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Abstract: Multispectral image registration is the process of aligning the spatial regions of two images
with different distributions. One of the main challenges it faces is to resolve the severe inconsistencies
between the reference and target images. This paper presents a novel multispectral image registration
network, Multi-scale Intuitionistic Fuzzy Set Feature-guided Registration Network (IFSrNet), to
address multispectral image registration. IFSrNet generates pseudo-infrared images from visible
images using Cycle Generative Adversarial Network (CycleGAN), which is equipped with a multi-
head attention module. An end-to-end registration network encodes the input multispectral images
with intuitionistic fuzzification, which employs an improved feature descriptor—Intuitionistic Fuzzy
Set–Scale-Invariant Feature Transform (IFS-SIFT)—to guide its operation. The results of the image
registration will be presented in a direct output. For this task we have also designed specialised loss
functions. The results of the experiment demonstrate that IFSrNet outperforms existing registration
methods in the Visible–IR dataset. IFSrNet has the potential to be employed as a novel image-to-image
translation paradigm.

Keywords: multispectral registration; intuitionistic fuzzy set; multi-scale features; multi-headed
attention

1. Introduction

The information derived from infrared and visible imaging is complementary, as the
former captures details on the intensity of temperature radiation emitted by the target,
whereas the latter reflects information regarding the texture and contours of the target.
Despite multispectral images being captured concurrently within the same environment,
disparities persist among them due to the diverse intensities, gradients, and structures
associated with different wavelengths of light. Multispectral image registration [1] aims
to establish the mapping relationship between the reference image and the image to be
registered, achieving geometric calibration through various methods. The primary process
involves selecting the appropriate image registration technique, extracting feature points,
performing feature matching, and evaluating the registration accuracy. In the field of
medical image diagnosis [2], the registration captured at different times or in different
modalities can assist physicians in formulating more accurate treatment plans. In the
context of remote sensing [3], the registration of multispectral images can provide detailed
information about the ground. Additionally, this technology can be employed in monitoring
the distribution and dispersion of environmental pollutants [4] and in precision agricultural
management [5]. It is evident that the research into multispectral image registration has a
wide range of possible applications.

The visible image is typically a composite image of the entire visible wavelength
band (380–780 nm), whereas the infrared image involves separate imaging of a single
band to capture the spectral information. Figure 1 depicts multispectral images captured at

Electronics 2024, 13, 2240. https://doi.org/10.3390/electronics13122240 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13122240
https://doi.org/10.3390/electronics13122240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0002-1200-9347
https://doi.org/10.3390/electronics13122240
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13122240?type=check_update&version=2


Electronics 2024, 13, 2240 2 of 20

various wavelengths. Consequently, the radiometric difference between visible and infrared
images is nonlinear. The proportion and repeatability of local feature points of the same
objects occupied in images of different bands will decrease. This elevates the mismatching
rate of local features, and compromises the quality and precision of image registration.
The principal obstacle in multispectral image registration is the inconsistency in feature
intensities between pairs of images, which precludes the direct registration of images from
the same scene through the matching of feature descriptors. The method of leveraging
Generative Adversarial Network (GAN)-based image-to-image translation [6] ingeniously
circumvents the intricate spectral difference issue, simplifying the registration process.

(a) (b) (c) (d)

Figure 1. Multispectral images. The images are presented in the following order from left to right:
(a) RGB, (b) panchromatic, (c) NIR, and (d) LWIR image. Different numbers of channels and wave-
lengths are the criteria for classifying these images.

However, owing to the instability in data quality, it is challenging for a GAN to discern
the interest part from the vast array of features solely through the fusion of a reference
images. In essence, this precludes the model from generating images with impeccable
detail. Notably, the majority of current mainstream feature fusion techniques [7] rely on
linear addition; their fitting capabilities require further enhancement. As shown in Figure 2.
CycleGAN [8] employs a spatial loss of cyclic consistency to facilitate the transformation
of images from infrared to visible and vice versa. This bidirectional mapping of image-to-
image transformations also ensures the more accurate and complete preservation of the
structural information of the object. Nevertheless, this bidirectional mapping is constrained
in its ability to accommodate complex scenarios. This is because, regardless of whether
the discriminator generates a score value or a score map for the input image, it is merely
a method of providing an approximate score for the entire image. The judging process is
rendered too coarse due to the failure to consider local features. Furthermore, the generation
of a score map for each pixel in the image would be excessively detailed, thereby rendering
it challenging to maintain consistency in the judgement of both local and global features. It
is not appropriate to employ either the entire image or individual pixels as a reference for
details in the modal transformation, as visible images are rich in background information.
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Figure 2. GAN-based methods can only ensure that the distribution of domain A corresponds to the
distribution of domain B. It is desirable that the two domains can feed into each other, ideally.
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Given that fuzzy theory offers a solution to uncertain data aggregation, this study
endeavours to refine the feature additivity assumption and incorporate the concept of
intuitionistic fuzzy sets [9]. The IFS-SIFT feature maps contain richer details as can be ob-
served in Figure 3. This paper proposes a multi-scale [10] IFS feature-guided multispectral
image registration method using image-to-image translation, which is termed IFSrNet. This
involves a nonlinear fusion between extracted features on different scales and reference to
obtain relatively correct feature detail from the pseudo-images generated by the CycleGAN
with multi-head attention module.

(a) (b) (c) (d)
Figure 3. (a) Visible image as a reference. (b) Infrared images to be registered. (c) IFS-SIFT feature
image. (d) Infrared image that has been registered.

This paper has constructed an end-to-end network [11], and the experiments demon-
strate that the registration network exhibits comparable accuracy to other registration
methods. The principal contributions of the proposed approach are asfollows:

1. The paper uses pseudo-infrared (IR) images created from reference images to overcome
the discrepancy between multispectral paired images. The training data and multi-head
attention module facilitates the learning of the generative model, thereby enabling the
utilisation of convolutional neural networks (CNNs) for image registration.

2. This paper introduces the concept of intuitionistic fuzzy set features, which serve as
an extension of gradient information. Furthermore, the two channels of the target and
reference images are integrated by a multi-scale concatenation.

3. A novel loss function is designed for the registration network to increase the weight
of matching unambiguous feature information. This approach not only preserves the
structural integrity of the generated images, but also mitigates the inherent limitation
of generative models, which cannot be aligned pixel by pixel.

2. Related Work

In recent years, a number of methodologies have been developed with the aim of
extracting consistent features from disparate image modalities for image registration.
Nunes et al. [12] developed a multispectral feature descriptor (MFD) to extract invariant
gradient information in both the spatial and frequency domains via LogGabor filters.
Gao et al. [13] constructed a partial principal orientation map to obtain robust orientation
information, and simultaneously employed gradient location and orientation histogram
(GLOH) descriptors to achieve intensity invariance. Furthermore, a number of methods for
multimodal image registration based on deep features have been proposed. Xu et al. [14]
adopted a coarse-to-fine approach to registration and employed image fusion techniques
to facilitate multimodal image registration. Wei et al. [15] proposed a gradient-guided
multispectral image registration method utilising a convolutional neural network, known
as the gradient-guided registration network for multispectral images; RegiNet is an end-
to-end network that takes the gradient maps of both the target image and the reference
image as inputs, generating the registered image as its output. Zhang et al. [16] proposed
the histogram of weighted phase direction (HOWP), which is employed to reduce the
discrepancy between multimodal contrasts.

The optical, geometric, and spatial features expressed by infrared and visible images
are significantly different. Establishing spatial relationships between two or more points
using convolutional neural networks is a challenging task. Registration methods that rely



Electronics 2024, 13, 2240 4 of 20

on image-to-image translation [17] can successfully map visible images to infrared images.
Some attempts based on image-to-image translation [18,19] employed image generation
techniques to transform visible images into infrared images. This approach provided
training data and circumvented the issue of cross-modal matching. However, these methods
still require the traditional utilisation of feature point extraction operators, such as Scale-
Invariant Feature Transformation (SIFT) [20], Speeded Up Robust Features (SURF) [21],
and Partial Intensity Invariant Feature Descriptor (PIIFD) [22]. Kumari et al. [23] achieved
the registration of infrared and visible light images by utilising a generative adversarial
network equipped with a spatial transformer module. The adversarial loss compelled the
generator to produce a pseudo-infrared image, which was then compared to the original
infrared image in a discriminator to assess the realism of the generated pseudo-infrared
image. Mao et al. [24] leveraged the benefits of transfer learning to enhance feature
matching. They used a parallel convolutional autoencoder to reconstruct images in both
the visible and infrared branches before they are entered into the adversarial sub-network.
Bingchao Yang et al. [25] chose to harness the modal shifting capabilities of GAN to generate
pseudo-infrared images from infrared images. They combined the SURF algorithm with
the PIIFD feature descriptor to extract and generate image feature points.

3. Methodology
3.1. IFS Feature Image

Infrared images are abundant in structural information. In the training of generative
adversarial networks, it is imperative to segregate and eliminate distributional disparities
while giving sole attention to spatial structural differences. This is crucial for simplifying
the subsequent registration task. Traditionally, GAN-based methods strive to eradicate
distributional differences by transforming images from the source domain into the target
domain. Nevertheless, even though translated and target images may appear isospec-
tral, residual distribution disparities can still be substantial. This renders the mean ab-
solute error (MAE) [26] or mean squared error (MSE) [27] unsuitable for optimising the
registration network.

To tackle this issue, this paper devised an intuitionistic fuzzy feature image grounded
in gradient information. This preliminary design is intended to address the issue of
non-consistency in the output image of the GAN model. It amplifies the impact of the
large gradient direction and reduces the noise in the small gradient direction. Intuition-
istic fuzzy sets represent the most significant expansion and development of fuzzy set
theory. Fuzzy sets can be used to describe the concept of ’both positive and negative’.
Intuitionistic fuzzy sets propose non-membership and hesitancy based on membership,
which can be used to describe the neutral state of ’neither one nor the other’. In the ap-
plication of IFS, the determination of three fuzzy description measures is crucial. This
is a hot and difficult research topic nowadays and one of the main contributions of this
paper. The feature vector of the ith feature of the image R is denoted by SIFT [28] as
Ri =

(
φi

1, φi
2 , φi

3, φi
4, φi

5, φi
6, φi

7, φi
8
)

, and the jth feature vector of image S is represented

by IFS-SIFT as §j =
(

µ
j
1, µ

j
2, µ

j
3

)
. The eight feature vectors φi

k presented here have been
derived from the design in SIFT. As there are eight neighbouring pixels to the target pixel
point, the gradient between each neighbouring pixel and the target is defined as a feature
vector in the direction of that gradient. Although multi-dimensional descriptors may be
more robust in labelling features, some directions with small gradient differences are not
worthy of consideration in this task. Furthermore, this approach places a significant com-
putational burden on the network. For the kth moment φk(1 ⩽ k ⩽ 8) and µk(1 ⩽ k ⩽ 3)
subset φi

k and µ
j
k, this article aims to find the direction with the highest magnitude in

φi
k, designated as the direction of membership. To calculate the membership µ

j
1, add the

φi
k+1 and φi

k−1 magnitudes of the two directions with the smallest adjacent angle. Then,
determine the proportion of this sum to the total gradient magnitudes of all eight directions
to obtain the membership of the main direction. The unaffiliated degree µ

j
2 is the ratio of
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the gradient magnitudes in the three opposite directions. The directions perpendicular to
the main direction are the hesitant degree directions µ

j
3. Therefore, the membership §i

(
µ

j
1

)
,

non-membership §j

(
µ

j
2

)
, and hesitancy §j

(
µ

j
3

)
of µ

j
k in §j are defined as follows. The idea

of computation is inspired by [29].

§j

(
µ

j
1

)
=

φi
k + φi

k+1 + φi
k−1

∑k=8
k=1 φi

k

(1)

§j

(
µ

j
2

)
=

φi
k′ + φi

k′+1 + φi
k′−1

∑k=8
k=1 φi

k

, k′ = k ± 4 (2)

§j

(
µ

j
3

)
=

φi
k′′ + φi

k′′±4

∑k=8
k=1 φi

k

, k′′ = k ± 2 (3)

The feature descriptor based on the IFS-SIFT reduces computational complexity com-
pared to the SIFT feature descriptor while maintaining high accuracy and accounting for
the correlation of neighbouring pixels. When defining the direction of key points in SIFT,
the gradient direction and magnitude of all pixels within a circle centred on the feature
point and radiuses by 1.5 times the scale of the Gaussian image in which the feature point is
located are counted. The 8-direction histograms of the key points are obtained by Gaussian
filtering. When constructing the key point descriptor, the region is divided into 4× 4
sub-blocks. The gradient magnitude of each direction is obtained by performing histogram
statistics of 8 directions for each sub-block, resulting in a total of 128 dimensional descriptor
vectors. The IFS-SIFT feature descriptor has the advantage of reflecting correlation between
adjacent pixels due to its 48-dimensional vectors. In Figure 4, although gradient maps
are adept at communicating information regarding the edges of an image, the presence of
disparities in residual distributions can increase the model’s sensitivity to local features
within the image task. Given the high performance of infrared images in the transmission of
structural information, structural features should be accorded more attention in subsequent
registration tasks. Intuitionistic fuzzy feature maps, which place more emphasis on global
structural information, exhibit significant potential.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 4. Results of feature maps in the registration network. The first row of (a–d) are the reference,
and gradient maps of 60, 20, and 5 epochs, respectively. The second row of (e–h) shows the opposite
reference, and IFS maps for the same epoch.

3.2. Model Frame

The paper has built an end-to-end network that connects the features of an IR image
with a pseudo-IR image to perform a registration transform on the IR image. Figure 5
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presents the comprehensive architectural framework of the network. Pseudo-infrared
images were produced from visible images by CycleGAN [30]. Since the image-to-image
translations involved in this paper are global cross-modal transformations, the sensitivity
of the generative model to global information is crucial. The attention [31] mechanism
is capable of mining remote dependencies in order to obtain global information through
global interaction. This approach is more advantageous for high-level semantic feature ex-
traction. Specifically, this paper adopts the multi-head attention [32] mechanism proposed
in Transformer [33], whereby the three modular inputs are passed through a convolutional
block to obtain Q, K, and V. Subsequently, the acquired Q, K, and V are employed to execute
multi-head attention computation. This attention mechanism enables the generation of a
more comprehensive feature representation by leveraging the multi-head attention.

Cycle
GAN

©

Registration

Vis-Reference

IR-Target

Multi-scale IFS 
Feature

© ©

©  Concatenation
IFSrNet

Figure 5. The network architecture of IFSrNet. IFSrNet is an end-to-end network that utilises pseudo-
IR images created by generative model as the reference, which are fed into the registration network
along with the target image registration.

The generator in the modified CycleGAN framework used in this paper employs a
standard encoder–decoder network as the generator, which is composed primarily of a
deep feature extraction module and an image reconstruction module. This generator is
capable of producing high-quality images, including images of optimal resolution with
rich detail. The U-shaped discriminator network, as depicted in Figure 6, incorporates
a multi-head attention module that performs true–false judgements for different patch
sizes. This differs from the conventional approach of improving the global judgement of
the generated image over the whole image. This is accomplished by fusing the encoder
and decoder output feature maps of varying spatial dimensions and subsequently passing
them through distinct convolutional layers, thereby generating a single-channel feature
map comprising three distinct resolution patches. The design facilitates the enhancement
of accuracy in classification. The regular updating of a generator can better simulate the
distribution of real data, thereby generating images with superior quality.
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64×256×256

128×128×128

256×64×64

3×256×256
3×256×256

1×128×128

1×64×64

1×32×32

Encoder 
layer

Decoder 
layer

Features

Multi-head 
attention module

Figure 6. Architecture of the multi-headed discriminator of the proposed IFSrNet.

The input and output default image size is 512 × 512, but other sizes can also be
supported. Rectified Linear Unit (ReLU) activation functions follow each convolutional
layer except the last, which has an output. Skip connections are added to the network and
combined by concatenation. A detailed enumeration of the specific parameters pertaining
to the registration network is presented in Table 1. The IFSrNet input consists of two
branches that extract the features of the target image and the intuitionistic fuzzy set feature
map of the reference image. In Algorithm 1, the paper presents a pseudo-code flow for
model training.

Table 1. Summary of the registration network.

Number Layer Index Branch Depth Stride Output Size (Modifiable)

1 Convolution 2 64 1 512 × 512
2 Convolution 2 64 1 512 × 512
3 Conv+Dropout 2 64 0.5 512 × 512
4 Convolution 2 128 1 256 × 256
5 Convolution 2 128 1 256 × 256
6 Conv+Dropout 2 128 0.5 256 × 256
7 Convolution 2 256 1 128 × 128
8 Convolution 2 256 1 128 × 128
9 Convolution 1 256 1 128 × 128

10 Convolution 1 256 1 128 × 128
11 Conv+Dropout 1 256 2 128 × 128
12 Convolution 1 128 1 256 × 256
13 Convolution 1 128 1 256 × 256
14 Conv+Dropout 1 128 2 256 × 256
15 Convolution 1 64 1 512 × 512
16 Convolution 1 64 1 512 × 512

The potential issues of overfitting and weak generalisation in complex registration
models have been addressed by the effectiveness of Dropout in numerous deep learning
vision tasks. The Dropout mechanism is employed to randomly disable some units in
a network and generate multiple sub-networks. This approach is intended to alleviate
the overfitting problem and enhance the generalisation performance of the network. In
this network, a dropout layer is incorporated subsequent to the activation layer, and
distinct dropout parameters are set to perform the registration training. The quality of
the registered images output from the network is evaluated by Peak Signal to Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM) in order to identify the optimal
Dropout parameters. The initial Dropout module employs a probability of 0.1, 0.2, and 0.3.
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Algorithm 1 Registration network training procedure

Initialise the input size i, the kernel size k, and the stride s, and the output size o. Initialise
model parameters according to pre-training settings;
Input: training multispectral image dataset D;
Output: trained model N;
for epochs do

for IVis,IIR in D do
# Forward propagation
IVis’ = DeCNN (IVis) , IIR’ = DeCNN (IIR)
# Calculated IFS-SIFT feature map
§j =

(
µ

j
1, µ

j
2, µ

j
3

)
# Multi-scale feature concatenation
OReg’ = Concatenation (IVis’ + IIR + §j)
# Computation of loss
Ltotal=(Lmembership , Lnon−membership , Lhesitancy)
# Backward propagation and update parameters
w = w− lr× dl/dw

end for
# Test model performance

end for

3.3. Design of Loss Function

This paper proposes a novel approach for loss function. During the training of the
registration network, additional reference images are not used to calculate the loss of the
model. The original multispectral and generated images are the main components that
make up the loss. The similarity measure of the reference and the image to be registered
is derived by calculating the inter-feature distance. The current research on distance is
primarily concerned with the calculation of feature similarity like SSIM [34]. Furthermore,
Intuitionistic Fuzzy Sets possess the capacity to describe dissimilarity. This paper employs
loss functions to constrain the membership and non-membership between images, in
accordance with the aforementioned concept. In calculating the distance between features,
both similarity and dissimilarity are taken into account. The specifics of the loss design
originate from [9].

Suppose the intuitionistic fuzzy set is A = {⟨x, θA(x), νA(x), ξA(x)⟩ | x ∈ X}, the
membership θA(x), non-membership νA(x), and hesitancy ξA(x) together form an ordered
interval pair (θA(x), νA(x), ξA(x)) which is the IFS distance. θA(x) ∈ [0, 1], νA(x) ∈ [0, 1],
ξA(x) ∈ [0, 1], and 0 ⩽ θA

(
xj
)
+ vA

(
xj
)
+ ξA

(
xj
)
) ⩽ 1.

Intuitionistic fuzzy distance measures the distance between features, defined as fol-
lows: Iij(δ

(
Ri, Sj

)
, δ̄
(

Ri, Sj), δ̇
(

Ri, Sj
))

and Ri ∈ R, Sj ∈ S. δ
(

Ri, Sj
)

is the matching distance
for Ri and Sj.

Lmembership = δ
(

Ri, Sj
)
, δ
(

Ri, Sj
)
= 1 −

(
1
N

k

∑
1

ωk

∣∣∣θRi − θSj

∣∣∣) (4)

where N is the dimension, ω is the normalised weighting factor, and ∑k
1 ωk = 1. Since the

stability of images to be registered in the invariant moments is not uniform, it is possible to
adjust the weighted coefficients for moments with large changes in amplitude. δ̄

(
Ri, Sj

)
is

the mismatch distance between feature Ri and Sj that is defined with respect to hesitancy
as follows.

Lnon−membership = δ̄
(

Ri, Sj
)
, δ̄
(

Ri, Sj
)
= max

{
min

{
νRi , νSi

}}
(5)

Lhesitancy = δ̇
(

Ri, Sj
)
, δ̇
(

Ri, Sj
)
=

(
1
N

k

∑
1

ωk

∣∣∣θRi − θSj

∣∣∣)− max
{

min
{

νRi , νSi

}}
(6)
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The total loss function is defined as follows:

Ltotal = αLmembership + βLnon−membership + γLhesitancy (7)

4. Experiments
4.1. Experiment Settings

The TNO [35] multispectral image dataset and an expanded version based on sample
modification were utilised in this study. In order to expand the size of the training dataset,
a manual method of overlapping cropping and multi-angle rotation was employed in the
enhancement process. The final enhanced dataset for the experiments comprises a total of
nearly 90,000 infrared and visible image pairs, with a batch size of 16. Figure 7 illustrates
some of the enhanced data samples.The image pairs are randomly divided into three
groups: the training set, the validation set, and the test set. The relevant data pertaining to
the size and parameter information for each of the datasets can be found in Table 2.

Figure 7. A preliminary presentation of the manually produced rotated dataset.

Table 2. A brief description of the datasets used in the study.

Source Modality Size Train Test Resize

TNO Origins Visible–IR 640 × 480 87 6 NO
TNO Enhancement Visible–IR 512 × 512 89,646 24 YES

The pseudo-IR images input to the registration network are generated by the genera-
tive model in the initial stage. The comparison in Figure 8 shows that the trained generative
model used in this paper can output high-quality pseudo-IR images, which provides for
the later image registration.

Original IR image

Generated 
pseudo-IR image

Figure 8. A portion of the pseudo-infrared image generated by the trained CycleGAN.
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For the image-to-image translation network section, the batch size is 2. The entire
CycleGAN model is optimised using the Adam optimiser [36], with the learning rates for
the discriminator and generator set to 0.0004 and 0.0001, respectively. The model is trained
for 200 epochs, with the learning rate remaining fixed for the first 100 epochs. Subsequently,
from the 150th epoch onward, the learning rate gradually decays to 0. Additionally, for the
registration network, the experiment trained the model for 100 epochs with a mini-batch
size of 16. The study was conducted on a Windows 10 operating system, employing a
desktop computer equipped with 32 GB memory, a Core i7-10700K CPU, and an NVIDIA
RTX 3090 GPU. The experimental framework chosen wasTensorflow 2.12.0, Cuda 12.1,
Python 3.11, and Cudnn 11.2.

To demonstrate the performance of the method proposed in this paper, the experiment
compares its registration accuracy and the magnitude of network parameters against
several existing registration methods, including DASC [37], DHN [38], MHN [39], NTG [40],
SMILE [41], and MURF [42].

4.2. Evaluation Metrics

Since subjective evaluation information is highly influenced by individuals, quantita-
tive metrics to evaluate the results of image registration are more objective and uniform.
The following metrics mainly serve to evaluate the results of image registration: MAE,
PSNR [43], Normalised Mutual Information (NMI) [44], SSIM, and Learned Perceptual
Image Patch Similarity (LPIPS). MAE represents the mean of the absolute errors between
the predicted and observed values. PSNR is an image quality reference value that measures
the discrepancy between the maximum signal and the background noise. The greater the
PSNR value, the less image distortion will be present. In this paper, NMI is employed
as a metric to assess the accuracy of an image in comparison with the ground truth. The
value range of NMI is between 0 and 1, with higher values denoting greater accuracy in
image registration. SSIM is a quantitative measure used to assess the structural similarity
between two images. SSIM values are expressed as a ratio between 0 and 1, with higher
values indicating greater structural similarity. LPIPS, also known as perceptual loss, is
used to measure the difference between two images. The metric facilitates the learning of
the inverse mapping from a generated image to the ground truth, thereby compelling the
generator to learn the inverse mapping from a reconstructed real image to a pseudo-image
and to prioritise the perceived similarity between them. A lower value of LPIPS indicates
that the two images are more similar to each other, and vice versa.

4.3. Experiment Results and Analysis
4.3.1. IFS-SIFT Validation

To compare the impact prior and subsequent to the integration of the multi-scale
IFS-SIFT feature, the experiment employed an identical generator and discriminator with
the same loss function as the optimisation target. All parameters and environmental
settings were assigned identically. The results of the image registration are presented in
Figure 9, where the disparities in registration effects are more intuitively displayed through
image fusion.

  (a)               (b)                               (c)                                (d)
Figure 9. Fusion of the registration result with the reference. (a) shows the infrared image to be
registered, (b) is the unguided registration result, (c) is the registration result achieved by multi-scale
IFS-SIFT feature guidance, and (d) represents the reference.
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The comparison shows that registration results guided by multi-scale IFS-SIFT features
are closer to the ground truth. This is because multi-scale IFS-SIFT features enhance the
neural network’s feature representations and broaden its receptive field size to input. Fine-
grained features at lower scales capture local details, while high-scale features grasp global
semantic information. Additionally, the multi-scale IFS-SIFT features share weights among
convolutional layers and reduce feature dimensions, resulting in a significant reduction in
network parameters. This implies that the registration results remain unaffected even with
reduced memory usage, thereby lowering the hardware requirements for the model.

4.3.2. Visual Comparison

The registration results of visible and IR images using DASC, DHN, MHN, NTG, SMILE,
MURF, and the network proposed in this paper are presented in Figure 10. DASC employs
DSC+GAN, which is the first successful use of GAN for unsupervised clustering. However, it
achieves low accuracy in multispectral image registration due to the presence of projection
residuals in the generative model subspace. DHN has a fast registration speed, which is
achieved by obtaining an intermediate variable homography through the neural network.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

00

00 00 00

00

00 00 00

00

00

00

00 00

00 00 00

00 00 00

00 00

Figure 10. The figure shows from left to right (a) image to be registered; (b) reference; (c) DASC;
(d) DHN; (e) MHN; (f) NTG; (g) SMILE; (h) MURF; (i) IFSrNet proposed in this paper. To concentrate
on the region of interest, the lack of information on the edges of the image after registration is marked
by the red boxes, and the detailed structural information is marked by the green and blue boxes.
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This eliminates the need to separate feature point detection from transform estimation,
as is carried out in traditional methods that use techniques such as ORB for corner detection
and RANSAC [45] for matrix estimation. To preprocess the homography, denoising is
added. However, this can result in the loss of feature information for noisy IR images,
which can severely impact the registration accuracy. MHN is capable of processing large
global motions and providing current single response matrix estimation results, making
it more suitable for image registration tasks that involve dynamic scenes, blurred scenes,
or lack of texture. The NTG method for multispectral image registration is based on the
principle that the gradient of difference image is sparsest when two images are perfectly
registered. However, it may not be stable enough when dealing with dynamic and non-
rigid objects. The SMILE method typically necessitates an initial registration estimate as a
point of departure. The initial estimate is inaccurate, which leads to subsequent processing
steps that deviate in the correct direction to the extent that the results of each experiment
differ significantly. The MURF algorithm employs a coarse-to-fine registration strategy,
whereby both global rigid and local non-rigid transformations are considered. However,
the registration network may become less accurate if the input image contains serious
noise, artefacts, or distortion. To display the registration results, they are crossed in a
checkerboard diagram. As shown in the figure, the method proposed in this paper achieves
superior or comparable registration accuracy to other methods.

4.3.3. Quantitative Assessments

Table 3 presents the mean performance value of seven different algorithms on the
same test set for each metric, allowing for quantitative analysis of registration. The best
result for each evaluation metric is highlighted in red, while the second best is highlighted
in blue.

Table 3. This study tested the average MAE, SSIM, PSNR, NMI, and LPIPS values obtained
from 30 sets of multispectral images. The best performance is marked in red font, and blue is
the second best.

Metric DASC DHN MHN NTG SMILE MURF IFSrNet

MAE 77.6754 75.5950 71.1627 71.2080 73.2551 68.0920 67.4420
SSIM 0.5608 0.4071 0.5702 0.6826 0.6642 0.7093 0.7201
PSNR 56.9867 56.0058 57.0732 55.0581 56.0154 56.8961 57.5722
NMI 0.1708 0.2465 0.2717 0.2487 0.2612 0.3176 0.3092
LPIPS 0.3102 0.3294 0.3601 0.3768 0.3200 0.3749 0.3794

The study tested thirty sets of multispectral images using five registration algorithms
and four evaluation metrics. Figure 11a,b show that DASC has the highest MAE, indicating
that it is not the best fit for the dataset. On the other hand, IFSrNet demonstrates superior
MAE and SSIM values compared to the other algorithms, indicating its superiority in terms
of registration accuracy on this dataset. Figure 11c shows that the proposed algorithm
records slightly lower than the others at individual points.

Noise interference in the image pairs, particularly those with intricate modal features,
during the encoding process may account for this difference. However, our proposed
algorithm, as shown in Figure 11d, successfully preserves the intricate details of the image
by using multi-scale IFS feature guidance, which enhances the robustness of image registra-
tion. It is worth noting that this approach achieves the highest NMI. Furthermore, IFSrNet
also demonstrates superior performance in the comparison of inter-image perceptual simi-
larity, as illustrated in Figure 11e, which is comparable to MURF. In contrast to traditional
methods, LPIPS is more aligned with the human perceptual situation.
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(a) (b)

(c) (d)

(e)

Figure 11. Experimental results on real datasets. Shown in order is the performance in each evaluation
metric, (a) MAE, (b) SSIM, (c) PSNR, (d) NMI, and (e) LPIPS. The horizontal axis of the graph
represents the number of each sample, while the vertical axis represents the value obtained. The
various algorithms have been identified with different colours for differentiation purposes.

The efficiency of the models is evaluated, with particular attention paid to the parame-
ter size and run speed. The experiments ensure that all models are run in the same environ-
ment and with the same equipment. Table 4 shows that IFSrNet has an advantage in net-
work parameters but an average performance in inference time. If the network is equipped
with GPU acceleration, there is a potential for much higher computational efficiency.

Table 4. Number of parameters and inference time for IFSrNet and other registration algorithms,
where the parameters and times are in M and seconds, respectively. The red font parameter represents
the optimal performance, while the blue font is just below it.

Efficiency DASC DHN MHN NTG SMILE MURF IFSrNet

Parameters 17.35 M 35.26 M 3.18 M 20.38 M 13.61 M 25.21 M 12.16 M
Times 1.283 s 0.005 s 0.014 s 0.022s 2.196 s 0.429 s 0.585 s

4.3.4. Rotation Robust Experiment

To determine the effect of image training with different rotation angles on the reg-
istration network’s performance, three sets of images were randomly selected from the
dataset. Each set of images was rotated in 25° intervals from 0° to 75°, resulting in three
rotated images per group. Nine new IFS feature matching maps were generated and used
to evaluate the algorithm’s robustness under rotated conditions. Simultaneously, the image
to be registered was rotated in 1° steps until it was rotated to 75°. The similarity index was
calculated as the cosine distance between the rotated image and the reference features. The
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experimental results are presented in Figure 12a, while Figure 12b shows the number of
positive matches (NPM) of the four groups of rotated images.

(a) (b)

Figure 12. Quantitative statistics of rotational invariance. (a) shows the average feature cosine
distances for different rotation angles, and (b) demonstrates the number of correctly matched features
for the four rotation angles in the three datasets.

The result of matching on instances as illustrated in Figure 13. The accuracy and NPM
are contingent upon the specific distortion angle of the floating image. Therefore, if there
are variations in the angle of distortion, the resulting accuracy and NPM will also vary.
The analysis indicates that the algorithm maintains good feature similarity for a range
of angles due to the network learning the invariance of small rotations during training,
which is inseparable from the rotational invariance of SIFT feature descriptors. However,
for rotation angles exceeding 25°, the NPM exhibits a substantial decrease and the cosine
distance between features increases significantly.

(a) (b)

(c) (d)

Figure 13. Example of feature matching of two images to be processed, where the left is a reference
and the right is a rotated image to be registered. The matching result is shown in (a) with 0° of
rotation, (b) shows the result with 25° of rotation, and (c,d) show the results with 50° and 75° of
rotation, respectively.

4.3.5. Ablation Study

To assess the impact of the loss function on the registration network’s performance,
this paper conducted an ablation study using the traditional similarity metrics SSIM, loss
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of single membership, and loss of IFS. As a comparison, SSIM loss [46] Lspatial is defined
as follows:

SSIM(h, p) =

(
2µhµp + C1

µ2
h + µ2

p + C1
·

2σhp + C2

σ2
h + σ2

p + C2

)
(8)

L spatial (h, p) =
1
n

n

∑
i=0

(
1 −

2µhµp + C1

µ2
h + µ2

p + C1
·

2σhp + C2

σ2
h + σ2

p + C2

)
(9)

where h represents the high resolution multispectral image obtained by the network, p
represents the original panchromatic image, n represents the number of pixels in the image
block, µh represents the mean of h, µp represents the mean of p, σ2

h is the variance of h, σ2
p is

the variance of p, and σhp is the covariance of h and p. c1 = (k1L)2 and c2 = (k2L)2 are two
constants to avoid dividing by 0, L is the range of pixel values, and k1 = 0.01 and k2 = 0.03
are default values. Since the SSIM value range is from −1 to 1, the closer the SSIM value of
the two images is to 1, the more similar the images are. And the smaller the value of the loss
function in the network the better; the optimisation of the network is also in the direction
of smaller loss values, so the texture loss of the image is calculated using 1 − SSIM(h, p).

Table 5 presents the performance of three loss functions: Lspatial , Lmembership, and LTotal .
The results indicate that, although the loss of membership outperforms SSIM in terms of
similarity, there is potential for improvement. When only Lspatial is used, the registration
network’s NMI falls below 0.2. This highlights the difficulty in capturing the correlation
between multispectral paired images when relying solely on the structural similarity loss.
The optimal solution to this problem is to implement a complete IFS loss. The data presented
in red font indicate that LTotal performs the best on all evaluation measures.

Table 5. An ablation study on the IFSrNet loss function. Values marked in red represent the
best performance.

Metric Lspatial Lmembership LTotal

MAE 78.6194 75.3547 67.4420
SSIM 0.6035 0.6349 0.7201
PSNR 49.9183 51.1351 57.5722
NMI 0.1961 0.2392 0.3092

LPIPS 0.2112 0.2830 0.3794

The transformation of multispectral image modalities is challenging in the absence of
labelling. In practice, CycleGAN is a suitable approach for transformation tasks involving
images with texture and colour variations. However, the estimated spatial error of GAN
and CycleGAN cannot exclude the effect of residual distribution between the moving and
target image. In contrast, CycleGAN embedded with a multi-head attention mechanism can
circumvent the larger spatial error. In order to demonstrate the potential of the combination
of CycleGAN and multi-head attention for the transformation of multispectral images, this
paper explored the correlation between the model output and the Dice coefficient. The
mean of the model output was computed based on the joint region of the moving and
target masks. Subsequently, the mean absolute value was subtracted from 1 to obtain a
normalised value indicative of the performance of the model generation. Similarly, the
generative performance of both the GAN and the CycleGAN models were calculated.
Figure 14 provides clear evidence of the positive correlation between each model and Dice,
thereby confirming the potential of the combination of CycleGAN and multi-head attention
to accurately transform the image modality. The GAN and CycleGAN have no significant
positive correlation with Dice.

In order to ascertain the impact of the training set employed in the model on the
registration network, three datasets were established for the purpose of separate experi-
ments. As shown in Table 6, the mean number of matches for 286.8 is the highest of the
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three strategies. The single TNO native image set, the single manufactured images after
enhancement, and the hybrid dataset are presented. The hybrid training set not only solves
the limitation of the insufficient size of the native dataset, but also ensures the number of
features that can be matched.

(a) (b) (c)

Figure 14. Correlation of estimated spatial errors with Dice in three generation strategies. The
distribution of spatial error points in (a,b) does not exhibit a strong positive correlation with the Dice
coefficient. In contrast, the generative model employed in this study, as illustrated in (c), exhibits a
clear positive correlation.

Table 6. In the initial training phase of the model, ablation experiments were conducted with different
training sets, with the average number of matched pairs serving as the standard. The letters ✓ and ×
are used to indicate whether the dataset was or was not included in the analysis.

Training Strategy TNO Artificial
Enhancement Number of Matches

1 ✓ × 154.6
2 × ✓ 81.9
3 ✓ ✓ 286.8

In the field of image registration, research on multi-scale feature guidance has con-
centrated on gradient-based edge detection for features at each stage. In order to analyse
the effectiveness of the multi-scale IFS feature map guidance, the experiment involved
the alteration of the type of multi-scale features without modifying the skeleton of the
registration network. The application of deep learning to the task of edge detection enables
the DexNet and BDCN models to learn the singularity of edge information. Nevertheless,
the failure to recognise weak edges may result in an uneven detection of features. The
results of the ablation can be found in Table 7. Sobel edge mapping describes changes in
gradient that retains more edge information than Canny and Laplace edge mapping. IFS
feature descriptors benefit from advantages in dealing with biases caused by the generative
model, and the efficiency gap with Sobel is closer.

Table 7. Registration results of ablation studies using different feature map extraction methods. The
red font parameter represents the optimal performance, while the blue font is just below it.

Method Precision Recall F1-score Summation
of TP

Canny 89.19 92.10 90.62 8051
Laplacian 88.93 87.58 88.25 7258

Sobel 88.08 96.11 91.93 18,521
BDCN 85.18 96.61 90.54 11,731

DexiNed 90.03 89.32 89.67 4883
IFS-SIFT 88.16 96.12 91.96 7202
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The consistency between the matches identified by the registration method and the set
of ground truth matches is verified, and pairs of true positive (TP), false positive (FP), and
false negative (FN) matches are defined to calculate the precision and recall scores. The
sum of TP and FN denotes all correct matches from putative feature points. Consequently,
the values of precision and recall can be calculated as follows:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(10)

The larger precision and recall are, the more accurate the feature matching and the
stronger the adaptability of the registration method to distinguish feature points, respec-
tively. F1-score is the harmonic mean and summary statistic of precision and recall, which
can be calculated as follows:

F1 = 2 · Precision ·Recall
Precision + Recall

(11)

The total summation of TP points from all image pairs in the construed datasets is
calculated as the number of correct matches, which is denoted as Summation of TP [34].

5. Applications

The feasibility of applying IFSrNet to other multimodal image registration tasks has
been tried in medical images [47]. Chemical exchange saturation transfer (CEST) is a
magnetic resonance imaging (MRI) technique for enhancing the contrast of images, which
indirectly identifies the metabolites in tissue at millimolar concentrations through the water
proton signal. Because the samples must have a sufficient saturation frequency, a large
time span is usually required to acquire the spectrum. It is important to note that subject
movement throughout the scan can lead to errors in CEST quantification. Even minor
movements can have a significant impact on CEST analysis, resulting in the appearance of
unusual peaks or dips in the spectrum and an uneven signal distribution on the image. To
mitigate motion artefacts, image registration is a commonly employed method to ensure
high-quality CEST-MRI images. Figure 15 shows the application of IFSrNet for registering
T1 and Gd image pairs in CEST-MRI images of a rat brain. The lack of an objective gold
standard for assessing the registration results of medical images means that the physician’s
judgement is crucial. After observation by senior experts, IFSrNet was able to accurately
reconstruct the target images, which illustrates the potential of the network’s application.
All the CEST-MRI images in this experiment were obtained from Johns Hopkins University.

(a) (b) (c)
Figure 15. CEST-MRI images for a rat stroke lesion in which (a) is T1 as the image registration to be
registered, (b) is Gd as the reference, and (c) is the T1 image that has been registered.

6. Discussion

The image-to-image translation registration strategy employs a novel approach which
effectively circumvents the complex multimodal issue while simultaneously reducing the
difficulty of registration. The approach proposed in this paper requires the preparation of
multimodal data for the training of the generator. When encountering previously unknown
data, the performance of the trained model will inevitably decline, although the present
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network has been designed to mitigate this effect. Furthermore, the method in this paper
introduces a small amount of bias and variance in the process of remapping the data
distribution between different modalities, which requires subsequent work to optimise
these negative effects. In future work, the authors will endeavour to extend this study
to other modal image registration tasks beyond multispectral images. Additionally, the
lightweight improvement of the network is a promising avenue for further investigation.

The precise registration of images constitutes a fundamental precondition for multi-
spectral image processing. The related extended works encompass the fusion of image
information, the localisation of targets, and the detection of changes, along with the re-
construction of high-resolution images. The procedure of multispectral image fusion is
expedited by image registration, which allows for the organic combination of the advan-
tages or complementarities of the information comprised in each image dataset, thereby
giving rise to the production of a more comprehensive and accurate image. Furthermore,
the image registration is also more conducive to change detection, which enhances the
accuracy of target positioning and discovers alterations in features or the ground surface
through comparing the image disparities at different times or under different circumstances
in remote sensing operations. Within the domain of high-resolution image reconstruction,
the aim is to coalesce multiple low-resolution images into a sole high-resolution image
by means of registration, thereby enhancing the pellucidity and detailed manifestation of
the image.

7. Conclusions

In this paper, a Multi-scale IFS Feature-guided Registration Network Using Multi-
spectral Image-to-image Translation is proposed. To tackle the challenge of matching
infrared images with visible images during image registration, a pseudo-infrared image
is generated from visible images using CycleGAN equipped with a multi-head attention
module. The generative models can be interchanged between the two modalities due
to the bidirectional feedback mechanism of CycleGAN, which allows for the transfer of
information between the two domains. This approach reduces the difficulty in modal
feature extraction by addressing the large modal differences between the two types of
images. To avoid the problem that the generated images cannot achieve pixel-by-pixel
correspondence with the ground truth, the feature vectors of the reference are first extracted
by the improved robust IFS-SIFT feature descriptor in the case of scale transformation.
Secondly, this paper establishes an end-to-end registration network model and designs a
loss function that incorporates multi-scale feature guidance. The experiments demonstrate
that modal transformed infrared spectral information is effective in extracting both struc-
tural and textural features from the image. IFS-SIFT demonstrates superior performance in
extracting multi-scale feature vectors, and the established registration model is robust in
estimating the transformation despite the presence of discrete points in the reference. The
proposed model primarily focuses on addressing the challenges posed by significant scale
differences between infrared and visible images, as well as the intricacies involved in image
registration, in comparison to other algorithms. In the future, this work can be further
extended to encompass tasks such as image fusion and image enhancement with GAN.
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