the light-field contents. They evaluated the reconstructed results
using two quality assessment metrics, PSNR and SSIM, to compare their performance with
the HEVC (H.265) compression technique.
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Metrics specific to light-field video have been proposed in the literature. Two examples
are briefly described below. Shidanshidi et al. [35] utilised the effective sampling density
(ESD) metric to assess the quality of light-field content, considering both acquisition and
rendering. A subjective test was conducted, revealing a 0.91 correlation between the ESD
and the participants’ perceived results. Singh and Rameshan [36] introduced a learning-
based, disparity-aided model for compressing and reconstructing light-field contents.
They evaluated the results using their proposed metric and compared them with various
compression techniques, including JPEG2000, HEVC, and VVC, using PSNR and MS-SSIM
quality metrics. The latest class of quality metrics was mainly developed or tested to
estimate the quality of light-field video when displayed in “classical” video displays, rather
than light-field displays. For this reason, the benefit of using these versus PSNR or SSIM
is not clear. Avramelos et al. [37] utilised a combination of light-field content datasets
from [19,38]. They applied three different video encoders—AVC, HEVC, and VVC—across
various bitrate ranges for each light-field content. Finally, they evaluated the quality metric
of PSNR versus bitrate values. Amirpour et al. [39] utilised light-field content from various
datasets in image format. They applied different encoders, such as VVC, and evaluated
objective quality using PSNRY on the luminance component across different bitrates. In
their evaluation, which was based on the image content, the VVC encoder showed superior
performance compared to other encoders. Notably, AV1 was not included among the
mentioned encoders. Barina et al. [40] used nine different light-field image contents to
evaluate quality metrics across different encoder behaviours using the PSNR quality metric
over different bits per pixel (bpp) values. Their study demonstrates that VVC outperforms
all other encoders considered.

No international standard existed with regard to light-field quality assessment until
the recent “Recommended practice on the quality assessment of light field imaging” (IEEE
SA 3333.1.4 [41]) where recommendations on subjective and objective quality assessment
of light-field imaging are provided. Several challenges still exist both for subjective quality
assessment [42] and objective quality assessment. The lack of suitable datasets is one of
these, and this lack is particularly noticeable for datasets in which quality is assessed in
light-field displays. These datasets will partially fill this gap and the rendered content has
been visualised on a light-field display. However, an accurate subjective evaluation on a
light-field display with the help of a panel of viewers will be the next step of this research.

3. Capture Configuration

The contents in the introduced light-field dataset were all captured with the Raytrix
R8 [43] plenoptic camera. The maximum resolution of the Raytrix R8 is equal to
0.25 × 8 = 2 mega pixel, with a maximum frame rate of 30 fps. It also offers focal lengths
of (8, 12, 16, 25, 35, 50, 75) mm with a focal length of 35 mm used for this dataset, and
f-numbers of 2.8/4/5.66 [44]. In this camera, the field of view width, height, and depth
of field are 20, 14, and 9 millimeters, respectively, and the minimal and maximal working
distances are 170 mm and 350 mm [45]. The depth resolution is typically 1% of the total
depth of field [46], so for this camera, the depth resolution equals 0.09 mm. No additional
equipment is utilised to apply motion to the contents; all the objects exhibit self-motion and
they display highly diverse motion displacements. Each video is recorded for a duration of
10 s, with the frame rate of 30 fps and each frame containing 25 different views with the 2D
spatial resolution for each view in the contents of 1920 × 1080 and the angular resolution of
5 × 5 in a frame. The background is the same textured red fabric, which provides sufficient
contrast for all the models in the dataset, and the luminance intensity of the environment
is set to 400 lux for all the test models of the dataset. The distances of the objects range
between 26 and 32 cm from the camera.

The dataset comprises six distinct sets of video contents and objects. Notably, one of the
contents, ‘Water’, is composed of multiple objects rather than a single entity. Furthermore,
the ‘Water’ content showcases transparent objects, featuring both a ‘Fish’ and a ‘Turtle’
immersed in a glass of water, thereby presenting transparency for both water and glass. In
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total, the dataset includes six distinct contents carefully chosen for the light-field dataset,
offering diverse characteristics such as object composition complexity, colour intricacy, and
motion variety. Figure 1 shows a sample view for each content available in the dataset and
Figure 2 depicts their depth map view samples.

All available models (Bee, Crab, Dinosaur, Magician, Mouse, and Water) in the dataset
are wind-up models made of plastic, and come in a variety of colours. Notably, in one
specific content, ‘Water’, there are multiple objects, specifically two models of ‘Fish’ and
‘Turtle’. Figure 3 provides a visual representation of all the models used in the dataset,
along with their corresponding geometry details.

(a) Bee (b) Crab (c) Dinosaur

(d) Magician (e) Mouse (f) Water

Figure 1. Raytrix R8 view samples. (a–f) subfigures illustrate the view samples of Bee, Crab, Dinosaur,
Magician, Mouse, and Water contents, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 2. Raytrix R8 central view depth samples with the scale bar in (cm). (a–f) subfigures illustrate
the depth maps of Bee, Crab, Dinosaur, Magician, Mouse, and Water contents, respectively.
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(a) (b) (c) (d) (e) (f) (g)

Figure 3. The geometry details of each of the used models are as follows: (a) Bee, (b) Crab, (c) Dinosaur,
(d) Magician, (e) Mouse, and two models are used for the Water content, which are (f) Fish and
(g) Turtle.

4. Content Characterisation Methodologies

The characterisation of the contents is evaluated using various metrics, including
motion vector, SI, TI, and CF, which are explained individually below.

4.1. Motion Vector

In this work, unlike in previous similar ones, we did not use a turntable to control
the motion of the models in the dataset, which results in variable motion among different
models. To evaluate these motion displacements, motion vector algorithms are employed.
Specifically, the Lucas–Kanade optical flow algorithm [47] is selected for this purpose.
This algorithm operates by detecting object corners and comparing consecutive frames to
generate motion vectors. For every two consecutive frames, central views are extracted and
converted into HSV color space images. The ‘V’ component of the HSV images is utilised to
apply the Lucas–Kanade optical flow equation and determine the available motion vectors.
Each motion vector has an initial point (x1, y1) and an end point (x2, y2). The change in the
x-direction (∆x) and the change in the y-direction (∆y) are calculated as follows:

∆x = x2 − x1, (1)

∆y = y2 − y1. (2)

Next, the magnitude of each motion vector is computed using the Euclidean distance
formula [48], which is given by

|v| =
√
(∆x)2 + (∆y)2. (3)

The set provided in (4) contains all available calculated velocities derived from the
motion vectors calculated using the equation above (for each single available pair of frames).

vset = [|v1|, |v2|, . . . , |vN |]. (4)

Referring to Figure 4a, each pair of central views from consecutive 5 × 5 frames is
evaluated to determine the motion vector displacements between them. Consequently, the
mentioned N value in Figure 4a varies for each pair of consecutive frames and is denoted
as N1, N2, . . . , N299. To calculate the overall average value of motion displacements, in
Equation (7), F is used, representing the total number of frame pairs. For a light-field
video consisting of 300 frames, F equals 299 frame pairs. Moreover, the average of (4) is
calculated in (5) to yield a single value representing the motion displacement between the
two consecutive frames.
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vcv−avg =
1
N

N

∑
i=1

(vset)i, (5)

where N represents the number of available motion vectors for each pair of consecutive
frames, and it can vary for each pair. Here, a ‘frame’ refers to the central view of each
5 × 5 grid of views. Additionally, the cv subscript in (5) refers to the ‘central view’ of the
25 quilted views in the light-field frame. By applying Equations (4) and (5) to all available
pairs of frames in each video, we obtain the set

vcv−avg−set = [vcv−avg1, vcv−avg2, ..., vcv−avgF], (6)

where F is the number of consecutive frame pairs in each video, which is equal to 299. To
achieve the final motion displacement for each video, the average of (6) is calculated:

vcv−total−avg =
1
F

F

∑
i=1

(vcv−avg−set)i. (7)

Due to the high motion displacements observed in certain models within the dataset, such
as ‘Bee’, accurately determining motion vectors presents a challenge. To address this issue,
various colour spaces are applied to the light-field contents of the dataset. For all available light-
field video contents in the dataset, different colour spaces, including hue, saturation, luminance
(HSL); hue, saturation, value (HSV); Lab*; and YUV (Luminance (Y) and Chrominance (UV)) are
utilised [49]. The (L) component in HSL, (V) component in HSV, (L) component in LAB, and (Y)
component in YUV are employed to determine the motion vectors, as illustrated in Figure 5. The
HSV colour space appears to be the most suitable for calculating the motion vectors, as shown in
Figure 6. In the second image displayed, representing the HSV colour space of the ‘Bee’ content,
the motion vectors are most accurately detected around the model’s wings. This precision
explains why the HSV color space is employed to determine the overall motion displacements
across all the light-field video contents in the dataset. Following this, Figure 7 showcases all
detected motion vectors when the HSV color space is applied. These vectors are displayed
across all pairs of successive frames in the video, encompassing a comprehensive overview of
the detected motion vectors for all available models in the dataset. Therefore, to calculate the
total motion displacement values in the dataset, the central view is initially converted to an
HSV color space image, and then the (V) component in the HSV image is utilised for further
calculations. Additionally, for both SI and TI, as depicted in Figure 8a,b, respectively, the (V)
component of the HSV image is employed to apply the Sobel filter. Consequently, the term
‘HSV’ is appended for both the vertical and horizontal axes of the figures.

F 1

𝑣𝑠𝑒𝑡1= [|𝑣1 , |𝑣2 , … , |𝑣𝑁1|]
 

𝑣𝑐𝑣−𝑎𝑣𝑔1 =
1

𝑁1
෍

𝑖=1

𝑁1

𝑣𝑠𝑒𝑡1𝑖

F 2

F 299

F 300

HSV

HSV

HSV

HSV

𝑣𝑠𝑒𝑡299=     [|𝑣1 , |𝑣2 , … , |𝑣𝑁299|]

𝑣𝑐𝑣−𝑎𝑣𝑔299 =
1

𝑁299
෍

𝑖=1

𝑁299

𝑣𝑠𝑒𝑡299𝑖

𝑣𝑐𝑣−𝑎𝑣𝑔−𝑠𝑒𝑡 = [𝑣𝑐𝑣−𝑎𝑣𝑔1
, … , 𝑣𝑐𝑣−𝑎𝑣𝑔𝐹

] 

 𝑣𝑐𝑣−𝑡𝑜𝑡𝑎𝑙−𝑎𝑣𝑔=
1

𝐹
෍

𝑖=1

𝐹

𝑣𝑐𝑣−𝑎𝑣𝑔−𝑠𝑒𝑡 𝑖
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(a)
Figure 4. Cont.
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F 2

𝑆𝐼300 

𝑇𝐼300 

𝐶𝐹300 

𝑆 𝐼 1 ,  𝑆 𝐼 2  ,  … ,  𝑆 𝐼 3 0 0  𝑆𝐼𝑐𝑣 =

𝑆𝐼𝑐𝑣−𝑡𝑜𝑡𝑎𝑙 = 𝑀𝑎𝑥 {𝑆𝐼𝑐𝑣}

𝑇 𝐼 1 ,  𝑇 𝐼 2  ,  … ,  𝑇 𝐼 3 0 0  𝑇𝐼𝑐𝑣 =

𝑇𝐼𝑐𝑣−𝑡𝑜𝑡𝑎𝑙= 𝑀𝑎𝑥 {𝑇𝐼𝑐𝑣}

𝐶 𝐹1 ,  𝐶 𝐹2  ,  … ,  𝐶 𝐹3 0 0  𝐶𝐹𝑐𝑣 =

𝐶𝐹𝑐𝑣−𝑡𝑜𝑡𝑎𝑙 = 𝑀𝑒𝑎𝑛 {𝐶𝐹𝑐𝑣}

𝑆𝐼299 

𝑇𝐼299 

𝐶𝐹299 

𝑆𝐼2 

𝑇𝐼2 

𝐶𝐹2 

𝑆𝐼1 

𝑇𝐼1 

𝐶𝐹1 

F 1

F 2

F 299

F 300

(b)

Figure 4. Content characterisation evaluation flows for (a) motion displacement characterisation flow,
and (b) SIcv, TIcv, and CFcv characterisation flow.

Figure 5. Each row of images represents one content in the different color spaces HSL, HSV, LAB, and
YUV (in order from left to right for the first four sample images) followed by the (L) component for
HSL, (V) component for HSV, (L) component for LAB, and (Y) component for YUV (sorted in each
row from five to eight). The view samples reported in the six rows are from the contents ‘Bee’, ‘Crab’,
‘Dinosaur’, ‘Magician’, ‘Mouse’, and ‘Water’.

(a) (b) (c) (d)

Figure 6. Detected motion vectors; (a) ‘L’ component in HSL, (b) ‘V’ component in HSV, (c) ‘L’
component in LAB, and (d) ‘Y’ component in YUV.
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(a) Bee (b) Crab (c) Dinosaur

(d) Magician (e) Mouse (f) Water

Figure 7. Overall motion vectors added on a sample view of ‘V’ component in HSV color space.
(a–f) subfigures illustrate the motion vectors on Bee, Crab, Dinosaur, Magician, Mouse, and water
contents, respectively.
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Figure 8. Cont.
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Figure 8. Content characterisation values in (a,b) present motion displacement values for HSV
colour space in the vertical axis versus two of SI and TI, respectively, in the horizontal axis;
(c,d) present colourfulness values in the vertical axis and SI and TI, respectively, in the horizontal axis.
(e–g) represent SI versus TI values for three colour spaces of HSL, HSV, and YUV, respectively.

4.2. SI, TI, and CF

The central view in each frame of every light-field content is selected as a representative
view for measuring Spatial Information (SI), Temporal Information (TI), and colourfulness
(CF) values. In total, for 300 frames, this process results in 300 distinctive values. The
maximum value among them is then chosen as the final metric value for SI and TI, while
the mean value is calculated for the final CF result. For SI, the Sobel filter is applied to
the selected central view, and the standard deviation of the Sobel filtered view is then
measured. Subsequently, the maximum value among the measured standard deviations
over all frames is chosen as the SI value for the light-field content. In all Equations (8)–(18),
the subscript “cv” refers to the central view of the frame, which is located at view position
(3,3) in the 5 × 5 light-field grid. The mentioned view is initially converted to a grayscale
image, following which the Sobel filter is applied in both the vertical and horizontal axes.
Equations (8) and (9) illustrate the convolution of the Sobel filter kernel (edge filter) with
the central view image of the frame.

Gx =

−1 0 1
−2 0 2
−1 0 1

 ∗ Icv, (8)

Gy =

−1 −2 −1
0 0 0
1 2 1

 ∗ Icv, (9)

where ‘Icv’ represents the intensity of the central view image of the light-field video frame.
Then, the magnitude is calculated based on the two components Gx and Gy in both hori-
zontal and vertical axes, respectively:

Mcv =
√

Gx2 + Gy2. (10)

To find the standard deviation value, the mean value over the pixels is initially calculated:

Scvmean =
1
P ∑ Mcv, (11)

P = H × W, (12)

where H and W in Equation (12) represent the height and width of the central view image,
respectively, to determine the number of available pixels. Having the mean value of each
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Sobel-filtered view in Equation (11), the standard deviation of each central view image is
then calculated in Equation (13) [50]:

SIcv =

√
1
P ∑(Mcv − Scvmean)

2. (13)

The maximum standard deviation value over the available central view images in
all 300 available frames is picked as a final SI of the light-field video, as calculated in
Equation (14):

SIcv−total = max{SIcv}. (14)

To compute the TI value of the light-field content, the subtraction of pixel values
between each available pair of subsequent views in the light-field video is calculated.
The standard deviation is then computed for the resulting values from the mentioned
subtraction, and the maximum among all values for all 300 frames is then selected as the
final TI value for the light-field content. The corresponding pixels from the central view
images in two successive frames are subtracted:

Mn
p = cvn

p − cvn−1
p . (15)

Then, the standard deviation is calculated:

TIcv = std[Mn
p ], (16)

and finally, as is the case for SI, the maximum value over all resulted standard deviation
over all available frames is calculated as the final TI value of the light-field video:

TIcv−total = max{TIcv}. (17)

To determine the CF characterisation of the available video contents in the dataset, the
same central view of each frame is selected to calculate the CF value. Subsequently, the
mean of all CF values across all 300 frames is chosen as the final CF of the light-field content.
In contrast to SI and TI, for CF, the mean value over all obtained results is calculated as
the final CF value for the content. The CF for a single central view (cv) is calculated in
Equation (18).

CFcv =
√

σ(rg)2 + σ(yb)2 + 0.3
√

µ(rg)2 + µ(yb)2, (18)

where σ(·) represents the standard deviation and µ(·) the mean value; rg and yb are found
based on the equations below:

rg = R − G, (19)

yb = 0.5(R + G)− B. (20)

Finally, to achieve the total CF value for each video content, the mean overall CF
values are measured in Equation (21)

CFcv−total =
1
F

F

∑
i=1

(CFcv)i, (21)

where F is the number of available frames in each video. All the calculation steps for the
SI, TI, and CF values are depicted in Figure 4b. This figure shows the three characteristic
parameters for each central view of the 5 × 5 frames. For SI and TI, the maximum values
are selected, while for CF, the mean value is chosen as the final result.

5. Analysis of the Content Characterisation Results

After applying the characterisation metrics for the available light-field contents, this
section presents and evaluates the obtained results. The results are divided into two sections:
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the first section focuses on motion vectors, while the second section encompasses SI, TI,
and CF metrics collectively.

5.1. Motion Vectors Results Analysis

The results obtained via the motion vector metric are illustrated in two figures,
Figure 8a,b. In both figures, the vertical axis shows the motion displacement values versus
the SI and TI, respectively. The motion displacement values are derived using the HSV
colour space applied to the dataset contents. Upon analysis, it becomes evident that the
motion displacement in the ‘Bee’, ‘Dinosaur’, and ‘Mouse’ video contents is higher than
in other contents. For instance, in the case of the ‘Bee’ model, this can be attributed to the
rapid motion of the flying wings within the ‘Bee’ content. Furthermore, this result justifies
the presence of motion blur effects in these three contents, considering the effect of the
30-frame-rate value of the Raytrix R8 plenoptic camera. Conversely, the lowest motion
displacement values belong to the ‘Water’, ‘Crab’, and ‘Magician’ models, respectively.

5.2. SI, TI, and CF Results Analysis

Figure 8c illustrates the comparison between CF (y-axis) and SI (x-axis) and Figure 8d
shows the CF values in the vertical axis versus the TI values on the horizontal axis of
the plot. Upon examining the results, it is evident that the content labelled ‘Bee’ exhibits
the highest TI score among all the presented contents in the dataset, while content ‘Di-
nosaur’ records the lowest TI score among the video contents. Regarding CF, ‘Magician’
demonstrates the highest score, while the lowest is observed for ‘Crab’. Figure 8e–g present
the comparison between SI (y-axis) and TI (x-axis), where three different colour spaces
(HSL, HSV, and YUV) are applied on the view samples. This indicates the highest SI score
for the content ‘Magician’, aligning with the CF plots. The highest SI value associated
with the ‘Magician’ model can be attributed to its texture complexity. As indicated by
Equations (8), (9), and (13), the Sobel filter (an edge filter) is initially applied to detect edges
in the central view. The standard deviation over the Sobel-filtered view is then calculated
as part of the SI measurement process. It is evident that models with greater texture
complexity exhibit more edges, leading to higher standard deviation values in the view.
Upon comparing the models in the dataset, it becomes apparent that the ‘Magician’ model
possesses the highest texture complexity, a conclusion corroborated by the SI measurement.
Conversely, the lowest SI score is recorded for ‘Dinosaur’, while, in the case of CF, the low-
est score was for the ‘Crab’ content. As mentioned in the introduction section, each content
in the dataset possesses its own motion speeds, and these speeds are not controlled by any
external instrument to ensure a constant speed for all available objects. Consequently, upon
examining the content named ‘Dinosaur’, it becomes evident that its spatial information is
limited. This is attributed to the content having the lowest texture complexity.

6. Light-Field Dataset Objective Quality Assessment

This section outlines the procedure for evaluating the quality of the generated light-
field plenoptic video contents during their encoding process by various video encoders.
The process begins with the encoding of the videos using multiple video encoders, followed
by a detailed explanation of quality evaluation using PSNR and SSIM.

6.1. Light-Field Video Encoding Procedure

We used various video encoders, namely AVC [6], HEVC [7], VP9 [8], AV1 [9], and
VVC (VVenc and VVdec) [10,11], at different bit rate ranges (1, 5, 10, 15, 20, 25, 30) megabits
per second initially, followed by decoding on the other side. Specifically for VVenc, four
speed settings (fast, medium, slow, and slower) were employed. All contents input during
the encoding phase consisted of 25 views with a spatial resolution of 1920 × 1080 pixels for
each view, arranged in a quilt with an angular resolution of 5 × 5, which resulted in spatial
resolution of 9600 × 5400 pixels for each plenoptic light-field frame.
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6.2. PSNR and SSIM Quality Metrics

The primary assessment procedure is outlined in Figure 9, illustrating both the encod-
ing process (Figure 9a) and the comprehensive quality assessment flow incorporating PSNR
and SSIM metrics (Figure 9b). the provided decoded light-field video contents from the
preceding section were subsequently evaluated in comparison with their original versions
to demonstrate objective quality values. Two quality metrics, PSNR [51] and SSIM [52],
were selected to objectively assess the quality of the available light-field contents in the
dataset. All evaluations for both PSNRYUV and SSIMYUV were based on the average of the
values for YUV components. Initially, the 5 × 5 quilted original frames for each individual
light-field video content were encoded using the respective mentioned video encoders,
each time targeting specific bit-rate values, as mentioned above. Subsequently, the encoded
light-field videos were decoded. Each decoded video was then compared frame by frame
with the original video. Since each frame was compared, this process yielded 300 distinct
values each time for both PSNR and SSIM quality metrics.

PSNRYUV−set = [PSNRYUV1 , PSNRYUV2 , ...

, PSNRYUVN ]
(22)

SSIMYUV−set = [SSIMYUV1 , SSIMYUV2 , ...

, SSIMYUVN ]
(23)

Each member of the sets in (22) and (23) represents the quality metric value for
one frame of the decoded videos. Finally, based on (24) and (25), the average of each set of
300 values is calculated as the result of each metric for each video.

PSNRYUV−total =
1
N

N

∑
i=1

(PSNRYUV−set)i, (24)

SSIMYUV−total =
1
N

N

∑
i=1

(SSIMYUV−set)i, (25)

Here, N represents the number of available PSNR and SSIM values in the two pre-
sented sets of (22) and (23), which, for the dataset, is equal to 300. The two final sets in (26)
and (27) provide the total values for each of the PSNR and SSIM quality metrics across all
the bitrate values.

PSNRYUV-total-set = [PSNRYUV-total1, PSNRYUV-total5,

PSNRYUV-total10, PSNRYUV-total15,

PSNRYUV-total20, PSNRYUV-total25,

PSNRYUV-total30]

(26)

SSIMYUV-total-set = [SSIMYUV-total1, SSIMYUV-total5,

SSIMYUV-total10, SSIMYUV-total15,

SSIMYUV-total20, SSIMYUV-total25,

SSIMYUV-total30]

(27)

Regarding the relationship between PSNR and SSIM, here, we remind the reader that
these are related and, for DCT-based compression of reasonable quality, one can be obtained
from the other, as highlighted in [53].
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Figure 9. Quality assessment encompasses two main components: (a) the encode–decode procedure
applied to the light-field video contents, and (b) the evaluation of quality metrics such as PSNR and SSIM.

6.3. Objective Quality Assessment Discussion

The results for the PSNR and SSIM objective quality metrics are reported in Figure 10,
which consists of twelve subplots. Each subplot displays graphs for PSNR and SSIM, rep-
resenting the quality metrics values for all six available light-field video contents on the
vertical axis versus seven different bit-rate (Mbps) values on the horizontal axis across the
dataset. A comparison with our previous paper [49], which utilised a light-field dataset from
a nonplenoptic camera with a spatial resolution of 1920× 1080 pixels for each view, reveals
interesting observations. In the previous dataset, VP9 outperformed HEVC and occupied a
higher position than the HEVC encoder. However, in the current plenoptic light-field video
dataset with a frame spatial resolution of 9600× 5400 pixels, HEVC exhibits better quality in
most bit-rate ranges. Additionally, the VVC encoder, across all four different speeds, consis-
tently underperforms compared to the AV1 encoder, indicating a weaker performance than
AV1. The diagrams also demonstrate that decreasing the VVC encoder preset speed leads to
only marginal improvements, as shown by the dashed lines representing the slow, fast, and
faster presets in Figure 10. Furthermore, Table 1, which details several available light-field
datasets, includes information on the acquisition camera types and the content types, whether
they are light-field video datasets or light-field image datasets. The datasets mentioned in
both Tables 1 and 2 are selected based on whether plenoptic cameras are used for the dataset,
if the dataset is a light-field video dataset, or if the light-field dataset contains either character-
isation evaluations or quality assessments. Table 2 indicates whether the available light-field
contents in each dataset have been evaluated for either objective quality metrics or content
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characterisation. By reviewing Table 2, it is evident that our dataset, KULFR8, is evaluated for
all the mentioned content characterisation and objective quality metrics of PSNR and SSIM.
Additionally, there is no similar video plenoptic dataset containing the mentioned evaluations
available for comparison with the results obtained in this paper.
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Figure 10. Quality metric plots PSNRYUV and SSIMYUV for ‘Bee’, ‘Crab’, ‘Dinosaur’, ‘Magician’,
‘Mouse’, and ‘Water’ light-field video contents.
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Table 1. Summary of datasets and their acquisition parameters.

Reference Dataset Format Plenoptic/Nonplenoptic Camera

Javidi et al. [49] Images Nonplenoptic Canon 77D
Rerabek et al. [19] Images Plenoptic Lytro Illum
Sabater et al. [21] Videos Camera rig IDS CMOSIS CMV2000
Shekhar et al. [23] Images Nonplenoptic Canon EOS 6D and 5D as well as Sony Alpha 7 R
De Faria et al. [24] Images Plenoptic Raytrix R42
Hu et al. [25] Videos Camera matrix monocular video cameras
Guillo et al. [12] Videos Plenoptic Raytrix R8
Paudyal et al. [20] Images Plenoptic Lytro Illum
Viola et al. [54] Images Plenoptic Lytro Illum
Zizien et al. [55] Images Plenoptic Raytrix R5
Adhikarla et al. [56] Images Nonplenoptic Canon EOS 5D
Ahmad et al. [57] Images Plenoptic Lytro Illum and Raytrix R29
KULFR8 Videos Plenoptic Raytrix R8

Table 2. Summary of datasets and their quality parameters.

Reference Characterisation AVC HEVC VP9 AV1 VVC PSNR SSIM

Javidi et al. [49] ✓ ✓ ✓ ✓ ✓ - ✓ ✓
Rerabek et al. [19] - - - - - - - -
Sabater et al. [21] - - - - - - - -
Shekhar et al. [23] - - - - - - - -
De Faria et al. [24] ✓ - - - - - - -
Hu et al. [25] - - - - - - - -
Guillo et al. [12] - - - - - - - -
Paudyal et al. [20] ✓ - - - - - - -
Viola et al. [54] - - ✓ ✓ - - ✓ ✓
Shi et al. [58] ✓ - ✓ - - - - -
Zizien et al. [55] - ✓ ✓ ✓ ✓ - ✓ ✓
Adhikarla et al. [56] - - ✓ - - - - -
Ahmad et al. [57] - - - - - - - -
KULFR8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

7. Conclusions

As an emerging technology, light-field contents should be widely accessible to re-
searchers to support advancements in light-field 3D technology. In this paper, we created a
light-field video dataset, KULFR8, which was captured with a plenoptic camera, specif-
ically the Raytrix R8. The dataset comprises six distinct light-field video contents, each
containing 300 frames with a duration of ten seconds, captured at a frame rate of 30 fps. For
the acquired contents, different characterisation metrics are evaluated, including motion
displacements, SI, TI, and CF. The contents were compressed with five different encoders,
AVC, HEVC, VP9, AV1, and VVC (in four preset modes), with each encoder producing
videos at seven compression ratios; hence, 336 compressed videos are obtained. For these
videos, the objective quality metrics PSNR and SSIM were calculated. Given the substantial
number of views and frames in this dataset, due to the number of available quilted frames
and the number of available views in the dataset, one potential use case is the develop-
ment of machine learning algorithms for further analysis. In future work, we plan to run
subjective tests on the compressed light-field videos in this dataset in order to provide a
reliable quality evaluation of the videos in the dataset and to support the development
of objective quality assessment metrics based on machine learning, where the machine
learning will help to estimate the results of subjective scores. Another interesting future
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study, as suggested by a reviewer, would be to perform rate-distortion comparisons of light
field compression via encoding versus compressed light field sensing [59].
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