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Abstract: With the gradual increase in wind power installation capacity, the proportion of traditional
synchronous generators driven by fossil fuel is gradually declining. Due to the fact that wind
turbines are connected to the grid through power electronic converters, which decouple rotor speeds
from the system frequency and reduce system inertia levels, inadequate inertia levels can pose a
threat to frequency stability when disturbances occur. To address this issue, this paper proposes a
frequency regulation optimization strategy for the direct current (DC) transmission of a wind storage
system. This strategy incorporates virtual inertia control and virtual droop control to adjust wind
power output based on frequency deviation and rate of change. Fuzzy logic control is employed
for energy storage, adaptively adjusting active power based on frequency deviation and the rate of
change. Additionally, under the context of multi-DC transmission in renewable energy systems, an
optimization strategy for proportion and integration (PI) parameters of the frequency limit controller
(FLC) is proposed. Considering frequency deviation and DC regulation power simultaneously, the
double deep Q-network (DDQN) algorithm is adopted in the simulation model to attain the optimal
parameters of FLC. Simulation results conducted using MATLAB/Simulink 2022a indicate that
this strategy increases the lowest frequency by 0.28 Hz and decreases the response time by 1.04 s
compared with the non-optimized strategy.

Keywords: virtual inertia control; virtual droop control; fuzzy logic control; DDQN algorithm

1. Introduction

Under the background of actively promoting the goal of “carbon peak and carbon neu-
trality”, the proportion of wind power in power systems is increasing, and the proportion
of traditional synchronous generators driven by fossil fuels is gradually decreasing. The
addition of wind turbines reduces the equivalent inertia of a power system and threatens
the frequency safety of the system. In order to ensure the frequency stability of the sys-
tem, wind turbines have certain frequency regulation capabilities through various control
means, such as virtual inertia control, overspeed, and variable pitch control [1–4]. However,
relying only on wind turbines for a single frequency regulation still faces the problem of
frequency instability due to insufficient frequency regulation capacity [5–8]. The rapid
development of energy storage technology and the advantages of energy storage itself
have created new ideas for frequency control of power systems, such as compensation of
virtual inertia [9] and synchronous generator control [10]. Energy storage itself has the
characteristics of fast response speed, high response accuracy, and flexible control, which
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can better meet the scheduling requirements of minute or even second level of frequency
regulation. Compared with traditional synchronous generator sets, power grids with
higher slope rate requirements and less power demand of frequency regulation power
supply have better adaptability and can better meet the frequency regulation indicators of
the system [11]. Therefore, on the basis of exploring the frequency regulation capability of
wind power, relevant research has proposed to connect energy storage to grid-connected
wind power systems to provide active power support so as to increase the moment of
inertia of the system and improve the frequency regulation performance of the grid [12,13].
Wang T and Xiang YW [14] used an energy storage system to compensate for the virtual
inertia of a wind farm, determined the output power of the wind storage system based
on fuzzy control logic, and formulated a virtual inertia compensation strategy to improve
the inertia level of the wind storage system. However, this method only improved the
participation of energy storage in frequency regulation and did not give full play to the
frequency support capability of wind turbines. Fuzzy control was used to design and
implement the frequency regulation control of a wind turbine operating without load [15].
According to the frequency change rate of different scenarios and the maximum output
power of the wind turbine, a strategy of battery energy storage coordination for wind
turbines to provide frequency regulation response was developed. The control strategy
proposed by the existing research enabled the wind turbine to respond to the frequency
change of the system, but it did not effectively coordinate the two frequency regulation
resources of wind power and energy storage, resulting in a lack of dynamic coordination
within the system and a waste of frequency regulation potential. Therefore, it is necessary
to further study how to establish a flexible, coordinated control strategy for combined wind
storage systems.

Wind power and energy storage are connected to the receiving power network through
a power electronic converter, and relevant strategies have been adopted to control the DC
power transmission, which can reduce the burden of the frequency regulation system.
DC frequency regulation controls the active power of the connected alternating current
(AC) system and effectively improves the frequency stability of the system due to its
fast adjustability and good short-term overload capacity. DC frequency regulation has
been widely used in existing asynchronous networking DC projects. It mainly adopts
the form of DC frequency limiting control to improve the frequency of the connected
AC system. A power grid adopts DC frequency limiting control in combination with
traditional measures [16], which can effectively solve the problem of frequency stability
in a network. Zhang Q, Mccalley J D, et al. [17] analyzed the frequency characteristics of
the Yunnan power grid after asynchronization by combining the control principle of the
DC frequency limiter and established a frequency regulation strategy for the AC system in
which the DC frequency limiter participates. Considering complex operating conditions,
the back-to-back DC frequency limiting controller of Chongqing and Hubei was optimized
to improve the controller adjustment effect [18]. A DC frequency control system was
proposed in [19], which applied a multi-variable control to the frequency control of the
DC system. The frequency of the AC system can be better adjusted while maintaining
the stability of the two AC systems. DC frequency regulation also plays an important
role in absorbing new energy power fluctuations and the stability of multi-terminal DC
cross-region systems. Papalexopoulos A D and Andrianesis P E [20] investigated the
frequency dynamic coupling relationship of AC systems on both sides of a high-voltage
direct current (HVDC) rectification and inverter based on large wind farms and proposed an
emission angle correction strategy to decouple frequency–voltage to improve the frequency
dynamics of the rectifier end. However, wind farms and DC did not form an effective
coordination relationship in the proposed method. Zhang Yi, et al. [21] used a fuzzy logic
controller to allocate the reference values of DC and wind farm frequency regulation power
and proposed a frequency regulation power distribution method for units in wind farms so
that grid-connected wind turbines can allocate frequency regulation power according to
their own rotational kinetic energy and adjustable capacity.
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A large number of scholars have studied the parameter optimization of DC frequency
regulation but have not considered its synergistic effect with wind power and energy stor-
age participating in frequency regulation. Therefore, in a power system where wind power
is transmitted through DC, it is of great significance to study the frequency control strategy
after the installation of energy storage devices. To improve the frequency stability of power
systems with a high proportion of wind power penetration, it is crucial to coordinate
various frequency regulation resources. In this paper, the primary frequency regulation
optimization strategy of the combined wind storage system is studied. Furthermore, the
frequency regulation requirements of the system are considered from the perspective of
the inertia response of the power system: primary frequency regulation. The operating
mechanism and cooperative control strategy under DC transmission of the combined wind
storage system are also constructed. In this research, the goal is to improve the frequency
stability of power systems under high proportion wind power penetration. In the process
of research, only the frequency response characteristics of each part of the system are
considered. Compared with existing frequency regulation methods, this study considers
the participation of multiple frequency regulation resources, including energy storage, DC
FLC, and wind turbine. The energy storage can adjust the output power adaptively by
fuzzy logic control. Furthermore, the PI parameters of DC FLC are optimized using the
DDQN algorithm in order to avoid the randomness problems of heuristic algorithms.

The scope of this investigation is divided into seven main sections. Section 2 gives the
control strategy for wind power and DC transmission. Furthermore, Section 2 presents
a control strategy for energy storage. Section 3 gives the system simplification model
considering variable resources of frequency regulation such as wind power, energy storage,
and DC. Sections 4 and 5 present the methodology for the optimization strategy, including
the DDQN algorithm and the entropy method. In Section 6, the simulation results are
presented and analyzed. The conclusion is drawn in Section 7.

2. Control Strategy for Wind Storage System and DC Transmission
2.1. Control Strategy for Wind Power

At present, the main ways that wind turbines participate in frequency regulation are by
rotor virtual inertia, droop control, virtual synchronous generator, overspeed, and variable
pitch control. Overspeed and variable pitch control actuate on load reduction, which makes
wind power no longer use maximum power point tracking (MPPT) control and reduces the
utilization rate of wind energy. Rotor virtual inertia control and sag control actuate on rotor
kinetic energy. Although the wind turbine passes through the power electronic converter,
its rotor frequency is decoupled from the system frequency and cannot respond to the
system frequency change. However, the wind turbine blades are connected to the generator
rotor through the gearbox, and the weight of the wind turbine blades is several times or
even dozens of times larger than the weight of the generator rotor, and the rotating kinetic
energy stored in the wind turbine blades is considerable when the unit is running normally.
When the system frequency changes, the frequency support is provided by converting the
kinetic energy and electric energy of the rotor. In order to ensure the maximum utilization
of wind energy, a comprehensive inertia control method combining virtual inertia control
and sag control is adopted to make wind power participate in frequency regulation.

When the system frequency changes, the virtual inertia control can change the ref-
erence value of the active power of the wind turbine according to the frequency change
rate and magnitude and then change the electromagnetic power of the rotor to achieve
additional power support for the system frequency change. The rotor virtual inertia control
method does not require the reserve power of the wind turbine and can still realize the
maximum utilization of wind energy. However, at the end of the inertia response process,
the rotor speed returns to the initial value, which may cause a secondary droop or increase
in the system frequency, and when the system is stable again, it will not be able to continue
to provide frequency support.
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The principle of virtual inertia control is as follows [22]:

∆P1 = 2H
d f
dt

, (1)

where ∆P1 is the compensated active power of virtual inertia control; ∆ f is the system
frequency deviation; H is the inertial response time constant.

Droop control is a steady-state support process that is mainly used to reduce the fre-
quency deviation of the system and can simulate the differential adjustment process of the
synchronous generator’s primary frequency regulation, which is conducive to maintaining
the stability of the system frequency. The root cause of the frequency fluctuation of the
power system is the mismatch of power, that is, the mismatch between the active power and
the load power of the generator. When the active power output of the system power supply
is missing or increasing, the system frequency will decrease or increase. The traditional
synchronous generator set can respond to the change in system frequency; the governor
controls the speed down or up and changes the output power of the synchronous machine
so that the power in the system gradually reaches a new equilibrium state. A typical droop
control is shown in Figure 1.
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Figure 1. Droop control principle.

Emulating the sagging characteristics of a synchronous generator, frequency deviation
control can be added to the control strategy of the wind turbine so that it has similar sagging
characteristics to a synchronous generator and then responds to the frequency change in
the system. Droop control is differential regulation. After the adjustment, the system enters
a new steady state, and the frequency at this time is not rated frequency. The principle of
sag control is as follows [23]:

∆P2 = Kd∆ f , (2)

where ∆P2 is the droop control active power involved in a frequency regulation; Kd is the
droop control factor.

The principle of comprehensive inertia control is shown in Figure 2. The comprehen-
sive inertia control obtains the compensation power ∆P1 and ∆P2 according to the frequency
change rate and frequency deviation, respectively, which determines the reference value
of active power together with the output power Pm controlled by wind power MPPT and
then participates in the frequency adjustment of the system. The addition of droop control
can avoid the secondary drop in the frequency and improve the stability of the system
frequency. The function of the high-pass filter is to prevent the virtual inertia control from
working in the steady state of the system and only acting on the frequency change rate [24].

The output power Pm of wind power MPPT control is calculated as follows:

Pm =
1
2

ρSwV3CP(λ, θ), (3)

where ρ is the air density; Sw is the projected area of the wind flowing vertically through
the blade; V is the wind speed; CP is the rotor power coefficient.
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Figure 2. Principle of integrated inertia control.

Rotor power coefficient CP is a function of blade tip speed ratio λ and pitch angle θ,
and blade tip speed ratio is defined as the ratio of the blade tip linear speed of the wind
turbine blades to the incoming wind speed, as follows:

λ =
2πRn

V
=

ωR
V

, (4)

where n is the rotor speed; R is the radius of the blade tip; ω is the angular velocity of the
wind turbine blades.

2.2. Control Strategy for DC Transmission

DC participates in the system frequency adjustment through the DC frequency limiting
controller, and its control link adopts PI control mode. The input signal is the frequency
deviation signal of the AC system ∆ f , and includes the frequency difference limiting link
and filtering link. The specific control structure is shown in Figure 3. When the system
frequency difference exceeds the dead zone limit of FLC, the signal ∆ f becomes the active
power output deviation signal through PI control, then through power limiting, and finally
forms the active power regulation instruction. When the frequency of the sending system
decreases, FLC reduces the DC transmission power according to the deviation signal. When
the frequency of the sending system increases, the DC transmission power is increased to
maintain the active power balance of the system. In the figure, DMax and DMin respectively
are the upper limits of the frequency difference limiting link; Tr is the low-pass filter
time constant; f+d and f−d respectively are the maximum and minimum values of the FLC
control dead zone; KP and KI are the proportional coefficient and integral coefficient of
PI controller; ∆PFLC,Max and ∆PFLC,Min are the upper and lower limits of the DC power
regulation instruction.
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2.3. Control Strategy for Energy Storage

Based on expert system, fuzzy set theory, and control theory, fuzzy control comes
into being. When the mathematical process of the controlled process is more complicated,
artificial criteria prevail to simplify the controller design. When implemented by computer,
membership function and approximate inference perform numerical processing for this
qualitative relationship.

The diagram of fuzzy logic control is shown in Figure 4. The input variable is fuzzy
by membership function, then the output fuzzy set is obtained by fuzzy logic reasoning,
and the specific value of the output is obtained by deblurring.
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Mamdani fuzzy reasoning was first proposed, and Mamdani established a control
system by synthesizing different language control rules [25]. The design of fuzzy logic
control includes the determination of the fuzzy subset, membership degree function logic
operation method, fuzzy logic reasoning criterion, and defuzzification method.

The methods of fuzzy logic control are centroid, Bisector, max–minimum membership
(smallest of maximum), middle–maximum membership (middle of maximum), and max–
maximum membership (largest of maximum). In this study, the gravity center method is
used to deblur the output fuzzy set.

By calculating the membership function of the output and the center of gravity of the
area surrounded by the x-axis, the fuzzy logic inference result is obtained. The calculation
method is as follows [26]:

xCentroid =

∑
i

µ(xi)xi

∑
i

µ(xi)
, (5)

where xi is the domain of membership degree function; µ(xi) is the value of the output
membership function.

The structure of the fuzzy logic controller is shown in Figure 5. The input of the fuzzy
logic controller designed in this study is the frequency deviation ∆ f and frequency change
rate of the AC system d f /dt, where the values range from −0.01 to 0.004 p.u. and −0.016
to 0.016 p.u. Because the frequency deviation of high frequency is smaller than that of low
frequency in practical engineering applications, the upper limit of the frequency deviation
is smaller than the lower limit. The output is the change in the active power of the BESS
(battery storage energy) ∆PE, and the value ranges from −0.3 to 0.3 p.u.
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Figure 5. Fuzzy logic controller structure.

Membership functions of input and output variables are shown in Figures 6–8. The
fuzzy subsets of input variables are NL (negative large), NM (negative medium), NS
(negative small), Z (zero), PS (positive small), PM (positive medium), and PL (positive
large). The fuzzy subsets of the output variables are NL (negative large), NM (negative
medium), NS (negative small), Z (zero), PS (positive small), PM (positive medium), and PL
(positive large) [27].
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The basic criterion of fuzzy logic reasoning is the following: When the frequency
deviation ∆ f or frequency change rate d f /dt is large, it indicates that the system needs
a larger controller output ∆PE to participate in frequency regulation. When the absolute
value of the frequency change rate d f /dt is close to 0 and the frequency deviation ∆ f is
small, the system is relatively stable, the output of the controller ∆PE should be as small as
possible. The specific fuzzy logic reasoning table is shown in Table 1.
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Table 1. Fuzzy logic reasoning table.

BESS Power
Frequency Deviation

NL NM NS Z PS PM PL

Rate of
frequency

change

NL PL PL PL PL PS NS NM
NM PL PL PL PM Z NS NM
NS PL PL PM PS NS NM NM
Z PL PM PS Z NS NM NL
PS PM PM PS NS NM NL NL
PM PM PS Z NM NL NL NL
PL PM PS NS NL NL NL NL

The output of fuzzy logic reasoning is obtained by using the “max-min” principle
of the Mamdani algorithm, and the fuzzy logic reasoning results obtained by using the
centroid de-fuzzification process are shown in Figure 9.
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3. System Simplification Model

The system frequency response model (SFR) is a general method for analyzing the
frequency response of the system. In order to investigate the control strategy, the SFR is
used to analyze and calculate the frequency problem of the power system after disturbance.
The system frequency response model is equivalent to the actual physical system so as
to obtain a feasible solution to the frequency response problem. In order to consider the
frequency regulation effects of wind storage and DC, the wind power, battery energy
storage system (BESS), and DC FLC model are added on the basis of the traditional SFR
model, as shown in Figure 10. Furthermore, the BESS uses lithium-ion batteries.
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In the model, Tsys is the inertia corresponding time constant of the system; ∆PH is the
frequency regulation power for the hydro power; ∆PS is the frequency regulation power
for the thermal power; ∆PW is frequency regulation power for wind power; ∆PFLC is the
frequency regulation power for FLC; ∆PE is the frequency regulation power for BESS ;
KHydro, KSteam, Kwind, KFLC, KEss are proportional gains.

In this research, a fuzzy logic controller is added to BESS, and a comprehensive inertia
control is added to wind power. The frequency response characteristics of the system under
load disturbance are investigated by formulating an optimization strategy.

4. DDQN Optimization Strategy
4.1. DDQN Algorithm

Reinforcement learning is usually based on a Markov decision process (MDP), in
which the outcome of an interaction between an agent and the environment at the next
moment is only relevant to the current state of the environment, not the previous state
of the environment. The traditional MDP process consists of four elements, given by the
(S, A, R, µ) quadruple, where S represents the set of environmental states; A represents the
set of actions that the agent can take; R represents the reward function, which is the reward
that the agent gets after taking a certain action in a certain state; µ represents the policy set,
which corresponds to the status and action.

Q-learning is a typical reinforcement learning algorithm that records the learned
experience in the form of a Q-value table. The algorithm uses Formula (6) to update the
quality value [28]. When the formula converges, the optimal action strategy can be obtained.

Qk+1(S, A) = Qk(S, A) + α[Rk + γmaxQk+1(S′, A′)− Qk+1(S, A)], (6)

where α is the learning rate; γ is the discount factor; Qk(S, A) is the Q value for status S
and action A.

In order to solve the problem that the Q-learning algorithm is difficult to deal with
high-dimensional states and control action sets, a neural network model Q(S, A|ω) is
adopted in the DQN method to directly predict the value of the Q function so as to replace
the use of the Q table. The current target Q value is calculated according to Formula (5), and
then the mean square error between the current target Q value and the Q value predicted
by the neural network is used to update the parameter ω of the neural network.

DDQN algorithm makes two improvements on the basis of DQN. Firstly, two networks
are introduced: one is the target network Q′(S, A|ω′) to calculate the target Q value, and
the other is the update network Q(S, A|ω) to update the Q value, which can reduce
the dependency between the target Q value and the update network parameters. The
target network has exactly the same structure as the Q-value network and synchronizes
parameters from the Q-value network periodically.

Secondly, we decouple the action selection of the target Q value and the calculation
process of the target Q value in objective Equation (5) so as to reduce the overestimation
caused by the greedy algorithm. When calculating the target Q value, the maximum Q
value corresponding to the action is not found from the target Q network, but the action
corresponding to the maximum Q value is found in the update network first. This action is
then used to calculate Q values on the target network.

4.2. Selection of Objective Function

In this section, the integrated time square error (ITSE) index of the system frequency
and DC FLC power regulation under high-power disturbance is taken as the minimum
objective, and the objective function is established as follows:

minF(x) = ω1

ts∫
0

t(∆ f )2dt + ω2

ts∫
0

t(∆PFLC)
2dt, (7)
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where x = {KP, KL} is the controller parameter of the DC FLC; ω1, ω2 are respectively the
weight of the two ITSE indicators; ts is the simulation duration; ∆PFLC is regulation power
of DC FLC.

4.3. Constraints

The proportional and integral gain of the DC FLC control link must satisfy the follow-
ing inequality constraints:

KPmin < KP0 < KPmax
KImin < KL0 < KImax

, (8)

where KP0 and KL0 are respectively the initial value of the proportional link gain and the
integral link gain, and their size needs to be selected according to the situation of system
standardization; KPmin and KPmax are respectively the minimum and maximum values
of the proportional gain coefficients; KLmin and KLmax are respectively the minimum and
maximum values of the integral gain coefficients.

Due to the limited rated capacity and transmission capacity of the HVDC transmission
system, the DC FLC power regulation should meet the upper and lower limits:

∆PFLCmin < ∆PFLC < ∆PFLCmax, (9)

where ∆PFLCmin and ∆PFLCmax respectively are the upper and lower limits of the DC FLC
power regulation.

5. Solution Process Based on Entropy Method
5.1. Entropy Method

The entropy method is a weighting method based on the amount of information
contained in each index, which is objective and can avoid the interference of too many
human factors [29]. If the value difference of the same index is small, that is, the probability
distribution is more uniform, and the information entropy is larger, the index is assigned a
lower weight. Conversely, if the value difference of the same indicator is large, the weight
of the indicator is higher. Let the decision matrix D be:

D =

 z11 z12
...

...
zm1 zm2

, (10)

where zij is the value of the jth ITSE of the ith simulation result; m is the simulation
frequency.

The steps to determine the weight of indicators by using the entropy method are
as follows:

1. The simulation result corresponding to each jth ITSE is normalized:

pij =
zij

m
∑

i=1
zij

, (11)

2. The entropy of the jth ITSE is calculated as follows:

ej = − 1
ln m

m

∑
i=1

pij ln pij, (12)

3. The deviation degree of the jth ITSE is calculated as follows:

dj = 1 − ej, (13)

4. The deviation degree of the jth ITSE is normalized, and the index weight is as follows:
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ωj =
dj

2
∑

k=1
dk

, (14)

5.2. Solution Process

When using the DDQN algorithm, it is necessary to transform the control problem into
a process of reinforcement learning. The frequency response model established in Section 3
acts as the environment of the reinforcement learning problem, and the FLC controller acts
as the agent. The goal of reinforcement learning is to obtain an optimized control strategy
through the continuous interaction between the agent and the environment. The Markov
decision process corresponding to this optimization problem is as follows:

1. State variable is S = (∆ f , ∆PFLC, ∆PE, ∆PW , ∆PG). These variables are the dynamic
results given in real time by the simulation environment;

2. Action variable is A = (KP, KL), which is the decision variables of the FLC;
3. The construction of the reward function needs to combine the objective function (7)

and the constraints (8) and (9). The reward function from the current state St to the
next state St+1 is defined as:

R(St, St+1) = −[ω1

t+1∫
t

t(∆ f )2dt + ω2

t+1∫
t

t(∆PFLC)
2dt + β(t)], (15)

where the first part is the size of the objective function for this time period; the
second part is the penalty term, which is set to reflect the constraints. The goal of the
optimization process is to maximize the value of the reward function. It also means
that the value of the objective function will be a minimum;

4. The policy function µ is the corresponding relationship between the state variables of
the combined wind storage system and the parameters of the DC FLC, which is the
deep neural network required in the DDQN algorithm.

6. Analysis of Simulation Results
6.1. Simulation Model

In this study, the wind farm (WF), BESS, and voltage source converter (VSC) stations
are added to the four-machine and two-zone model of the MATLAB/Simulink simulation
platform. Moreover, the active power control link is added to the converter. The topology
of the system is shown in Figure 11. The computer configuration of the neural network
training process is AMD Ryzen 7 5800H CPU and 16 G integrated graphics card.
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In Figure 11, G1 and G2 are steam turbines with the rated power of 900 MW; G3 and
G4 are hydro turbines with the rated power of 900 MW; the rated power of the wind farm
is 300 MW; the rated power of the DC transmission is 1000 MW; the rated capacity of the
BESS is 350 Ah.

6.2. Model Training

The training samples are input into the neural network successively, and the reward
function values of the agents in every 50 s simulation cycle are counted. The reward
curve obtained is shown in Figure 12. It can be seen that at the beginning of training, the
reward value has been increasing during the agent’s search for actions. With the progress
in training, the value of the reward function obtained by the agent converges, and the
performance of the model becomes better and better. Figure 13 shows the change curve of
the objective function in the training process. It can be seen that the objective function also
converges with the progress of training. Finally, the objective function converges to 80.07.
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6.3. Comparative Analysis

The results of different optimization methods are shown in Table 2. Compared with
the parameters of the PI controller given by experience, the PI controller parameter ob-
tained by DDQN is KP = 0.2, KL = 0.3, and the objective function value is 80.07. The
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objective function values of the DQN algorithm and the particle swarm optimization (PSO)
algorithm are both larger than 80.07, which proves the effectiveness of the proposed DDQN
optimization strategy. The PSO algorithm, as a typical heuristic algorithm, enables the
whole group to obtain feasible solutions in the solution space through information sharing
among individuals, but its results are random. Although the DQN algorithm calculates
the Q value through the deep neural network, the Q value is strongly dependent on the
updated neural network parameter relationship, and there is an overestimation problem.

Table 2. Comparison results of different optimization methods.

Optimization Method Controller Parameter Objective Function Value

Non-optimization KP = 0.1, KL = 0.2 103.45
PSO KP = 0.21, KL = 0.29 90.12
DQN KP = 0.19, KL = 0.28 82.23

DDQN KP = 0.2, KL = 0.3 80.07

A load disturbance of 0.08 p.u. appears in the system after 10 s. Furthermore, the wind
penetration level of the system is 10%. The frequency response characteristics of different
optimization methods are shown in Figure 14. According to the analysis in Figure 14,
it can be seen that the lowest frequency fNadir = 49.27 Hz, the inertial response time
t = 14.37 s, and the steady frequency fSteady = 49.88 Hz when using the DDQN algorithm
for optimization. When the DQN optimization algorithm is adopted, the lowest frequency
fNadir = 49.21 Hz, inertia response time t = 15 s, steady frequency fSteady = 49.79 Hz. When
the PSO algorithm is adopted, the lowest frequency fNadir = 49.21 Hz, the inertia response
time t = 14.6 s, and the steady frequency fSteady = 49.89 Hz. Without optimization, the lowest
frequency fNadir = 48.99 Hz, the inertia response time t = 15.41 s, the steady frequency
fSteady = 49.88 Hz, and the overshoot B = 0.16%. The optimization strategy proposed in this
paper can significantly improve the inertial response process of the system. Compared
with the non-optimized strategy, the lowest frequency increases by 0.28 Hz, reducing the
undershooting and oscillatory transients. Also, the response time decreases by 1.04 s.
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Different wind power penetration levels are set in order to investigate the effect of
wind power penetration. The initial wind penetration level of the system is 10%. It is
gradually increased to 40%. A load disturbance of 0.08 p.u. appears in the system after 10 s.
The control strategy of the system adopts the DDQN algorithm.

The frequency response characteristics of different wind power penetration levels are
shown in Figure 15. As we can see from Figure 15, the lowest frequency fNadir = 49.27 Hz,
the inertia response time t = 14.37 s when the wind power penetration level is 10%. The
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lowest frequency fNadir = 49.24 Hz, and the inertia response time t = 14.71 s when the
wind power penetration level is 20%. The lowest frequency fNadir = 49.22 Hz, and the
inertia response time t = 14.72 s when the wind power penetration level is 30%. The lowest
frequency fNadir = 49.2 Hz, and the inertia response time t = 14.73 s when the wind power
penetration level is 40%. With the increase in wind power penetration, the inertia level
of the system is reduced. Hence, the lowest frequency is reduced, and the inertia time
becomes longer when wind power penetration is increased.
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7. Conclusions

Aiming to address the problem of frequency stability caused by increases in wind
power proportion, this paper studied the frequency regulation strategy of a combined
wind storage system with DC feed. In addition, an optimization strategy that takes into
account the frequency deviation and FLC frequency regulation power of DC was put
forward. The frequency regulation characteristics of hydro power and thermal power were
considered in the simulation model, which has a certain reference value for engineering
practice. Since the DDQN algorithm does not need to specify the mathematical relationship
between the control variable and the objective function, the Q function obtained by training
can find the optimal control variable for the objective function so that the data obtained
by the simulation model can be effectively processed. By emulating load disturbance
and comparing the results of different optimization methods, the frequency response
characteristic of the proposed optimization strategy is the best. Moreover, compared with
the PI parameters given by experience, the PI parameters attained by the DDQN algorithm
make the objective function value smaller. However, this study did not consider the change
in SOC of energy storage. The control strategy for energy storage will be optimized in a
further study.
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