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Abstract: The traditional power prediction methods cannot fully take into account the differences and
similarities between units. In the face of the complex and changeable sea climate, the strong coupling
effect of atmospheric circulation, ocean current movement, and wave fluctuation, the characteristics
of wind processes under different incoming currents and different weather are very different, and
the spatio-temporal correlation law of offshore wind processes is highly complex, which leads to
traditional power prediction not being able to accurately predict the short-term power of offshore
wind farms. Therefore, aiming at the characteristics and complexity of offshore wind power, this
paper proposes an innovative short-term power prediction method for offshore wind farms based on
a Gaussian mixture model (GMM). This method considers the correlation between units according
to the characteristics of the measured data of units, and it divides units with high correlation into a
category. The Bayesian information criterion (BIC) and contour coefficient method (SC) were used to
obtain the optimal number of groups. The average intra-group correlation coefficient (AICC) was used
to evaluate the reliability of measurements for the same quantized feature to select the representative
units for each classification. Practical examples show that the short-term power prediction accuracy
of the model after unit classification is 2.12% and 1.1% higher than that without group processing,
and the mean square error and average absolute error of the short-term power prediction accuracy
are reduced, respectively, which provides a basis for the optimization of prediction accuracy and
economic operation of offshore wind farms.

Keywords: offshore wind farms; Gaussian mixture model; unit classification; short-term power
prediction

1. Introduction
1.1. Background

China’s coastal areas are rich in wind energy resources, which has created excellent
conditions for the rapid development of the offshore wind power industry. As a key
field of renewable energy expansion, offshore wind power is becoming an important
direction of wind energy utilization [1]. In the past few years, China’s offshore wind power
industry has developed rapidly from the initial stage and made remarkable achievements.
According to the statistics of the China Wind Energy Association, by the end of 2023, the
cumulative installed capacity of China’s offshore wind farms has reached 34.7 million
kilowatts, accounting for 46.2% of the global total installed capacity. Faced with the
challenges of limited development potential and resource shortage in offshore areas during
the 14th Five-Year Plan period, China’s offshore wind power, relying on the development
experience of Europe, is expanding to the offshore area and entering a new stage of
development. Between 2017 and 2023, China’s total installed capacity of offshore wind
power increased at different rates, but the overall trend was upward.
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1.2. Related Works

Offshore wind power, an environmentally friendly and renewable energy solution,
plays a vital role in the sustainable development of global energy. However, the research
of offshore wind power generation in China is still in the initial stage, and there are few
studies on offshore wind power. Domestic researchers have carried out a series of studies
on the power prediction of offshore wind power and made certain progress. Most of the
studies are based on the model of the power prediction of onshore wind power. Relevant
studies show that this approach is feasible [2,3]. At present, different techniques and
methods are used for each type of power prediction, including physical methods [4] and
statistical methods [5], etc., to meet the prediction challenges on different time scales.
With the advancement of technology and the enhancement of data acquisition capabilities,
the accuracy and reliability of offshore wind power prediction are constantly improving,
providing support for the efficient use of wind energy and the stable operation of the grid.

Physical methods represent one of the classical techniques in the field of wind power
prediction, which mainly uses historical wind speed and power data to predict future gener-
ation performance. Physical methods rely on factors such as numerical weather forecasting,
terrain, and elevation to build prediction models. Statistical methods are increasingly used
in wind power prediction, especially when dealing with complex nonlinear relationships
and large datasets. Commonly used machine-learning algorithms are mainly concentrated
in auto-regression and moving average model (ARMA), artificial neural network (ANN),
support vector machines (SVM), and so on. These algorithms can learn from historical data
the influence of various factors such as wind speed, wind direction, temperature, and air
pressure on the wind power output, thereby improving the accuracy of prediction. Huang
and Qin [6] proposes a short-term offshore wind power prediction method that considers
dynamic time-delay effects to intuitively capture power prediction information. Based on
the nonlinear coupling relationship, dynamic sliding windows matching different mean
periods are introduced. Then, the dynamic delay time is calculated and multiple delay
relationships between variables are defined. Finally, the Elman network is used to predict
the short-term offshore wind power. Aiming at the problems of strong randomness and
time correlation in offshore wind power prediction, Wang et al. [7] proposed a principal
component analysis (PCA), sparrow algorithm (SSA), variational mode decomposition
(VMD), and bidirectional long short-term memory neural network (Bi LSTM), and finally
verified the results by simulation experiments. The results showed that the proposed
model effectively improved the prediction accuracy. The validity of the prediction model
is verified. In reference [8], An et al. carried out work based on the spatio-temporal cor-
relation features between wind turbine outputs in which a diffused convolutional neural
network (DCNN) is embedded into a gated recurrent unit (GRU) for feature extraction of
the spatio-temporal correlation of wind turbine outputs. Combined with graph structure
learning, a sequence-to-sequence model for the ultra-short-term power prediction of large
offshore wind farms is proposed. The actual case simulation shows that the model has a
good forecasting performance in the ultra-short-term power prediction of large offshore
wind farms. Sun et al. [9] proposed a CNN-LSTM-AM network for predicting the power of
offshore wind turbines using signals from multiple sensors. A variable control comparison
was performed to complete the sensitivity analysis of the sensors to determine the most
suitable sensor group for power prediction. Compared with existing deep-learning algo-
rithms, the model achieved a maximum 13.77% improvement in power prediction. Zhang
et al. [10] proposed a GAT-LSTM short-term wind power prediction model, which adopts a
random sampling algorithm to optimize hyperparameters and improve the learning rate
and performance of the model. The results show that the proposed model has a higher
prediction accuracy than other traditional models and is reasonably interpretable in terms
of time and space.

In the operation and management of offshore wind farms, effectively categorizing
wind turbine units is a crucial task. It helps us to better understand the operating charac-
teristics, maintenance requirements, and power output behavior of each unit. The cluster
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method is a widely used data grouping technique. In short, the goal of clustering is to divide
the dataset into multiple categories according to some criteria (such as the closest distance
between elements, the farthest distance, or the average distance), so that the characteristics
of data points within the same category are as consistent as possible, while the data points
between different categories show greater differences. For example, K-means [11], density
clustering [12–14], hierarchical clustering [15,16], spectral clustering [17–19], and incre-
mental clustering [20–22] can effectively classify wind turbines to optimize operation and
maintenance strategies and improve energy output efficiency. ST-TRACLUS was proposed
in reference [23], which is a novel spatio-temporal clustering algorithm, which enhances
the DBSCAN framework through spatial and temporal analysis to identify similarities in
trajectory data. They showed a better performance than traditional methods such as TRA-
CLUS and ST-OPTICS. Pu et al. [24] proposed KDE-AHIAC, an improved HIAC clustering
algorithm based on kernel density estimation (KDE), to solve the problem of small datasets
and improve the accuracy of threshold determination. By automatically adjusting band-
width and smoothing density curves, the clustering accuracy is significantly improved and
the performance is excellent on a variety of datasets. Wang et al. [25] proposed hybrid sand
cat swarm optimization and improved fuzzy C-means clustering algorithm to determine
power deviation and other feature data related to icing detection. Real sensor data from
the monitoring and data acquisition system were used to validate the proposed icing risk
assessment method (considering WPP). Hou et al. [26] uses density-based noise applied
spatial clustering (DBSCAN) and the enhanced prey optimization algorithm (ENHPO) to
design a new hybrid power prediction model for wind turbine clusters. The simulation
results show that compared with other clustering methods such as fuzzy C-means, balanced
iterative reduction, hierarchical clustering, K-means clustering, and density peak clustering,
the prediction accuracy and efficiency of this method are improved.

To sum up, significant progress has been made in the field of offshore wind power
prediction. By drawing on land-based wind power models, applying physical and statistical
methods, and developing new algorithms, researchers have achieved important results in
improving forecast accuracy and reliability. These contributions have laid a solid foundation
for the future research and practical application of offshore wind power, and promoted
the technological progress and industrial development of offshore wind power. To sum
up, however, most of these studies on offshore wind power use different methods to
decompose time series or make power predictions based on important features in time
series, and rarely consider the correlation and difference between units in wind farms.
For large wind farms, wind turbines are widely distributed, and climatic factors such as
wind speed, output power and wind direction are different in different locations. However,
traditional methods fail to accurately capture these individual characteristics, resulting
in relatively inaccurate prediction results. Therefore, in the power prediction of wind
turbines, the correlation and difference between wind turbines are considered, and the
wind turbines with a high correlation between wind speed and output power are grouped
into a class by the Gaussian mixture model clustering algorithm. The Bayesian information
criterion and contour coefficient were used to judge the optimal number, and the CNN-
LSTM neural network was used to establish power prediction sub-models for each category.
The example verified that the clustering algorithm had a good effect on improving the
prediction accuracy of offshore wind power. It also played a key supporting role in the
operation control, safety and stability guarantee, and market strategy formulation of the
power system. The block diagram of the research content of this paper is shown in Figure 1.
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2. Materials and Methods
2.1. Wind Turbine Grouping Model
2.1.1. Gaussian Mixture Model

The Gaussian mixture model (GMM) is a probabilistic machine learning technique [27],
which is composed of K individual Gaussian models. When there are multiple Gaussian
distributions and these distributions obey the same population distribution, they can
be grouped into the same category. After classification, the model uses the expectation
maximization (EM) algorithm to estimate the parameters. The EM algorithm evaluates
the matching degree between the probability of model prediction and the probability of
observation data, and it brings the prediction probability of model closer to the actual
observation probability by adjusting the model parameters. This adjustment and evaluation
process will be repeated several times until the probability predicted by the model is close
enough to the probability actually observed, at which point the algorithm stops iterating
and the model training is completed. The total Gaussian distribution can be expressed
as (1):
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In the framework of the Gaussian mixture model, each independent Gaussian com-
ponent is defined with its own mean µ and standard deviation σ parameters, as well as a
specific weight parameter. These weight parameters are all positive numbers, and their
sum must be ensured to be 1, in order to ensure that the probability density value of the
model as a whole is kept within a reasonable range. In other words, the integral sum of the
probability density function of each independent Gaussian component of the model over
the entire input space should be equal to 1. In this context, y represents the observed data
point, while θ represents all the parameters of the model, including the relevant parameters
of all the Gaussian distributions. Each Gaussian distribution can be expressed as follows:
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In the process of wind turbine grouping, the half-year measured wind speed mean
Vi,mean and standard deviation Vi,std and the measured power mean Pi,mean and standard
deviation Pi,std of 134 units are used together as the representation of a single unit.

The specific steps are as follows:

1. Initialize the k multivariate Gaussian distribution of parameters µj and σj, (j = 1, 2, · · · , k);
since the input data are a 4-dimensional array of length m, each element has its own
corresponding matrix.

2. After initializing the parameters, calculate the probability density γij of each sample
point yi(i = 1, 2, 3, · · · , m) belonging to the j Gaussian distribution. The formula is as
follows:

γij = P(yi|zi = j ) =
1

(2π)
d
2
∣∣σj

∣∣ 1
2

e−
1
2 (yi−µj)

Tσj
−1(yi−µj) (3)

where P is the probability function, zi is the class to which yi belongs, and d is the
dimension of yi.

3. Obtain the updated values µ′
j and σ′

j of parameters µj and σj of each Gaussian
distribution according to Formulas (4) and (5):

µ′
j =

m
∑

i=1
γijyi

m
∑

i=1
γij

(4)

σ′
j =

m
∑

i=1
γij

(
yi − µ′

j

)(
yi − µj

)T

m
∑

i=1
γij

(5)

4. Repeat the preceding steps until the parameters of each Gaussian component stabilize
and converge.

5. After the parameters converge, traverse each sample point and divide it into the
category with the greatest probability.

2.1.2. The K-Means Model

K-means is a simple and efficient unsupervised learning algorithm [11] known for its
simple structure and easy operation. It is widely used in clustering analysis, and is favored
by researchers and data scientists because of its ability to quickly process large datasets.

In the process of wind turbine grouping, the half-year measured wind speed mean
Vi,mean and standard deviation Vi,std and the measured power mean Pi,mean and standard
deviation Pi,std of 134 units are used together as the representation of a single unit. Given
dataset X(t) = (x1, x2 · · · xn) containing n samples, where each sample is a 4-dimensional
data vector, the objective function of K-means algorithm modeling can be obtained as
follows:

J =
k

∑
j=1

nj

∑
i=1

∥∥∥X(j)
i − cj

∥∥∥2
(6)

In the formula,
∥∥∥X(j)

i − cj

∥∥∥2
represents the distance measurement from cluster sample

point xj
i to cluster center cj, which is the similarity measurement process of the original data.

For the data characteristics of wind farms, Euclidean distance is selected as the similarity
measurement method. The modeling steps of the K-means algorithm are as follows:

1. Enter the number of group categories k and to be clustered n, (k ≤ n).
2. Randomly select samples from the dataset in numbers equivalent to the number of

clusters as the initial clustering centers.
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3. Calculate the distance between each additional sample object and the selected cluster
centers of each class, and assign it to the nearest class.

4. Calculate the average value of each class of data objects obtained from the previous
step, and use it as the new clustering center.

5. Repeat Steps 3 and 4 until the centers of the clusters no longer change. With the
number of classifications set at C, this process will identify C cluster centers. Fol-
lowing these steps results in C cluster classifications, thereby completing the optimal
clustering classification for the K-means algorithm.

2.1.3. Spectral Clustering Model

Spectral clustering is a clustering method based on graph theory [17–19], which
clusters data points by analyzing the spectrum (eigenvalues) of the graph formed by
the data points. Compared to traditional clustering methods such as K-means, spectral
clustering is more adept at uncovering the global structure of data and can handle the
clustering of non-convex sets and data with irregular boundaries. It is insensitive to the
size and shape of the dataset, making it particularly suitable for discovering datasets with
complex structures. The fundamental idea is to utilize the spectrum of the similarity matrix
to capture the nonlinear low-dimensional manifold structure of the data, thereby achieving
the clustering of data points.

The modeling process for the spectral clustering algorithm is outlined as follows: In
the process of wind turbine grouping, the half-year measured wind speed mean Vi,mean
and standard deviation Vi,std and the measured power mean Pi,mean and standard deviation
Pi,std of 134 units are used together as the representation of a single unit. For a given dataset
X(t) = (x1, x2 · · · xn) containing n samples, where each sample is a 4-dimensional data
vector, these vectors are clustered into k classes. The specific steps are as follows:

1. Selecting Euclidean distance as the similarity measure, construct a similarity matrix
S ∈ Rn×n based on the similarity between data points. This matrix is symmetric,
where Sij represents the similarity between the i-th and j-th data points.

2. Construct the Laplacian matrix L, L = D − S, which is formed by the degree matrix
D and the similarity matrix S. The degree matrix is a diagonal matrix, where the
elements on the diagonal are equal to the sum of the corresponding rows in the
similarity matrix.

3. Carry out the eigenvalue decomposition of the Laplacian matrix in Step 2 to obtain the
eigenvalues and corresponding eigenvectors. Select the eigenvectors corresponding
to k eigenvalues with relatively small eigenvalues as the input of clustering, where k
is the number of predefined clusters.

4. Arrange the selected k eigenvectors column-wise to form a new matrix U ∈ Rn×k,
where each row represents the coordinates of the original data in the new low-
dimensional space. Normalize each row of matrix U so that the length of each
point’s feature vector is 1.

5. Use the selected eigenvectors as the new data representation and apply the K-means
clustering algorithm to cluster them.

2.1.4. Bayesian Information Criteria

We utilize the Bayesian information criterion (BIC) [28] model selection theory to
probabilistically estimate the number of classifications for the units. This theory obtains the
optimal number of clusters through an approximation method, defined by the following
equation.

CBIC = npln(m)− 2ln(L) (7)

In the formula, CBIC represents the BIC value; np is the number of hyperparameters; L
is the maximum value of the likelihood function of the estimated model.
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Assuming the model’s errors or perturbations follow a normal distribution, then the
Bayesian information criterion (BIC) can be expressed as follows:

CBIC = mln
(

SRSS
m

)
+ npln(m) (8)

In the formula, SRSS represents the sum of squared residuals of the estimated model.
CBIC is an increasing function of SRSS and np, meaning that the introduction of residu-

als and unknown parameters will cause CBIC to increase. Therefore, when determining the
optimal number of groupings for wind turbine units, models with lower BIC values are
preferred.

2.1.5. Silhouette Coefficient

The silhouette coefficient (SC) is an indicator used to measure the cohesion within
clusters and the separation between clusters, and it is widely applied in the assessment
of clustering validity [29]. The silhouette value and the definition of SC are given by the
following formulas.

s(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))
(9)

CSC =
1
m

m

∑
i=1

s(xi) (10)

In the formula, a(xi) is the average distance between the sample point xi and all other
points within the same cluster; b(xi) is the minimum of the average distances between the
sample point xi and the sample points in all other clusters; CSC represents the SC value.
The silhouette value s(xi) ranges between −1 and 1. Specifically, a silhouette coefficient
close to −1 indicates a clustering result that is least satisfactory; conversely, a silhouette
coefficient approaching 1 signifies an excellent clustering effect. Therefore, when assessing
the optimal number of groupings for wind turbine units, models with higher silhouette
coefficient values are considered more preferable.

2.2. Short-Term Power Prediction Mode
2.2.1. Convolutional Neural Network

Convolutional neural network (CNN) is a feedforward neural network with a convo-
lutional structure, composed of an input layer, convolutional layers, pooling layers, and
fully connected layers. It has widespread applications in fields such as image recognition,
natural language processing, and remote sensing [30,31]. Compared to traditional multi-
layer neural networks, CNNs introduce convolutional layers and pooling layers before the
fully connected layers, which allows for more effective feature extraction and learning. The
formula for feature extraction in time-series data using one-dimensional convolution is as
follows:

Y = σ(W ∗ T + b) (11)

where Y is the extracted feature; σ is the sigmoid activation function; W is the weight
matrix; T is the time series; b is the bias vector.

2.2.2. Long Short-Term Memory Neural Network

The long short-term memory neural network (LSTM) is an efficient recurrent neural
network (RNN) architecture, which overcomes the problems of gradient disappearance and
gradient explosion when RNN networks deal with long-term dependence problems [32,33].
The core concept of LSTM is the cell state and “gate” structure, and each LSTM unit consists
of a cell state, a forgetting gate, an input gate, and an output gate. The LSTM structure is
shown in Figure 2.
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The input time series is set as X = (X1, X2, · · · Xn), and the two output series after
LSTM mapping are h = (h1, h2, · · · hn) and y = (y1, y2, · · · yn), respectively. The forgotten
gate in the LSTM unit determines what information should be discarded or retained, and
its formula is as follows:

ft = σ(W f ∗ [ht−1, xt] + b f ) (12)

where σ represents the sigmoid function, and W and b are the parameters of the training
network. By reading the previous output ht−1 and the current output xt, and then process-
ing by the sigmoid function, the output ft is obtained. The output value is between 0 and 1,
and it is deleted when it is close to 0 and retained when it is close to 1.

The input gate determines what new information is put into the cell state and consists
of two steps; its formula is as follows:

it = σ(Wi ∗ [ht−1, xt] + bi) (13)

∼
Ct = tanh(WC ∗ [ht−1, xt] + bC) (14)

where
∼
Ct represents the new vector created by the layer tanh. The input gate yields data

processed separately by the sigmoid and tanh functions, which are combined into the cell
state.

The cell state is to update Ct−1 to Ct, and the formula is as follows:

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (15)

The output gate determines what value needs to be output in the end, and the formula
is as follows:

ot = σ(Wo ∗ [ht−1, xt] + bo) (16)

ht = ot ∗ tanh(Ct) (17)

It can be seen from the formula that the input data processed by sigmoid function are
multiplied by the cell state data processed by the tanh function, and the final data obtained
are the output part.

The CNN-LSTM short-term wind power prediction model consists of two parts: The
first part uses a convolutional neural network to extract data features from the original
time series and form the data feature information sequence; the second part predicts the
feature information sequence extracted from the CNN by LSTM. The training process of
the whole model is divided into two stages: forward propagation and back propagation. In
the forward propagation stage, the error of the target loss function is mainly calculated,
while in the back propagation stage, the adaptive moment estimation (ADAM) algorithm
is used to optimize the network parameters.
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L =
1
F

F

∑
T=1

(yT − ŷT) (18)

In the above formula, yT is the real value of wind power at moment T , and ŷT is the
predicted value of wind power at moment T , where F is the number of samples in the
training set sample set.

3. Case Analysis
3.1. Wind Farm Introduction

Since this forecast is a short-term wind power forecast, the forecast model usually
has a strong adaptability and can quickly adjust the parameters and structure according
to recent data. On the contrary, too much historical data may make the model overfit
some historical patterns that are no longer applicable, affecting the prediction accuracy.
Therefore, the experimental data are used in the actual wind speed and power generation
records of an offshore wind farm in China in 2021, so the time resolution is 5 min. The
coverage period is from 0:00 1 January to 24:00 30 June. The total number of wind turbines
involved is 134.

3.2. Cleaning of Measured Data of Wind Turbine

This paper focuses on data cleaning of actual measurement data in the wind power
sector, emphasizing that the raw data recorded by SCADA systems often contain abnormal
data due to power limitations, unit defects, problems with recording instruments, or
communication failures.

In actual measurements based on individual wind turbines, scatter plots of wind speed
and power often contain anomalous data such as noise points and zero power accumulation
points (i.e., data points above the starting wind speed but with zero power). Using DB-
SCAN [34] to process these anomalies can effectively identify and remove them, resulting in
a cleaned up, more accurate scatter map of the wind speed vs. power relationship. Figure 3
below shows the results before and after processing.
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3.3. Wind Turbine Grouping Scheme

According to the constructed wind turbine grouping model, these 134 units were
grouped and studied. Among the many possible factors, the output power is the most
important performance index of the wind turbine, which directly reflects the generation effi-
ciency and ability of the wind turbine. Wind speed is one of the main environmental factors
affecting the output power, and it is an important parameter to evaluate the performance
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and efficiency of the unit. In addition, the wind speed and output are the conventional
monitoring record data of the wind farm, which have a high frequency and high accuracy,
and are easy to obtain and use. Therefore, the wind speed and output are selected as the
influencing factors of the evaluation. Therefore, the two most direct parameters, wind
speed and generation power, are selected as the criteria to evaluate the performance of a
single unit. Specifically, the performance of Unit i(i = 1, 2, 3, · · · , 134) over six months is
described using four parameters: the mean wind speed Vi,mean, its standard deviation Vi,std,
the mean power output Pi,mean, and its standard deviation Pi,std.

Therefore, the input data for the wind turbine grouping model consist of a 134 × 4-
dimensional array. When the number of classifications is set between 3 and 7, the BIC and
SC indices for different group numbers are calculated using the GMM clustering method,
K-means, and spectral clustering methods. The evaluation of the rationality of different
models as the number of groups changes is illustrated in Figures 4 and 5.
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As can be seen from Figures 4 and 5, with the increase in the number of groups, the
BIC value decreases first and then increases, and the lowest point appears when the number
of groups is five. When judging the optimal number of groups of wind turbines, the model
with a low BIC value is the best. In general, the maximum SC value is reached when the
number of packets is five, which is closer to one. According to the criteria that the lower
the BIC value, the better, and the closer the SC value to one, the higher the better, when the
number of groups is five, the GMM clustering algorithm has the lowest BIC value and the
highest SC value. Therefore, it is concluded that the wind farm unit classification is best
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when divided into five categories. Compared with K-means and spectral clustering, GMM
clustering has more advantages.

3.4. Selection of Representative Units

The average intra-cluster correlation coefficient (AICC) is a statistical index used to
measure the similarity among members in a group [35]. The AICC ranges from −1 (perfect
negative correlation) to +1 (perfect positive correlation). A value close to +1 means that
members within the group are very similar in measured attributes, while a value close
to −1 indicates large internal differences. If the AICC value is close to 0, it may mean
that there is no significant correlation between the members of the group on that attribute.
When performing classification clustering, those units with the highest AICC values are
considered representative and can be used to build power prediction models for each
subgroup.

IAICC,P =
1
nl

∑
q∈Cl

Cov(XP, Xq)√
Var(XP) ∗ Var(Xq)

(19)

In the formula, Cl and nl , respectively, represent the set of units in group l and the
number of units in the group, where l = 1, 2, · · · , g; p and q represent any two units in
Group l, (p, q ∈ Cl); Xp and Xq are the measured power time series of Units p and q,
respectively. Cov(Xp, Xq) represents the covariance of Xp and Xq; Var(Xp) and Var(Xq)
are the variances of Xp and Xq, respectively.

According to Section 3.3, the clustering effect is the best when the number of clusters is
five. The unit with the highest AICC value in each class is taken as the representative unit.
According to Table 1, in the GMM cluster, Units 1, 8, 40, 83, and 113 have the highest AICC
value in each category and the average AICC value is 0.774. The average AICC value of the
units with the highest AICC in each category of K-means clustering is 0.724. The average
AICC value of the units with the highest AICC in each category of spectral clustering is
0.716. It can be seen from the data display that the average AICC value of GMM clustering
is higher than that of K-means clustering and spectral clustering. Therefore, using the
results from GMM clustering, Units 1, 8, 40, 83, and 113 are selected as representative units
to construct a short-term power prediction sub-model for offshore wind farms. For the
overall power prediction model, Unit 88, which has the highest AICC value of 0.71, is
chosen as the representative unit.

Table 1. AICC values of each representative unit.

Number
GMM K-Means SC

Representative
Unit AICC Representative

Unit AICC Representative
Unit AICC

1 1 0.79 5 0.68 5 0.72
2 8 0.83 38 0.73 27 0.78
3 40 0.75 61 0.64 56 0.69
4 83 0.64 96 0.77 91 0.64
5 113 0.86 115 0.80 117 0.75

Average 0.774 0.724 0.716

3.5. Short-Term Forecast Evaluation Index and Analysis of Examples

In the field of error analysis, common evaluation metrics include the root mean squared
error (RMSE), mean absolute error (MAE), and coefficient of determination (R-squared). To
accurately assess the estimation performance of the model, this paper will employ RMSE
and MAE as the primary tools. The formulas for calculating RMSE and MAE are as follows:

MAE =
1

NP

N

∑
i=1

∣∣Pi − P̂i
∣∣ (20)
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RMSE =
1
P

√√√√ 1
N

N

∑
i=1

(pi − p̂i)
2 (21)

In the above formula, N is the number of samples; P is the single-unit capacity of the
wind farm; Pi is the actual value of wind power; P̂i is the predicted value of wind power.

To validate the effectiveness of the CNN-LSTM short-term wind power forecasting
model, experimental data from a certain offshore wind farm in China in 2021 were selected
for analysis. The wind farm consists of 134 units, each with a capacity of 2000 kW, totaling
268 MW. The sampling frequency of the wind farm is 5 min, resulting in 288 data points
sampled per day, spanning from 1 April 2021, to 15 April 2021, totaling 4320 points (with
4176 datasets used as training samples and 144 sets used for prediction verification). The
data include information on wind turbine units for short-term power prediction 12 h in
advance. Clustering results were obtained according to Table 1, and for unit classification
prediction, representative Units 1, 8, 40, 83, and 113 with the highest AICC values were
selected for each category. For the overall prediction, Unit 88 (0.71) with the highest overall
AICC value was selected as the representative unit to establish the prediction model.

In the CNN-LSTM model constructed this time, CNN is responsible for extracting
original data features, and the LSTM network is responsible for wind power prediction. The
CNN layer model uses two layers of convolution kernel and one layer of pooling to carry
out the feature extraction of data series. The first layer has 64 convolution nuclei, the size of
which is 1 × 4; the second layer has 32 convolution nuclei, the size is 1 × 3, and the moving
step is 2. The size of the pooling layer is 1 × 2. We set the LSTM batch size to 256, learning
rate to 0.001, and epoch to 300. In order to show the prediction effect more directly, a total
of 4320 units of Unit 88 with the highest AICC value in the whole wind farm were selected
for 15 days in April (in which the sampling frequency was 5 min, 4176 sets of data were
used as training samples, and 144 sets of data were used as prediction verification samples)
for the overall wind power prediction analysis, in order to clearly show the performance of
the prediction algorithm. The forecast results are shown in Figure 6.
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Figure 6. Short-term variation lines of measured and modeled power of wind farms.

As shown in Figure 6, real represents the true value and pred represents the predicted
value; there are minor deviations between the predicted values and the actual values at the
peaks and troughs, but the overall prediction trend is consistent. The overall root mean
square error is 10.86%, and the mean absolute error is 6.69%. Following the clustering
of groups, power predictions were conducted for Units 1, 8, 40, 83, and 113, selecting
data from April for CNN-LSTM forecasting. Of these, 4176 datasets were used as training
samples, and 144 datasets were used as prediction control samples. The power predictions
are illustrated in Figures 7–11.
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Power prediction sub-models were established for the above five units, respectively, to
obtain the short-time change curves of the measured units and the model power prediction
corresponding to the five units, respectively. It can be seen from the line charts that the trend
change in the model prediction sequence diagram for Units 1, 8, and 83 closely follows the
true value, and the root mean square error (RMSE) is 4.58% and 7.87%, respectively. The
mean absolute error (MAE) is 2.64%, 4.77%, and 4.59%, respectively. For Unit 113 and Unit
40, the prediction effect is slightly weaker than the other three units, the root mean square
error (RMSE) is 13.68% and 11.27%, and the mean absolute error (MAE) is 9.85% and 8.12%,
respectively. The root mean square error and average absolute error of most representative
units are lower than the root mean square error and average absolute error of the overall
prediction.

According to the weights of each representative unit, the weighted power forecast
diagram of each classified representative unit and the comparison diagram of the overall
forecast and the actual value are obtained through calculation.

As can be seen from Figure 12, the changes in the power prediction series curve and
overall prediction series curve after grouping offshore wind farms closely follow the true
value, and the trend and coincidence degree of classification prediction are higher than the
overall prediction; the root mean square error (RMSE) and average absolute error (MAE)
are shown in Table 2 below.
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Table 2. RMSE and MAE values are predicted for different types of power.

Prediction Type RMSE MAE

Global forecast 10.86% 6.69%
Classification prediction 8.74% 5.59%
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Table 2 above shows the prediction results of the overall prediction and classification
prediction. It can be seen from the table that the error of classification prediction is smaller
than that of the overall prediction regardless of the RMSE value or MAE value. This verifies
that in the face of complex climate change at sea, CNN-LSTM classification prediction
refined by a Gaussian mixture model (GMM) space can adapt to such rapid climate change
at sea better than that predicted by a single model. The application of this method not only
improves the accuracy of prediction, but also provides a new perspective and technical
path for offshore wind farm power prediction research.

4. Conclusions and Future Work

The complexity and variability of maritime climate, coupled with atmospheric circu-
lation, ocean current movements, and wave fluctuations, make the accurate prediction of
wind power generation crucial. This is significant for ensuring the stability of the electrical
grid and enhancing the efficiency of wind energy utilization. Unlike models that predict
power output for a single wind farm, this paper considers the interrelations among units,
grouping highly correlated units together. On this basis, different wind power prediction
models are constructed. This predictive method, which accounts for the similarities among
units, better captures the factors affecting power output and adapts more effectively to
rapid environmental changes and variations in unit performance at sea. The case study
confirms that the proposed method improves the accuracy of short-term power predictions
for offshore wind farms, as indicated by the results:

1. With the change in cluster number, the BIC value and SC value of Gaussian mixture
model clustering, K-means clustering, and spectral clustering have the best clustering
effect when the cluster number is five.

2. The AICC index is used as the basis for the selection of representative points in
the whole field and each sub-wind turbine cluster. The AICC results of the GMM
grouping model are significantly higher than the K-means and spectral clustering
grouping models, the power correlation of the units in the group is higher, and the
representation of the prediction model is stronger.

3. According to the power prediction model based on the CNN-LSTM neural network, a
better prediction accuracy can be obtained by considering the group of wind turbines.
Compared with the overall prediction error, the root mean square error and average
absolute error of classification prediction are reduced by 2.12% and 1.1%, respectively.

In unit clustering and power prediction, this paper only considers the effects of wind
speed, output power, and wind direction, but it does not consider the effects of offshore fan
torque, blade angle, and temperature. In the future work, these factors can be added and a
more refined prediction model can be adopted to conduct simulation experiments.
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