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Abstract: In the semiconductor manufacturing industry, achieving high yields constitutes one of the
pivotal factors for sustaining market competitiveness. When confronting the substantial volume of
high-dimensional, non-linear, and imbalanced data generated during semiconductor manufactur-
ing processes, it becomes imperative to transcend traditional approaches and incorporate machine
learning methodologies. By employing non-linear classification models, one can achieve more
real-time anomaly detection, subsequently facilitating a deeper analysis of the fundamental causes
behind anomalies. Given the considerable dimensionality of production line data in semiconductor
manufacturing, there arises a necessity for dimensionality reduction to mitigate noise and reduce
computational costs within the data. Feature selection stands out as one of the primary methodolo-
gies for achieving data dimensionality reduction. Utilizing wrapper-based heuristics algorithms,
although characterized by high time complexity, often yields favorable performance in specific cases.
If further combined into hybrid methodologies, they can concurrently satisfy data quality and com-
putational cost considerations. Accordingly, this study proposes a two-stage feature selection model.
Initially, redundant features are eliminated using mutual information to reduce the feature space.
Subsequently, a Simplified Swarm Optimization algorithm is employed to design a unique fitness
function aimed at selecting the optimal feature subset from candidate features. Finally, support vector
machines are utilized as the classification model for validation purposes. For practical cases, it is
evident that the feature selection method proposed in this study achieves superior classification
accuracy with fewer features in the context of wafer anomaly classification problems. Furthermore, its
performance on public datasets further substantiates the effectiveness and generalization capability
of the proposed approach.

Keywords: hybrid feature selection; simplified swarm optimization; semiconductor manufacturing

1. Introduction

Semiconductor wafer manufacturing is a capital-intensive and technology-driven in-
dustry. Technological advancements, following Moore’s Law, lead to exponential growth in
circuit density over time [1]. As circuit density increases, semiconductor processes become
more precise and intricate, escalating equipment and material costs. Undetected defective
products on the production line consume resources without adding value, increasing costs
and wasting capacity. Improving product yield is crucial for enhancing capacity and re-
ducing costs in semiconductor manufacturing [2]. It also enhances product quality and
reliability while alleviating pressures from R&D, equipment, and material costs.

Maintaining high yield requires robust quality control and real-time detection of
production line anomalies. Semiconductor production is divided into front-end and back-
end processes. The front-end process involves producing silicon wafers and fabricating
integrated circuit components, while the back-end process includes the assembly, packaging,
and final testing of individual dies. The front-end process is intricate, comprising hundreds
of steps and about 80% of the total semiconductor manufacturing process [3]. After
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manufacturing, wafers undergo wafer acceptance tests (WAT) and chip probing (CP) to
measure their electrical characteristics and functionality, determining their suitability for
the back-end process.

This study focuses on the data analysis of parameters in the front-end semiconductor
manufacturing process and wafer test measurements. Using WAT and CP data as input and
identifying abnormal results from process machines as output, classification models predict
abnormalities in specific processes during wafer manufacturing. The model analysis aims
to identify key wafer test parameters relevant to specific processes, aiding production
line optimization.

Traditionally, abnormality detection in wafer manufacturing employs statistical pro-
cess control (SPC). Since its inception by Shewhart in the early 1930s, SPC has been widely
used for process control and improvement in manufacturing. SPC uses control charts to
monitor quality characteristics, setting upper and lower control limits to detect process
abnormalities. However, due to the nonlinear nature of many abnormalities in semicon-
ductor manufacturing, traditional linear SPC methods often fail to detect them timely. This
leads to undetected issues at workstations, accumulating problems as wafers pass through
multiple steps, resulting in unnecessary processing costs and ineffective judgments like
overkill or underkill [4]. Consequently, additional manpower is required to redefine control
limits and reclassify abnormal messages based on experience.

Overkill and underkill are key indicators in quality control, evaluating misjudgments
during wafer testing. Overkill refers to normal wafers being classified as abnormal, while
underkill refers to abnormal wafers being classified as normal. Both lead to losses for
semiconductor manufacturers: overkill results in intercepted normal products, while
underkill increases processing costs and wastes resources. Underkill can also impact the
company’s reputation by shipping defective products to customers, especially for those
emphasizing high yield rates.

As market demands and customization requirements rise, coupled with the complexity
of semiconductor processes involving numerous steps and parameters, managing nearly a
million daily control charts becomes challenging. Wafers passing testing may later show
anomalies reported by customers, requiring engineers to retrospectively search for process
issues, incurring significant time costs and impacting reputation.

Given the high complexity and yield requirements in semiconductor manufacturing,
traditional SPC methods struggle with non-linearity, high dimensionality, and class imbal-
ance in production data [5]. Machine learning methods, introduced in recent decades, offer
better predictions for anomaly detection by learning from massive datasets.

Early efforts to address SPC’s limitations employed techniques like principal compo-
nent analysis (PCA) and partial least squares (PLS) [4], but these methods struggled with
real-time monitoring due to the need for manual adjustments in semiconductor processes.
Machine learning methods like K-nearest neighbor (KNN) [6], support vector machine
(SVM) [5], decision tree (DT) [7], and neural networks [8,9] have shown better performance
in anomaly detection.

Feature engineering techniques are crucial for reducing data dimensionality and
mitigating noise, which is essential for high-dimensional data. Feature selection, a subset
of feature engineering, selects the most relevant features, maintaining interpretability and
facilitating further analysis [10]. Traditional feature selection relies on engineers’ domain
expertise, but modern methods combine filter and heuristic algorithms for improved
accuracy and efficiency. Hybrid methods use filter approaches to narrow features and
heuristic algorithms to find optimal subsets within limited timeframes, enhancing accuracy
and reducing computational time [11].

Class imbalance, which is common in semiconductor manufacturing, complicates
classification problems. Methods to address this imbalance include undersampling, over-
sampling, feature engineering, and designing specialized algorithms [12,13]. Research
focuses on predicting wafer yield, detecting machine failures, and analyzing key pro-
cess parameters for real-time adjustments [14–16]. This study extends previous work by
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classifying quality into three categories, normal, abnormal, and at-risk, using WAT and
CP data.

This study aims to use heuristic algorithm-based feature selection combined with
machine learning to propose an anomaly detection model for high-dimensional, nonlinear,
and imbalanced data. The objectives are as follows:

1. Propose a hybrid feature selection method combining mutual information (MI) with
a simplified swarm optimization (SSO) algorithm using non-binary encoding. This
method reduces data dimensionality and accurately selects key factors for anomaly
prediction.

2. Develop an anomaly detection approach suitable for multivariate, imbalanced data
that is applied to real-world cases for precise, real-time wafer quality management.

With over six hundred WAT parameters, identifying key parameters through feature se-
lection helps engineers understand anomaly causes. This study leverages heuristic algorithms
and machine learning to improve anomaly detection in semiconductor manufacturing.

2. Preliminary Issues

This study addresses the issue of abnormal wafer detection, which falls within the
domain of imbalanced classification problems. This section elucidates the definition and
implications of this issue through discussions on feature selection, imbalanced data classifi-
cation models, and relevant simplified swarm optimization (SSO) algorithms, forming the
foundational basis for the methodology employed in this research.

2.1. Feature Selection

Given the high complexity of semiconductor manufacturing processes, it is imperative
to perform dimensionality reduction on the data. This allows the identification of the
parameters that have the most significant impacts on analytical outcomes from among
thousands of manufacturing and testing parameters. Feature selection is a common method
for data dimensionality reduction that is widely applied in classification, data mining, and
object detection [17]. It enhances the precision of machine learning models, prevents
overfitting, and reduces computational costs [18]. Feature selection entails identifying a
subset of features from the original set to maximize relevance and minimize redundancy. It
can be categorized into three types: filter, wrapper, and embedded methods.

2.1.1. Filter Methods

Filters are among the earliest feature selection methods [19]. They evaluate features
prior to model learning, focusing on the data’s characteristics using statistical methods such
as information gain, distance, consistency, similarity, or statistical metrics [20,21]. These
methods are independent of classification models. For example, the Relief method, based
on instance learning, uses the Euclidean distance to calculate feature scores [22], although it
has limitations with binary classification and missing data. Improved versions like Relief-A,
Relief-B, and Relief-F address these issues [23,24]. Filter methods based on information
theory and correlation coefficients, such as information gain (IG), mutual information (MI),
and joint mutual information (JMI), have been extensively researched [11,25–29].

2.1.2. Wrappers

Wrappers combine learning model feedback during feature selection. They estimate
the impacts of adding or removing features based on the error rate or accuracy from the
training model, searching the feature space for the best predictive performance [19]. Due to
the NP-hard nature of feature selection [30], heuristic algorithms like genetic algorithms
and particle swarm optimization are often used [31,32]. Although wrappers achieve higher
accuracy, they have high time complexity and may overfit [33].
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2.1.3. Embedded Methods

Embedded methods integrate feature selection with learning, optimizing both machine
learning and feature selection parameters simultaneously [10]. These methods reduce
features during model training using regularization or activation functions [18,34]. They
balance accuracy and computational costs better than wrappers but still carry overfitting
risks and require redesigning for specific algorithms [11].

2.1.4. Hybrid Methods

Hybrid methods combine filters with wrappers to enhance feature selection efficiency
and accuracy. They first use filters to reduce dimensionality and then apply wrappers
for precise searches. This approach has shown significant performance improvements in
various domains like text classification and semiconductor manufacturing yield predic-
tion [35–37].

In semiconductor manufacturing, feature selection methods are more appropriate than
feature extraction for addressing anomalies in wafer yield, maintaining data interpretability
after dimensionality reduction.

2.2. Classification Algorithms

Machine learning develops algorithms that simulate human intelligence, adjusting
function structures dynamically through iterative learning. It can substitute repetitive
tasks and identify data regularities overlooked by humans [38]. Machine learning is
categorized into supervised, unsupervised, and semi-supervised learning. This study
primarily employs supervised learning due to its wide applicability and good performance
across various domains.

2.2.1. K-Nearest Neighbor (KNN)

The K-nearest neighbor algorithm (KNN) predicts the class of unknown data points
based on nearby known samples. It calculates distances between a new data point and
training samples, classifying the new point based on the major class of the nearest neighbors.
KNN is straightforward, using parameters like the integer k, labeled data, and a distance
formula. Despite high computational costs and sensitivity to noise, KNN is widely applied
in domains such as data mining and image processing. In semiconductor manufacturing,
KNN is used for online fault detection and failure detection [39].

This study aims to utilize heuristic algorithm-based feature selection methods com-
bined with machine learning techniques to propose an anomaly detection model tailored
to high-dimensional, nonlinear, and imbalanced data. The objectives are as follows:

When combining a filter with a heuristic algorithm—the simplified swarm optimiza-
tion (SSO) algorithm—and adopting a non-binary encoding approach, we propose a hybrid
feature selection method. This method not only reduces data dimensionality but also
accurately selects the crucial influencing factors for anomaly prediction.

When integrating feature selection methods, we propose an anomaly detection ap-
proach suitable for multivariate, imbalanced data. This method is applied to real-world
cases to achieve more precise and real-time wafer quality management.

2.2.2. Support Vector Machine (SVM)

Support vector machine (SVM), proposed by Boser, Guyon, and Vapnik in 1992 [40],
has matured significantly over more than a decade of development. Today, SVM stands
out as one of the most widely applied algorithms in machine learning due to its robustness,
unique global optimal solution, and excellent generalization capability. Traditional linear
algorithms may yield suboptimal results when faced with nonlinear data distributions.
SVM addresses this issue by seeking the optimal hyperplane in the feature space for
classification. By increasing the dimensionality of the feature space and then conducting
segmentation, SVM achieves better classification results.
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SVM is a kernel technique that uses kernel methods to map data into a higher-
dimensional space. It treats machine learning tasks as convex function optimization
problems, aiming to find the optimal solution through computation rather than heuristic
algorithms. Upon completion of the SVM computation, support vectors are obtained,
each defining the boundary of a hyperplane. The complexity of the problem affects the
number of support vectors. SVM imposes additional constraints on optimization problems:
the hyperplane must be positioned at the maximum distance between different classes,
enhancing the generalization capability of SVM [41].

SVM has various variations that can be used to solve classification, regression, or
distribution estimation problems. In classification tasks, C-Support Vector Classification
(C-SVC) [42,43] is primarily employed. C-SVC transforms the classification problem into a
primal optimization problem, assuming a set of training vectors xi ∈ Rn, i = 1, . . ., l with
corresponding class vectors y ∈ Rl, where yi ∈ {1, −1}:

MINw, b, ξ
1
2

wTw + C ∑l
i=1 ξi (1)

subject to yi

(
wTϕ(xi) + b

)
≥ 1 − ξi (2)

ξi ≥ 0, i = 1, . . . , l

in which, w is a vector; ξi are slack variables, allowing for errors in classification; ϕ(xi)
is a function mapping the vector xi into a higher-dimensional space; and C is a positive
regularization parameter greater than 0.

Since w is typically high-dimensional, the above primal optimization problem is often
converted into a dual problem as shown in Equations (3) and (4) as follows:

MINα
1
2

αTQα − eTα (3)

subject to yTα = 0 (4)

0 ≤ αi ≤ C, i = 1, . . . , l

where e = [1, . . ., 1]T is a vector consisting of all ones, Q is a semi-positive definite matrix
satisfying Qij ≡ yiyjK(xi, xj), and K(xi, xj) ≡ ϕ(xi)Tϕ(xj) is a kernel function.

Upon solving the dual problem, according to the primal–dual relationship, it can be
inferred that the optimal solution for w satisfies Equation (5):

w = ∑l
i=1 yiαiϕ(xi) (5)

The decision function is given by Equation (6):

sgn
(

wTϕ(xi) + b
)
= sgn(∑l

i=1 yiαiK(xi, x) + b) (6)

In the C-SVC algorithm, the variables that have the greatest impacts on the classifi-
cation results are C and the choice of kernel function. As C increases, the emphasis is on
minimizing the number of misclassified instances; conversely, reducing C allows for more
classification bias. There is a wide variety of kernel functions available, with the most
commonly used ones including the following:

• linear kernel—K
(
xi, xj

)
= xi

T .xj

• polynomial function—K
(
xi, xj

)
=

(
γxi

Txj + r
)q, q > 0

• hyperbolic tangent, also known as sigmoid—K
(
xi, xj

)
= tan h

(
γxi

Txj + r
)

• Gaussian radial basis function, RBF—K
(
xi, xj

)
= e−γ∥xi−xj∥2

SVM has been widely employed across various research domains, including text clas-
sification, image classification, bioinformatics, facial recognition, and various predictive
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tasks [44]. Despite its solid theoretical foundations and strong generalization capabili-
ties, SVM faces challenges such as high computational costs for large datasets and the
need to convert multi-class classification problems into binary classification problems
before processing.

2.2.3. Decision Tree and Random Forest

When a set of rules is used to partition the predictive target space and can be rep-
resented in a tree structure, it is referred to as a decision tree (DT) as shown in Figure 1.
DTs consist of branches and nodes, with the root node containing the entire dataset. Each
branch represents a rule, and the child nodes (decision nodes or leaf nodes) associated
with the branch retain only the data that satisfy the condition of that branch. Rules are
established based on the dataset contained within each decision node. Leaf nodes indicate
the cessation of branching.
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Decision trees offer numerous advantages: they do not require data normalization,
have a simple structure and fast computation time, and their models are easily interpretable.
However, decision trees are highly sensitive to data, leading to poor robustness and
susceptibility to overfitting, and in many applications, their accuracy still cannot match
that of other machine learning methods. To address these limitations, Breiman introduced
Random Forest (RF) in 2001 [45]. RF is an ensemble learning model based on decision
trees, significantly improving prediction performance. It is still widely used today to solve
various classification and regression problems.

In tree-based algorithms, the design of splitting rules and pruning strategies signifi-
cantly influences model performance. Splitting rules directly impact classification outcomes,
while pruning strategies determine when to terminate branching, avoiding overfitting due
to overly detailed branching. The RF model adopts the Classification and Regression Tree
(CART) algorithm [46] as its basis. CART restricts each decision node to perform binary
splitting and employs the Gini coefficient as the splitting rule, along with cost-complexity
pruning as the pruning rule.

The Gini coefficient (Gini index) is a metric used to measure information impurity.
By calculating the extent to which the Gini coefficient decreases after data splitting, we
can evaluate the quality of splitting rules and select the condition that maximally reduces
impurity as the branching criterion. Suppose we have a dataset D, and the formula for
calculating the Gini coefficient is as follows (Equation (7)):

Gini(D) = 1 − ∑c
i=1(pi)

2 (7)

where pi is a non-zero probability representing the ratio of data of class c in dataset D.
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CART and other tree-based algorithms employ the same method of pre-pruning.
During the tree branching process, a threshold is set to stop the growth of the decision
tree, such as limiting the number of data points in leaf nodes or requiring the reduction
of the Gini coefficient to be greater than 0.1. However, while pre-pruning is efficient, it
carries a risk of over-pruning. Therefore, after the tree has completed its growth, CART
introduces cost-complexity pruning to avoid generating leaf nodes with few samples and
increase the decision tree’s tolerance to noise. This is achieved by evaluating the tree using
the following equation (Equation (8)):

Rα(T) = R(T) + α |t|, ∀t ∈ T (8)

where R(T) represents the sum of residuals for all leaf nodes in a tree, |t| denotes the
number of leaf nodes in the tree, and α is a penalty factor. The tree structure with the
maximum Rα(T) is selected as the model structure.

Random Forest (RF) constructs multiple CART trees based on these rules. Each tree
originates from the same data distribution but operates independently. RF introduces two
levels of randomness during training; before the generation of each tree, a random sample
of data points is extracted from the original dataset, and a random subset of features is
selected from the original feature space to form the tree model. During the prediction
phase, for classification problems, RF employs a majority vote based on the results of each
CART submodel to obtain the final result. The law of large numbers and randomness in
RF effectively prevent overfitting and have shown good predictive accuracy for various
classification datasets [45].

In summary, the KNN, SVM, and RF models are all machine learning algorithms
and relatively simple non-linear models. These three supervised learning methods have
demonstrated good performance across various classification problems [13]. Therefore, in
this study, an experiment was designed to select the most suitable classification model from
these three algorithms to serve as the evaluation model after feature selection.

2.3. Simplified Swarm Optimization

In numerous practical applications, the issues encountered tend to be relatively com-
plex and frequently fall under the category of NP-hard problems, rendering the determi-
nation of optimal solutions within finite timeframes challenging. Consequently, many
scholars resort to metaheuristic algorithms—a class of methods that, without guaranteeing
feasibility or optimality, aim to find approximate optimal solutions at reasonable computa-
tional costs—to address such problems [47]. In the context of feature selection problems,
metaheuristic algorithms such as genetic algorithms and particle swarm optimization (PSO)
are commonly employed for solution derivation.

Simplified swarm optimization (SSO) was initially proposed by Yeh in 2009 [48] as
an enhanced version of particle swarm optimization (PSO) [49], a stochastic optimization
method based on swarm intelligence. Swarm intelligence-based approaches typically
generate a set of solutions and then update them by following the lead of the best solutions
within the swarm. Through continuous updating and iteration, these methods gradually
approach the optimal solution.

The core concept of SSO lies in integrating the global best solution (gbest), local
best solution (pbest), self-solution, and a random solution at each iteration. The updated
position of the solutions is determined by random numbers and parameters predefined
within the algorithm. This enables SSO to maintain solution diversity during the search
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process, thus avoiding convergence to local optima. The specific updating formula is as
follows (Equation (9)):

xt+1
ij =


gbestj i f ρt

ij ∈
[
0, Cg

)
pbestt

ij i f ρt
ij ∈

[
Cg, CP

)
xt

ij i f ρt
ij ∈

[
Cp, Cw

)
x i f ρt

ij ∈ [Cw, 1)

(9)

Here, xt+1
ij represents the jth variable of the ith solution in the tth iteration; ρ is a

uniformly distributed random number in the interval [0, 1]; (Cg, Cp, and Cw) are the
hyperparameters of SSO, ranging in the interval (0, 1) with the constraint Cg < Cp < Cw; and
x is a random number generated within predefined upper and lower bounds. If ρ falls in the
interval [0, Cg), the variable xt+1

ij is set to the jth variable corresponding to the gbest value.

If ρ falls in the interval [Cg, Cp), the variable xt+1
ij is set to the jth variable corresponding

to the best historical solution pbest of the ith solution. If ρ falls in the interval [Cp, Cw), the
variable remains the same as in the previous generation. If ρ falls in the interval [Cw, 1),
a new variable is randomly generated. The introduction of the random variable x helps
maintain diversity in the search process, preventing the results from being trapped in local
optima. Furthermore, since (Cg, Cp, and Cw) directly influence the convergence speed and
performance of SSO, past studies related to SSO often utilized Taguchi orthogonal arrays to
select the optimal parameter combinations.

SSO addresses the shortcomings of PSO in solving discrete problems by designing
step functions, thereby mitigating premature convergence and suboptimal performance.
Extensive research across various domains, such as task allocation [50–52], facility loca-
tion [53,54], and several practical areas [55–58], has consistently demonstrated that SSO
outperforms traditional PSO or GA in both efficiency and solution quality. Moreover, SSO
has been successfully applied to feature selection problems.

Chung and Wahid proposed a hybrid system integrating SSO with specialized pre-
processing methods and local search strategies, demonstrating its effectiveness in network
intrusion detection classification problems [59]. Lai et al. combined different filters and
various wrapper methods derived from SSO, proving that hybrid selection methods signifi-
cantly improve cancer classification problems [60].

3. The Proposed Approach

The objective of this study is to achieve optimal predictive accuracy with a minimal
feature count. Feature selection is conducted in two stages. In the first stage, mutual
information (MI) is employed as a filter to assess the relevance of features to the prediction
target. Features with lower MI values are removed after ranking, significantly reducing the
feature space. In the second stage, simplified swarm optimization (SSO) is utilized to search
within the limited feature space. The fitness function is computed based on the results
obtained from the classification algorithm. Through the iterative addition and removal of
features within feature subsets, an optimal feature combination is identified. The hybrid
feature selection method employed in this study is termed MI-SSO.

3.1. Mutual Information

Mutual information (MI) is employed to gauge the interdependence between two vari-
ables, utilizing an information entropy estimation based on K-nearest neighbor distances.
It yields higher accuracy at lower computational costs compared to conventional bootstrap
aggregation (bagging) methods. The specific formula for mutual information is as follows
(Equation (10)):

MI(X, Y) = H(X)− H(X|Y)
= H(Y)− H(Y|X)

= H(X) + H(Y)− H(X, Y)
(10)
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In this context, X represents features, Y denotes the predictive target, H stands for
information entropy, H(X|Y) signifies the conditional entropy of X given Y values, and
H(X, Y) represents the joint entropy of X and Y. As the MI value increases, it indicates a
higher correlation with the predictive target. Following the computation of MI values for all
features in accordance with Equation (10), features can be sorted in descending order based
on their MI values. Depending on the requirements, the top K features can be retained as
initial candidate solutions for subsequent feature selection stages.

3.2. Feature Selection Based on SSO

In the second stage, simplified swarm optimization (SSO) selects the optimal feature
subset from the reduced feature space. SSO uses swarm intelligence to explore efficiently,
evaluating subsets based on predictive accuracy. By iteratively updating with global best,
local best, and random solutions, SSO balances exploration and exploitation, reducing
premature convergence and increasing the chance of finding the global optimum.

3.2.1. Particle Encoding Method

When solving the feature selection problem using heuristic algorithms, binary encod-
ing is commonly employed [31,32,61], with the length of the solution equivalent to the
number of features. However, when the number of features becomes excessive, binary
encoding may result in prolonged solution times. Therefore, when there are constraints on
the maximum number of feature subsets, the use of multivariate encoding can shorten the
solution length and computational time.

The following description outlines the encoding and decoding process employed in this
study: Initially, the K candidate features are sequentially numbered starting from 0 as integers. Un-
der the constraint of selecting at most j features, the particle represents the numerical set of selected
feature combinations, where the ith particle can be represented as: Xi =

(
xi

1, xi
2, xi

3, . . . .xi
j

)
,

subject to the conditions (1) xi
k is an integer and (2) 0 ≤ xi

k < N, ∀k ≤ j. For example (Figure 2),
assuming there are 60 features in the dataset awaiting selection and the intention is to retain
only 10% of the features, thus the solution length is set to 6. If a particle X = (34, 5, 28, 5, 5, 11) is
given, it indicates the selection of features numbered 34, 5, 28, and 11 from the original feature
space, totaling 4 features. From this example, it can be observed that in this encoding method,
the occurrence of duplicate values within particles is allowed. Although restricted to selecting at
most 6 features, the obtained results may be less than the upper limit. The flexible design allows
for the search of fewer feature quantities during the solving process.
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Shorter solution lengths can reduce the computational time, but excessively short
lengths may overlook optimal solutions. When designing solution lengths, consider his-
torical research and optimal feature quantities from other methods. Flexibility is crucial
to avoid overly stringent restrictions. The fitness function controls the precise number of
features using penalty functions to prevent excessive parameters.

3.2.2. Fitness Function

As described in Section 3.2.1, the classification performance varies with each feature
subset inputted into the classifier. Therefore, a fitness function is needed to evaluate the
performance of solutions generated during the iterative updating process of SSO. The
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fitness function in this study is designed to achieve the best model prediction accuracy with
the fewest features. To address this dual-objective problem, we refer to [60] and employ a
weighted approach, as shown in Equation (11):

Max Fitness( f ) = α
MCCSCV=k

(
C f

)
+ 1

2
+ (1 − α)

δ(F)− δ( f )
δ(F)

(11)

The fitness function consists of two parts: classification accuracy and the number of
features. A higher fitness (f ) indicates better solution quality. MCCSCV

(
C f

)
is the average

Matthews Correlation Coefficient (MCC) from stratified K-fold cross-validation (SCV) using
classifier C with feature subset f. δ(F) and δ(f ) denote the numbers of features in the original
dataset and subset, respectively. The fewer features in the subset, the higher the fitness
value. α is a weight between [0, 1], which is adjustable based on the importance of δ(f ).

Given the dataset’s imbalance, SCV ensures consistent class proportions in training
and validation sets [62]. The fitness function uses MCC for evaluation, as it handles class
imbalance better than accuracy and extends to multi-class problems through derivation, as
shown in Equation (12) [63]:

MCC =
cov(X, Y)√

cov(X, X)cov(Y, Y)
(12)

The specific calculation method for the underlying correlation coefficients is as follows
(Equation (13)):

cov(X, Y) = ∑N
k=1 wk cov(Xk, Yk)

= 1
N ∑S

s=1 ∑N
k=1

(
Xsk − Xk

)(
Ysk − Yk

) (13)

Let N denote the number of classes and s denote a single data instance. Xsn is a binary
variable indicating the true class label of s, and Ysn indicates the predicted class label. Xk
and Yk represent the proportions of the true and predicted classes k in the dataset.

The MCC value ranges from −1 to 1, with 1 indicating perfect prediction, 0 indicating
random prediction, and −1 indicating complete disagreement between predictions and
observations. The feature proportion in the fitness function ranges from 0 to 1. To align
their numerical ranges, MCC is normalized [64]. After shifting and scaling, MCC values
fall within 0 to 1.

3.2.3. Updating Steps

Aligned with the integer encoding approach, the basic SSO updating mechanism
is employed. Initially, a set of solutions is randomly generated from the MI candidate
solutions, and gbest and pbest are recorded based on the fitness function. During the
updating process, each variable of the solution is updated according to the step function
(Equation (9)). After updating, the fitness function is computed, and gbest and pbest are
updated. This cycle iterates until convergence. The update process is illustrated in the
flowchart as shown in below Figure 3.
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4. Experimental Results and Analysis

This section introduces the data used in the experiments (Section 4.1), explains the
proposed feature selection method and hyperparameter configuration (Section 4.2), presents
the experimental results from MI-SSO and compares its performance with other methods
(Section 4.3), and details the application of MI-SSO in semiconductor anomaly detection
(Section 4.4).

4.1. Description of the Datasets

Due to the confidential nature of semiconductor manufacturing, obtaining related
datasets is challenging. Therefore, this study uses publicly available datasets for validating
feature selection. To approximate wafer anomaly classification, selected datasets must have
more features than data instances and at least half must be multi-class. The following five
publicly available datasets [18,42,43,65,66] were chosen for experimentation as shown in
Table 1:
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Table 1. Basic description of the datasets.

Dataset Name Number of
Features

Number of
Instances

Numbers of Classes
and Proportions Source

Brain2 10,367 50 4 (14:7:14:15) [42]

Breast 24,481 97 2 (51:46) [65]

Colon 2000 60 2 (40:22) [43]

Lung 3312 203 5 (139:17:21:20:6) [18]

MLL 12,582 72 3 (24:20:28) [65]

Ovarian 15,154 253 2 (162:91) [66]

For wafer anomaly classification, this study used data from a leading wafer foundry
in Taiwan. After preprocessing, the dataset included 426 wafer batches with measurements
for 672 test items, with features outnumbering instances by approximately 1.57 times.
Domain experts categorized the wafers into three classes, normal, risk, and anomaly, with
proportions of 380:23:14, respectively.

4.2. MI-SSO Parameter Configuration

The parameters pre-configured in this study include: the number of candidate solu-
tions K selected by the MI-based feature selection in the first stage, SSO hyperparameters
(Cg, Cp, and Cw) in the second stage, the SSO solution length Nvar, the optimal α in the
fitness function, and the classification algorithm for quality verification.

To determine the optimal parameter combination for MI-SSO, we conducted exper-
iments using six publicly available datasets to assess various parameter settings’ im-
pacts on the prediction results. Given the longer computation times of heuristic algo-
rithms, small-sample experiments were employed. Each parameter combination was
tested 10 times, recording the Matthews Correlation Coefficient (MCC) and the number
of selected features (#F). The average MCC and #F values after 10 repetitions evaluated
classification performance.

Compared to other parameters, the choice of classifier significantly impacts the quality
of classification results. Therefore, we first compared the effects of using three different
algorithms, namely KNN, SVM, and RF, as classifiers on the feature selection results. In
this experiment, the hyperparameters of SSO (Cg, Cp, and Cw) were set to default values
(0.4, 0.7, and 0.9), and the α parameter in the fitness function was set to 0.8 according
to reference [60]. The number of candidate solutions K was set to 100, following the
recommendation in Ref. [67]. The iteration number (Ngen) of SSO was set to 100, the
number of solutions (Nsol) was set to 50, and k in SCV was set to four. All classifiers
were retrained using grid search to search for model hyperparameters based on different
datasets. According to the experimental results (Table 2) and considering the classification
results across all six datasets, SVM achieved the highest classification accuracy, selected the
fewest features, and required the lowest computational time. Therefore, in all subsequent
experiments, SVM was chosen as the classifier for the MI-SSO method.

Table 2. Comparison of different classifiers (average).

Dataset KNN SVM RF

Avg. MCC 0.742544 0.758584 0.757617
#F 21.552381 20.628571 21.666667

Time (min) 6.666159 5.785098 11.083760

The classifier choice significantly impacts classification results. We compared KNN,
SVM, and RF as classifiers for feature selection. SSO hyperparameters (Cg, Cp, and Cw)
were set to default values (0.4, 0.7, and 0.9), and α in the fitness function was set to 0.8 [60].
The number of candidate solutions K was set to 100 [67], the generation number Ngen



Electronics 2024, 13, 2242 13 of 20

to 100, the number of solutions (Nsol) to 50, and k in SCV to four. All classifiers were
retrained using grid search for hyperparameters. The experimental results (Table 2) showed
that SVM achieved the highest accuracy, selected the fewest features, and required the
lowest computational time. Therefore, SVM was chosen as the classifier for MI-SSO in all
subsequent experiments.

After selecting the classifier, the next step involved finding the optimal combination
of SSO hyperparameters through experimentation. The experimental design for hyperpa-
rameter combinations used the I9 orthogonal array from the Taguchi method, reducing
the 27 sets of experiments with three levels and three factors to 9 sets. However, one
combination did not meet the prerequisite condition Cg ≤ Cp ≤ Cw, resulting in eight
different hyperparameter combinations.

Keeping other experimental conditions constant, the results (Table 3) reveal that
although the combinations with the highest MCC or the fewest features vary across the
six datasets, with the better-performing combinations showing similar performance. The
difference in MCC is less than 0.05, and the variance in the number of selected features is
less than one. Therefore, to determine the optimal SSO hyperparameter combination, the
results from the six datasets were collectively considered, and the combination with the
highest average fitness function value was chosen: (Cg, Cp, Cw) = (0.4, 0.7, 0.9).

Table 3. Comparison of classification performance with different combinations of SSO hyperparame-
ters (average).

Dataset

Cg 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6

Cp 0.5 0.6 0.7 0.5 0.6 0.7 0.6 0.7

Cw 0.7 0.8 0.9 0.8 0.9 0.7 0.7 0.8

Brain2 MCC 0.8796 0.9025 0.8937 0.8795 0.8954 0.8898 0.8913 0.8887
#F 29.0 26.8 23.1 27.4 23.2 26.9 27.5 24.5

Breast MCC 0.7024 0.7903 0.8278 0.8129 0.8337 0.8330 0.7787 0.7886
#F 30.2 29.2 25.6 29.8 25.4 29.7 29.1 28.2

Colon MCC 0.8682 0.8661 0.8825 0.8597 0.8623 0.8674 0.8715 0.8763
#F 27.6 27.5 28.1 27.5 27.6 27.3 27.4 28.0

Lung MCC 0.8471 0.8857 0.9120 0.8846 0.9113 0.8441 0.8538 0.8921
#F 32.2 32.1 33.1 32.7 31.1 30.4 32.8 32.8

MLL MCC 0.9920 0.9952 0.9933 0.9907 0.9939 0.9932 0.9924 0.9920
#F 23.5 20.7 15.7 20.4 15.8 21.9 22.6 19.9

Ovarian MCC 0.9979 0.9982 0.9987 0.9977 0.9977 0.9981 0.9969 0.9983
#F 21.5 19.6 14.4 19.6 14.6 20.1 19.4 17.3

Avg. MCC 0.8812 0.9063 0.9180 0.9042 0.9157 0.9043 0.8974 0.9060
#F 27.3333 25.9833 23.3333 26.2333 22.9500 26.0500 26.4667 25.1167

Fitness 0.9433 0.9553 0.9608 0.9542 0.9597 0.9543 0.9510 0.9551

After determining the classifier and SSO hyperparameters, only the number of candi-
date solutions K, the solution length Nvar, and the hyperparameter α of the fitness function
remain undecided. According to the experimental results of Dabba et al., when using
MI as the first-stage feature selection method in microarray problems, K is set to 100 [67].
Both Nvar and α affect the search direction and convergence speed of SSO. Given that
classification accuracy is more important than the number of features, experiments were
designed accordingly. Keeping other settings constant, the experimental results are shown
in Table 4. Although MCC values under different combinations are close, the number of
features varies significantly. This indicates that when using the MI-SSO method on different
datasets, it is necessary to repeat the experiment to find the optimal feature combination
rather than using fixed Nvar and α combinations with the highest fitness function values
chosen based on different datasets during experimentation.
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Table 4. Impacts of alpha and the solution length on the classification results (average).

α 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1 1
Dataset Nvar 30 50 30 50 30 50 30 50 30 50
Brain2 MCC 0.9005 0.9061 0.9087 0.9021 0.9057 0.8976 0.9018 0.9080 0.9115 0.9120

#F 15.2 23.2 16.7 22.4 16.5 22.2 16.3 22.8 22.7 32.5
Fitness 0.9527 0.9553 0.9566 0.9534 0.9551 0.9513 0.9533 0.9561 0.9579 0.9581

Breast MCC 0.8644 0.846246 0.815585 0.840691 0.8381 0.8524 0.8036 0.8521 0.7710 0.8522
#F 17 25.4 16.4 27.3 16.5 26.6 17.1 26.1 22.9 34.7

Fitness 0.9355 0.9269 0.9124 0.9243 0.9231 0.9298 0.9067 0.9297 0.8912 0.9297
Colon MCC 0.8793 0.8718 0.8756 0.8714 0.8715 0.8750 0.8754 0.8746 0.8782 0.8710

#F 20.7 28.3 19.3 27.3 18.9 27.3 20.3 28 23 29.8
Fitness 0.9422 0.9384 0.9404 0.9382 0.9385 0.9399 0.9403 0.9397 0.9416 0.9380

Lung MCC 0.9009 0.9193 0.9064 0.9157 0.9044 0.9061 0.9035 0.9146 0.9083 0.9135
#F 23.1 31.8 23 33.6 22.2 33 24.1 33.3 26 37.3

Fitness 0.9526 0.9612 0.9552 0.9594 0.9543 0.9549 0.9538 0.9589 0.9561 0.9583
MLL MCC 0.9929 0.9941 0.9927 0.9943 0.9916 0.9936 0.9949 0.9930 0.9958 0.9951

#F 10.7 16.6 10.7 15.8 10.3 16.9 9.8 16.6 21 31.9
Fitness 0.9966 0.9971 0.9965 0.9972 0.9960 0.9969 0.9975 0.9966 0.9979 0.9976

Ovarian MCC 0.9979 0.9974 0.9975 0.9984 0.9988 0.9980 0.9987 0.9984 0.9987 0.9987
#F 8.9 15 8.5 14.6 8.2 14.8 8.3 15.1 21.8 31.2

Fitness 0.9990 0.9987 0.9988 0.9992 0.9994 0.9990 0.9994 0.9992 0.9993 0.9993

Summarizing the numerous small-sample experiments conducted using publicly
available datasets, it was found that MI-SSO, when employing SVM as the classifier and
setting the parameters (Cg, Cp, Cw, and K) to (0.4, 0.7, 0.9, and 100), achieved higher
classification accuracy with fewer features across different classification problems. However,
the settings of Nvar and α showed significant variations in feature selection results due to
differences in data characteristics. Therefore, to achieve higher classification accuracy and
fewer features, it is necessary to redesign experiments based on the specific characteristics
of each dataset to find the optimal parameter combination.

4.3. Experimental Results

The encoding used in this study was implemented using Python 3.10.5 in Visual Studio
Code. The experiments were conducted on a device equipped with an AMD Ryzen 5 5600G
with Radeon Graphics processor running at 3.90 GHz and 16 GB of RAM. All datasets
used in the experiments were preprocessed by imputing missing values with the mean
and performing min–max normalization. Additionally, for each dataset, a grid search was
employed to find the optimal hyperparameter combination for SVM.

According to the experimental results in Section 4.2, the experimental settings are as
following Table 5:

Table 5. The experimental settings.

Hyperparameters Numerical Value Illustrate
K 100 Number of candidate solutions

Ngen 100 Number of iterations

Nsol 50 Number of solutions
Nvar 30 or 50 Solution length, depending on the dataset
Cp 0.4 SSO hyperparameter

Cg 0.7 SSO hyperparameter

Cw 0.9 SSO hyperparameter
α 0.6, 0.7, 0.8, 0.9 or 1 Fitness function hyperparameters, depending on the dataset
k 4 Number of layers in SCV
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In addition to MI-SSO, this study also conducted experiments using three other
methods—MI, MI-GA, and MI-PSO—to compare them with the proposed method as follows:

• MI—This method uses only MI for feature selection. It sequentially selects the top
K features based on their MI values (K = 1, 2, . . .) and evaluates their classification
performance by incorporating them into the model. The process continues until there
is no improvement in classification results for 100 consecutive solutions. This identifies
the top K features that yield the best model performance.

• MI-GA—This method adapts SSO using a genetic algorithm (GA), with crossover and
mutation probabilities set to 0.8 and 0.2, respectively [68].

• MI-PSO—This method adapts SSO using a particle swarm optimization (PSO) algo-
rithm, with the inertia weight w set to 0.9 and the acceleration constants (c1, c2) set to
(2, 2) [49].

The six public datasets were repeatedly tested using the specified parameters for
30 trials. The iteration number, number of solutions, and solution length for GA and PSO
were the same as for SSO. The average performance of the four algorithms is shown in
Table 6.

Table 6. Comparison of public datasets.

Dataset Average MI MI-GA MI-PSO MI-SSO

Brain2 MCC 0.900086 0.853529 0.857373 0.903063
#F 94 39.9 28.5 31.133333

Breast MCC 0.833606 0.720417 0.535284 0.848164
#F 90 25.933333 14.466667 16.333333

Colon MCC 0.67774 0.76019 0.86627 0.930007
#F 18 26.1 20.366667 19.633333

Lung MCC 0.953074 0.874127 0.452402 0.918722
#F 117 39.733333 17.766667 33.5

MLL MCC 0.984438 0.972186 0.993398 0.994614
#F 4 26.433333 16.466667 13.666667

Ovarian MCC 0.999289 0.992263 0.998102 0.99863
#F 53 25.933333 12.8 8.633333

MI-SSO achieved the highest MCC in five out of six datasets, indicating superior
classification accuracy. However, for the Lung dataset, MI-SSO did not perform as well
as MI, likely due to selecting too few features. Regarding the number of features, MI-SSO
selected the fewest features only in the Ovarian dataset. In other datasets, MI-SSO selected
relatively fewer features but not the fewest, showing a tendency to sacrifice some features
for better accuracy, aligning with α > 0.5 in the design.

In terms of runtime as shown in Table 7, MI had the shortest runtime, averaging 3 to
4 min depending on the dataset size. Among MI-GA, MI-PSO, and MI-SSO, MI-PSO was
the fastest, followed by MI-GA and MI-SSO, with less than 8 s of difference among them.

Table 7. Algorithm running time (unit: minutes).

Dataset MI-GA MI-PSO MI-SSO

SEMI 6.580849 6.904897 6.644581
Brain2 3.241753 3.209523 3.228779
Breast 4.874745 4.494404 4.755814
Colon 5.430743 5.18067 5.423277
Lung 3.115069 3.180372 3.13715
MLL 4.260329 4.080748 4.283061

Ovarian 4.92204 4.471951 4.887172

Average 4.632218 4.503224 4.622833
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In the field of gene expression microarrays, numerous published papers explore the
application of different feature selection methods. This study filtered five feature selection
methods for comparison with MI-SSO based on the following criteria: published within the
last four years, frequently cited, and tested using the same public datasets. The methods
are MIM-mMFA [67], VS-CCPSO [68], MTPSO [69], TOPSIS-Jaya [70], and SARA-SVM [71].
Since accuracy is the primary evaluation criterion in gene expression microarrays, these
five methods also use accuracy as the main benchmark and objective function. Therefore,
to compare with other methods, the fitness function in MI-SSO was modified as follows:

Max Fitness( f ) = α
AccuracySCV=k

(
C f

)
+ 1

2
+ (1 − α)

δ(F)− δ( f )
δ(F)

(14)

With the remaining experimental parameters unchanged, the experiment was repeated
30 times, and the results were recorded (Table 8). In terms of accuracy, MI-SSO achieved
the best classification performance in two datasets (Breast and Ovarian). For the number
of features, MI-SSO selected the fewest features in the Breast and Lung datasets. MIM-
mMFA obtained the highest accuracy in three datasets (Brain2, Colon, and MLL), while
SARA-SVM selected the fewest features in two datasets (Colon and Ovarian). MI-SSO
balances maximum classification accuracy with the fewest features, and although it may
not always outperform other techniques solely in terms of accuracy or feature count, it
demonstrates competitiveness across the six gene expression microarray datasets and
outperforms existing techniques in certain scenarios.

Table 8. Comparison of MI-SSO with other algorithms.

Dataset Average MIM-mMFA VS-CCPSO MTPSO TOPSIS-
Jaya SARA-SVM MI-SSO

Brain2 ACC 1 0.8047 0.8540 0.921967
#F 11.93 81.46 1066.32 31.3

Breast ACC 0.868 0.924472
#F 25.9 16.7

Colon ACC 1 0.9776 0.9702 0.952861
#F 26.3 18.9 9 19.766667

Lung ACC 0.9791 0.9740 0.956916
#F 370.79 343.24 32.6

MLL ACC 1 0.9962 0.996235
#F 33 12.9 13.366667

Ovarian ACC 0.9818 0.9952 0.9915 0.999297
#F 35.9 18.5 6 8.7

4.4. Case Verification

After validating MI-SSO with publicly available data, this study applied MI-SSO to
anomaly classification in semiconductor manufacturing. The data come from machine
measurements and category labels annotated by engineers. The original dataset includes
the following:

• Lot number—unique batch identifier;
• Wafer number—sequential number up to 25 wafers per batch;
• Parameter name—corresponding measurement parameters for each test;
• Measurement equipment—recorded equipment performing the test.
• Measurement points 1 to 5—floating-point numbers representing different characteris-

tics at different positions on the same wafer;
• Label—category indicating wafer quality as good, bad, or risk.
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Labels are assigned per batch as illustrated in Table 9, and so data from each batch
(about 25 wafers) are aggregated into a single entry. The maximum and minimum values
are selected based on measurement parameters and points. This results in a dataset with
426 entries and 672 features.

Table 9. Illustration of the case dataset.

Batch
Number

p1m1
Max

p1m1
Min

p1m2
Max

pimj
Max/Min . . .

p135m5
Max

p135m5
Min Mark

A 4.00636 3.88418 0.669097

. . .

4.99095 4.98854 good

B 3.96926 3.87155 0.611947 4.9946 4.99371 good

C 4.12133 3.88967 0.611947 4.98923 4.98752 bad

. . . . . . . . . . . . . . . . . . . . .

In the case study, MI-SSO used SVM as the classifier and SSO hyperparameters (Cg, Cp,
and Cw) of (0.4, 0.7, and 0.9), with 100 candidate solutions (K). A small-sample experiment
determined (Nvar, α) = (30, 0.9) for the dataset (Table 10).

Table 10. The influences of different alpha values and solution lengths on the classification results for
the semiconductor manufacturing dataset.

α 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1 1

Dataset Nvar 30 50 30 50 30 50 30 50 30 50

SEMI MCC 0.9558 0.9604 0.9616 0.9610 0.9613 0.9639 0.9634 0.9607 0.9631 0.9562
#F 21.3 29.5 23.3 31.9 23.5 32.6 22.5 35.2 25.9 38.7

Fitness 0.9760 0.9754 0.9777 0.9749 0.9775 0.9759 0.9787 0.9738 0.9775 0.9710

After preprocessing (mean imputation, min–max normalization, and SVM hyperpa-
rameter tuning), feature selection and anomaly classification were performed using the
MI-SSO, MI, MI-GA, and MI-PSO algorithms.

The results (Table 11) show that MI-SSO achieves the highest accuracy and fewest
features for semiconductor anomaly classification. Although MI-SSO selects one more
feature on average than PSO, it improves MCC by 0.02. MI-SSO outperforms GA and
PSO-based methods and is more effective than MI alone.

Table 11. Comparison of the effectiveness of semiconductor manufacturing datasets.

Dataset Average MI MI-GA MI-PSO MI-SSO

SEMI ACC 0.993177 0.981726 0.990751 0.994009
MCC 0.957388 0.882505 0.941981 0.962464

#F 35 25.9 22.64 23.5
Fitness 0.972539 0.945294 0.970054 0.977992

5. Conclusions

This study addresses the unique problem of wafer anomaly detection with a hybrid
feature selection method combining mutual information (MI) and simplified swarm opti-
mization (SSO). MI-SSO operates in two stages: MI filters out less relevant features, and
SSO selects the most important subset from the reduced feature space, achieving precise
classification with fewer features.

Experimental comparisons with MI, MI-GA, and MI-PSO show that MI-SSO achieves
the highest classification performance with fewer features. SSO generally outperforms GA
and PSO in convergence speed and consistently produces the best classification models
with the smallest feature subsets.
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MI-SSO not only enhances classification accuracy but also improves interpretability,
helping us to understand the importance of certain features. For semiconductor manu-
facturing, MI-SSO helps intercept defective products, reduce processing costs, and detect
hidden manufacturing problems early. The selected features provide valuable insights for
engineers to optimize the measurement and manufacturing processes.
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