Investigation of Ferromagnetic Nanoparticles’ Behavior in a Radio Frequency Electromagnetic Field for Medical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Fe-MWCNTs
- Purification of the quartz reactor from oxidizing material.
- Establishment of initial conditions (temperature, gas flow) at a selected level.
- The actual synthesis process of Fe-MWCNTs.
- Cooling.
2.2. Investigation the Heating Quality of Fe-MWCNTs
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garcia, M.; Jemal, A.; Ward, E.M.; Center, M.M.; Hao, Y.; Siegel, R.L.; Thun, M.J. Global Cancer Facts & Figures 2007; American Cancer Society: Atlanta, GA, USA, 2007. [Google Scholar]
- IARC. Cancer Tomorrow. 2018. Available online: https://gco.iarc.fr/tomorrow/ (accessed on 5 June 2024).
- Murakami, T.; Ajima, K.; Miyawaki, J.; Yudasaka, M.; Iijima, S.; Shiba, K. Drug-Loaded Carbon Nanohorns: Adsorption and Release of Dexamethasone in Vitro. Mol. Pharm. 2004, 1, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Elhissi, A.M.A.; Ahmed, W.; Hassan, I.U.; Dhanak, V.R.; D’Emanuele, A. Carbon nanotubes in cancer therapy and drug delivery. J. Drug Deliv. 2012, 2012, 837327. [Google Scholar] [CrossRef] [PubMed]
- Kam, N.W.S.; Dai, H. Carbon Nanotubes as Intracellular Protein Transporters: Generality and Biological Functionality. J. Am. Chem. Soc. 2005, 127, 6021–6026. [Google Scholar] [CrossRef] [PubMed]
- Kausar, A.; Ahmad, I. Highpoints of carbon nanotube nanocomposite sensors—A review. E-Prime-Adv. Electr. Eng. Electron. Energy 2024, 7, 100419. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Q.; Liu, Y.; Zhao, D. Properties and Defence Applications of Carbon Nanotubes. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2023; p. 042010. [Google Scholar]
- Al Tahhan, A.B.; Alkhedher, M.; Mourad, A.-H.I.; Ramadan, M.; Nawash, J.M. Effect of induced vacancy defects on the mechanical behavior of wavy single-walled carbon nanotubes. Nano Trends 2023, 3, 100016. [Google Scholar] [CrossRef]
- Lin, Y.; Cao, Y.; Ding, S.; Zhang, P.; Xu, L.; Liu, C.; Hu, Q.; Jin, C.; Peng, L.M.; Zhang, Z. Scaling aligned carbon nanotube transistors to a sub-10 nm node. Nat. Electron. 2023, 6, 506–515. [Google Scholar] [CrossRef]
- Mishra, S.; Kumari, S.; Mishra, C.A.; Chaubey, R.; Ojha, S. Carbon Nanotube—Synthesis, Purification and Biomedical Applications. Curr. Nanomater. 2023, 8, 328–335. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, A.; Wang, X.; Zhu, J.; Fan, Y.; Yu, H.; Yang, Z. The Advances of Carbon Nanotubes in Cancer Diagnostics and Therapeutics. J. Nanomater. 2017, 2017, 3418932. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Thanh, N.T.K.; Jones, S.K.; Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. Appl. Phys. 2009, 42, 224001. [Google Scholar] [CrossRef]
- Maniotis, N.; Myrovali, E.; Kalpaxidou, Z.; Iliaskou, C.; Angelakeris, M.; Samaras, T. Ex-vivo evaluation of magnetite magnetic nanoparticles as magnetic hyperthermia carriers. In Proceedings of the 2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med), Split, Croatia, 10–13 September 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Sellins, K.S.; Cohen, J.J. Hyperthermia induces apoptosis in thymocytes. Radiat. Res. 1991, 126, 88–95. [Google Scholar] [CrossRef]
- Fairbairn, J.J.; Khan, M.W.; Ward, K.J.; Loveridge, B.W.; Fairbairn, D.W.; O’Neill, K.L. Induction of apoptotic cell DNA fragmentation in human cells after treatment with hyperthermia. Cancer Lett. 1995, 89, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Polo, E.; del Pino, P.; Pardo, A.; Taboada, P.; Pelaz, B. Magnetic Nanoparticles for Cancer Therapy and Bioimaging. In Nanooncology: Engineering Nanomaterials for Cancer Therapy and Diagnosis; Springer: Cham, Switzerland, 2018; pp. 239–279. [Google Scholar] [CrossRef]
- Bhirde, A.A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A.A.; Masedunskas, A.; Leapman, R.D.; Weigert, R.; Gutkind, J.S.; Rusling, J.F. Targeted Killing of Cancer Cells in Vivo and in Vitro with EGF-Directed Carbon Nanotube-Based Drug Delivery. ACS Nano 2009, 3, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, C.; Nie, X.; Li, S.; Li, R.; Guan, M.; Liu, Z.; Chen, C.; Wang, C.; Shu, C.; et al. Photoacoustic Imaging GuidedNear-Infrared Photothermal Therapy Using Highly Water-Dispersible Single-Walled Carbon Nanohorns as Theranostic Agents. Adv. Funct. Mater. 2014, 24, 6621–6628. [Google Scholar] [CrossRef]
- Antaris, A.L.; Robinson, J.T.; Yaghi, O.K.; Hong, G.; Diao, S.; Luong, R.; Dai, H. Ultra-Low Doses of Chirality Sorted (6,5) CarbonNanotubes for Simultaneous Tumor Imaging and Photothermal Therapy. ACS Nano 2013, 7, 3644–3652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, W.; Wu, F.; Yuan, P.; Chi, C.; Zhou, N. Magnetic and fluorescent carbon nanotubes for dual modal imaging andphotothermal and chemo-therapy of cancer cells in living mice. Carbon 2017, 123, 70–83. [Google Scholar] [CrossRef]
- Murakami, T.; Nakatsuji, H.; Inada, M.; Matoba, Y.; Umeyama, T.; Tsujimoto, M.; Isoda, S.; Hashida, M.; Imahori, H. Photodynamicand Photothermal Effects of Semiconducting and Metallic-Enriched Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2012, 134, 17862–17865. [Google Scholar] [CrossRef] [PubMed]
- Samali, A.; Holmberg, C.I.; Sistonen, L.; Orrenius, S. Thermotolerance and cell death are distinct cellular responses to stress: Dependence on heat shock proteins. FEBS Lett. 1999, 461, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Roti, J.L.R. Cellular responses to hyperthermia (40–46 °C): Cell killing and molecular events. Int. J. Hyperth. 2008, 24, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Wojtera, K.; Smółka, K.; Szymanski, L.; Wiak, S. Examination of the Effect of RF Field on Fe-MWCNTs and Their Application in Medicine. Electronics 2022, 11, 2099. [Google Scholar] [CrossRef]
- Wojtera, K.; Walczak, M.; Pietrzak, L.; Fraczyk, J.; Szymanski, L.; Sobczyk-Guzenda, A. Synthesis of functionalized carbon nanotubes for fluorescent biosensors. Nanotechnol. Rev. 2020, 9, 1237–1244. [Google Scholar] [CrossRef]
- Raniszewski, G.; Kolacinski, Z.; Szymanski, L. Ferromagnetic nanoparticles synthesis in local thermodynamic equilibrium conditions. In Proceedings of the IEEE-NANO 2015—15th International Conference on Nanotechnology, Rome, Italy, 27–30 July 2015; pp. 323–326. [Google Scholar]
- Raniszewski, G.; Miaskowski, A.; Wiak, S. The Application of Carbon Nanotubes in Magnetic Fluid Hyperthermia. J. Nanomater. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Szymanski, L.; Kolacinski, Z.; Wiak, S.; Raniszewski, G.; Pietrzak, L. Synthesis of Carbon Nanotubes in Thermal Plasma Reactor at Atmospheric Pressure. Nanomaterials 2017, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Jeszka, J.K.; Pietrzak, L. Polylactide/Multiwalled Carbon Nanotube Composites—Synthesis and Electrical Properties. Polimery 2010, 55, 524–528. [Google Scholar]
- Szymanski, L.; Kolacinski, Z.; Raniszewski, G.; Gryska, E. CNTs synthesis on steel strip a in microwave plasma reactor for medical application. In Proceedings of the IEEE-NANO 2015—15th International Conference on Nanotechnology, Rome, Italy, 27–30 July 2015; pp. 1062–1065. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojtera, K.; Pietrzak, L.; Szymanski, L.; Wiak, S. Investigation of Ferromagnetic Nanoparticles’ Behavior in a Radio Frequency Electromagnetic Field for Medical Applications. Electronics 2024, 13, 2287. https://doi.org/10.3390/electronics13122287
Wojtera K, Pietrzak L, Szymanski L, Wiak S. Investigation of Ferromagnetic Nanoparticles’ Behavior in a Radio Frequency Electromagnetic Field for Medical Applications. Electronics. 2024; 13(12):2287. https://doi.org/10.3390/electronics13122287
Chicago/Turabian StyleWojtera, Katarzyna, Lukasz Pietrzak, Lukasz Szymanski, and Slawomir Wiak. 2024. "Investigation of Ferromagnetic Nanoparticles’ Behavior in a Radio Frequency Electromagnetic Field for Medical Applications" Electronics 13, no. 12: 2287. https://doi.org/10.3390/electronics13122287
APA StyleWojtera, K., Pietrzak, L., Szymanski, L., & Wiak, S. (2024). Investigation of Ferromagnetic Nanoparticles’ Behavior in a Radio Frequency Electromagnetic Field for Medical Applications. Electronics, 13(12), 2287. https://doi.org/10.3390/electronics13122287