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Abstract: Image editing technology has brought about revolutionary changes in the field of archi-
tectural design, garnering significant attention in both the computer and architectural industries.
However, architectural image editing is a challenging task due to the complex hierarchical structure
of architectural images, which complicates the learning process for the high-dimensional features of
architectural images. Some methods invert the images into the latent space of a pre-trained generative
adversarial network (GAN) model, completing the editing process by manipulating this latent space.
However, the task of striking a balance between reconstruction fidelity and editing efficacy through
latent space mapping presents a formidable challenge. To address this issue, we propose a Residual
Spatial Cross-Attention Network (RSCAN) for architectural image editing, which is an encoder model
integrating multiple latent spaces. Specifically, we introduce the spatial feature extractor, which maps
the image to the high-dimensional space F of the synthesis network, to enhance the spatial infor-
mation retention and preserve the structural consistency of the architectural image. In addition, we
propose the residual cross-attention to learn the mapping relationship between the low-dimensional
space W and F space, generating modified features corresponding to the latent code and leveraging
the benefits of multiple latent spaces to facilitate editing. Extensive experiments are performed on
the LSUN Church dataset, and the experimental results indicate that our proposed RSCAN achieves
significant improvements over the relevant methods in quantitative analysis metrics including the
reconstruction quality, SSIM, FID, L2, LPIPS, PSNR, and editing effect ∆S, with enhancements of
29.49%, 17.29%, 8.81%, 11.43%, 11.26%, and 47.8%, respectively, thereby enhancing the practicality of
architectural image editing.

Keywords: deep learning; image editing; architectural image; generative adversarial network; GAN
inversion; latent space

1. Introduction

Architectural images, as an important type of imagery, showcase the appearance and
structure of architecture, possessing rich cultural and artistic value. With the development
of deep learning and the increasing demand for digital tools in the construction industry,
architectural image editing has emerged as a pivotal technology in digital architecture.
By editing images, designers can achieve personalized modifications to the appearance,
style, and interior layout of a building [1,2], thereby providing greater flexibility and
creativity for project development and aesthetics. Furthermore, architectural image editing
not only deepens our understanding and appreciation of the diversity of architectural
art but also promotes deeper reflection on the cultural, historical, and social contexts of
architectural styles. The evolution of generative adversarial networks (GANs) [3] has
empowered automated architectural image editing, significantly impacting architecture
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and urban planning. This automation greatly enhances the efficiency of architectural design
and urban planning processes. Additionally, it enhances the characteristics of architectural
styles, meets specific aesthetic needs, and promotes the dissemination and exchange of
architectural art. However, challenges persist in architectural image editing, particularly
in achieving precise edits within intricate and diverse structures while preserving the
structural integrity and coherence. Addressing these challenges is crucial to advancing the
application of architectural image editing and elevating the editing standards.

In recent years, architectural image editing methods have shifted from style
transfer [4] and image translation [5] to GAN inversion. Although the methods of style
transfer and image translation have achieved certain results, they are limited in their ability
to manipulate only a subset of attributes within a single model, often resulting in impre-
cise control where only broad changes in color and overall style are achievable. With the
improvement of the GAN generation quality, the use of pre-trained GAN models can effec-
tively solve the above problems. The StyleGAN framework proposed by Karras [6] achieves
advanced generation performance and can generate images with latent style vectors. Based
on StyleGAN’s excellent generation capabilities and powerful control capabilities, GAN
inversion technology [7] has become popular, aiming to map images into the latent spaces
of pre-trained GAN generators. Manipulating the latent space of StyleGAN can cause corre-
sponding changes in the image without training additional networks. Using the powerful
control capabilities of StyleGAN to manipulate real images represents a promising direction.

Inversion to different latent spaces affects the reconstruction quality and editing effect.
Existing methods usually invert images into the W, W+, and F spaces. Karras [6] confirmed
that the low-dimensional space W cannot facilitate the complete and accurate reconstruction
of images. The GAN inversion problem can be viewed as a lossy data compression
system [8]. According to rate distortion theory [9], inverting real-world images into low-
dimensional latent codes will inevitably lead to information loss. According to information
bottleneck theory [10], it is speculated that, since deep compression models tend to retain
the common information of a domain, the lost information is mainly image-specific details.
Therefore, some approaches invert images into higher-dimensional spaces [11] to preserve
more spatial structural information. However, high-frequency details will be attached
to the image during reconstruction and cannot be removed during editing, worsening
the editing effect. Recent work mainly focuses on methods that invert images into multi-
latent spaces [12]. However, the methods proposed by Li [13] involve complex steps,
making training difficult. These methods still struggle to balance the reconstruction quality
and editing effectiveness, rendering architectural image editing tasks challenging for
practical application.

To solve the challenge of balancing the reconstruction quality and editing effect of
intricate architectural images, we propose a Residual Spatial Cross-Attention Network
(RSCAN), which inverts images into a fused latent space, reducing the drawbacks associated
with separate latent spaces. The RSCAN comprises a spatial feature extractor module, a
residual cross-attention module, and a synthesis network module. Compared to facial
images, architectural images have more complex structures, making precise reconstruction
crucial. Our approach seeks to capture the spatial structural details in the F space and
facilitate effective editing in the W space. Thus, we fuse the two spaces while taking into
account the advantages of both. For this purpose, we design a multi-level feature extraction
network to align the image into the F space step by step. To ensure that manipulations
performed in the W space do not affect the F space, we must learn the mapping relationship
from the W space to the F space. Thus, we introduce the residual cross-attention module,
where the characteristic of cross-attention allows one sequence to focus on another sequence.
We extract the feature f from the F space and set them as query Q, and we set the variation
∆w in the W space as the key K and the value V. Ultimately, the variations in the W space
will guide the changes in the F space, facilitating the fusion of the two spaces. In order to
achieve better alignment at the feature level and learn the correct W space manipulation
changes, our training method is designed as self-supervised training, using the output of
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the synthesis network as the input of the RSCAN and feeding the final predicted features
back into the synthesis network. To avoid being limited to predefined edits, during training,
we simulate edits by randomly inserting sampled latent codes.

Extensive experiments on the LSUN Church dataset show that our proposed RSCAN
significantly outperforms related methods in key quantitative metrics, including the re-
construction quality (SSIM, FID, L2, LPIPS, PSNR) and editing effect (∆S). Figure 1 shows
the visual editing results of our method, achieving satisfactory effects in each attribute of
editing. This verifies the successful fusion of the two spaces by our method, allowing the
F space to attend to changes in the W space and enabling the image to undergo correct
editing. Therefore, our method enhances the practicality of architectural image editing.
Our main contributions can be summarized as follows.

1. We propose a multi-level spatial feature extractor module to map the image to the
F space of the synthesis network, which enables us to more accurately reconstruct
architectural images with many line details.

2. We fuse multi-latent spaces, including the high-dimensional feature space F, which
excels in reconstruction, and the low-dimensional space W, which excels in editing,
through the residual cross-attention module. By learning the mapping relationship
from the W space to the F space, manipulations made in the W space preserve the
original editing effects while ensuring correct changes in the features of the F space.

3. The self-supervised training method that we design can map images to the F space
more rapidly and learn the correct direction of the W space variation for F space
changes. On the LSUN Church dataset, our method outperforms existing methods in
both qualitative and quantitative evaluations.

The structure of this paper is as follows. Section 2 reviews related work, while
Section 3 elaborates on our proposed high-fidelity architectural image editing method.
Section 4 details the experimental settings, including the datasets and evaluation metrics,
and presents and analyzes the experimental results both quantitatively and qualitatively.
Finally, Section 5 concludes the paper and discusses future work.

Input Inversion Gothic ByzantineGreek +Clouds +Glass

Figure 1. The inversion and editing results of our method RSCAN. The input image, inversion results,
and editing results are displayed from left to right in each row. This approach achieves precise
reconstruction and accurate editing effects when adding Gothic, Greek, and Byzantine architectural
styles and cloud and glass elements.

2. Related Work

This section first introduces the definition and challenges of architectural image editing
and presents the classification of the editing methods, including those based on neural
style transfer, image translation, GAN inversion, and multimodal diffusion models. It then
elaborates on the related techniques in the latent space of the GAN inversion method used
in this study, points out the shortcomings of existing methods, and establishes research
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objectives accordingly. Finally, it provides a detailed introduction to the residual network
and cross-attention module techniques used in the proposed method.

2.1. Architectural Image Editing

Architectural image editing involves the automated manipulation of images through
computer algorithms. It entails taking an original image as input and applying algorith-
mic calculations to generate a modified version. Architectural images, characterized by
buildings and structures foregrounded against backgrounds of sky and vegetation, present
unique challenges for such editing processes. Currently, research approaches to architec-
tural image editing can be categorized into four main types: those based on neural style
transfer, image translation, GAN inversion, and multi-modal diffusion models.

Since Gatys et al. [14] proposed style transfer, many methods using style transfer to
edit architectural images have emerged. Luan et al. [4] proposed a photographic style
transfer method that can produce realistic style transfer effects in outdoor scenes and indoor
scenes, including the transfer of time, weather, seasons, and light. Chen et al. [15] used
a segmentation network to separate the foreground and background of building images;
it can convert a building image into dusk, early morning, evening, or noon. However,
style transfer struggles to provide precise control over singular attributes, yielding only
broad-scale color style conversions.

Image editing methods using image translation techniques, which aim to learn map-
ping relationships from the source domain to the target domain, can also produce sat-
isfactory results. For architectural scene images, Sangkloy’s Scribbler [5] takes indoor
scene sketches as inputs and colors them under the guidance of user-specified strokes.
Jiang et al. [1] proposed a two-step image translation framework that can convert sketches
and architectural images into each other. However, editing methods using image trans-
lation often only support the conversion and editing of one or several attributes. If the
editing of other attributes is required, another model needs to be trained.

The editing method based on GAN inversion [16] solves the above problems very well.
The purpose of GAN inversion is to invert a given image back into the latent space of a
pre-trained GAN model generator. The generator can then accurately reconstruct the image
from the reverse code. GAN inversion involves manipulating real images by identifying
controllable directions in the latent space, obviating the necessity for dedicated paired
supervision data to train an independent network. Su et al. [17] deleted the low-level
generator module, mapped the sketch directly to the middle layer of the generator, and
realized the editing of the building through the sketch. In addition, Alaluf et al. [18] and
Dinh et al. [19] achieved more accurate reconstruction by training a smaller network to
generate weights for StyleGAN. However, the existing GAN inversion methods are still
insufficient to accurately reconstruct architectural images.

Recently, diffusion models have demonstrated high-quality image generation based
on text inputs [20]. These models denoise randomly sampled images through multiple
iterations to generate realistic images. The image editing method based on multi-modal
diffusion [21] involves editing images using a text-guided diffusion model, which provides
better generation quality but also requires longer generation times and more expensive
equipment, while still lacking in the controllability of the structure.

We have selected GAN inversion as the focus for our architectural image editing re-
search. GAN inversion offers rapid computation and considerable flexibility. However, the
current GAN inversion methods struggle in achieving a trade-off between the reconstruc-
tion quality and editing effectiveness. Addressing and improving upon these limitations
has the potential to markedly increase the utility of architectural image editing.

2.2. Latent Space for GAN Inversion

GANs encompass various latent spaces, and, by manipulating the latent vectors within
them, one can alter the generated images. Mapping images to different latent spaces yields
distinct editing outcomes. In recent years, GAN inversion research has focused on these
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latent spaces, and the design of mapping methods is crucial in addressing the trade-off
between the reconstruction quality and editing effects in image editing. Table 1 presents a
comparison of the GAN inversion methods utilizing different strategies in recent years.

GANs typically map values sampled from a simple distribution (such as a normal or
uniform distribution) to generated images. This simple distribution is referred to as the Z
space, which is applicable to all unconditional GAN models, such as BigGAN [3] and Style-
GANs [6]. However, the constraint of the Z space, primarily based on a normal distribution,
limits its representation capabilities and disentanglement of semantic attributes [22]. Apart
from the general Z spaces of GANs, there also exist specialized latent spaces designed for
StyleGANs [7], such as the W space, W+ space, S space, and F space. As StyleGAN models
achieve advanced GAN image synthesis, the most advanced GAN inversion methods are
conducted in the latent space of StyleGAN.

Table 1. Comparison of the proposed method with other GAN inversion image editing methods. The
type includes learning-based (L), optimization-based (O), and hybrid (H).

Method Publication Type Latent Space Details Weaknesses

Image2StyleGAN
[23] ICCV’19 O W Using optimization to embed images into

the W+ space.
Time complexity is high, reconstruction

quality is poor.

mGANPrior [22] CVPR’20 O Z
Invert images to the Z space and propose
adaptive channel adjustment to improve

reconstruction.
Artifacts are generated during editing.

PSP [24] CVPR’21 L W+ Using encoder to extract features and map
them to the W+ space.

Poor reconstruction quality and the W+
space is far from the W space, losing a large

number of editing effects.

E4E [16] TOG’21 L W+
Inversion to the W+ space uses

adversarial training to position the W+
vectors closer to the W space.

The reconstruction quality is low.

StyleSpace [25] CVPR’21 O S
Explores the S space and proposes a

method for the detection of decoupled
control channels.

The S space still has difficulty in improving
the reconstruction quality and reducing

editing effects.

BDInvert [26] ICCV’21 O W+, F Proposed a GAN inversion method for
the F/W+ space.

Long computation time, does not support
large-scale editing such as structure and

pose.

PTI [27] TOG’22 H W+ Fine-tuned the generator and inverted it
to the W space for reconstruction.

Long computation time, requires re-tuning
for each input, and the tuning damages the

generation quality.

HyperStyle [18] CVPR’22 H W Optimized the modulation generator
weights.

Reconstruction quality is greatly improved,
but a large number of editing effects are lost.

HyperInverter [19] CVPR’22 L W
Inverted to the W space, using a

hypernetwork to predict residual weights
and restoring lost image details.

Reconstruction quality improves, but
predicted weights are difficult to associate

with the W space.

HFGI [8] CVPR’22 L W+, F
Achieved image-specific detail retention

and editing using a distortion
consultation branch.

Features retain too much spatial dependency,
causing severe artifacts.

StyleRes [28] CVPR’23 L W, F
Learned residual features, using cycle

consistency loss to learn feature editing
transformation.

Too many encoders are designed, making
training difficult and causing artifacts.

CLCAE [29] CVPR’23 L W, W+, F

Aligned images with the W space using
contrastive learning, transforming W
vectors to the W+ and F spaces with

cross-attention.

Reconstruction is incomplete, guided by the
W space to reconstruct W+ and F spaces,

reducing editing effects.

Kai [12] WACV’24 L Z, F
Extended the Z space to Z+ and

integrated it into advanced inversion
algorithms such as F/W+.

The Z+ space is a lower-dimensional form of
the W+ space, losing reconstruction and

editing quality.

GradStyle [13] arxiv’24 L W+, F
Computed residual features, using

selective attention mechanisms to align
these details.

Original features focus on changes in editing
features, making it more difficult to learn in

two high-dimensional spaces.

Ours 2024 L W, F
Extracted image features to the F space,

using cross-attention to learn the
variation values of the W space.

Cross-attention and modulation convolution
use different calculation methods, making W

space transfer incomplete.

StyleGAN consists of a mapping network and a synthesis network. The mapping
network uses an 8-layer multilayer perceptron (MLP) to map the z vector into a style vector
w. The space where w is located is called the W space [23]. After changes, the W space
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does not obey a certain known distribution, and it can better describe the distribution of
the learned dataset and show more disentanglement [24]. However, the W space contains
less information, so some methods extend the W space to the W+ space [24,27]. The W+
space applies different latent codes w to different layers of StyleGAN. Inverting the image
to the W+ space can reduce the distortion, but it will also reduce the editing performance.
The style space S [25] consists of style parameters s, where s is the style code obtained
by the affine transformation of each latent code w, and its dimension is the same as w.
Mapping to the S space incurs less distortion compared to the W+ space but sacrifices the
editing performance; such distortion still cannot guarantee the structural consistency of the
architectural image.

StyleGAN also has a feature space F with a wider dimension, which is composed of
the spatial features f obtained after each layer of convolution of the synthesis network.
The F space is a hierarchical space with dimensions surpassing those of the image itself,
enabling the representation of high-frequency details. Song et al. [11] utilized a feature
extractor similar in structure to the discriminator to achieve image reconstruction. Mapping
to the F space will lose less information than mapping to the W, W+, and S spaces so
that the image structure and details are best preserved, but this preservation also further
reduces the editing ability.

Moreover, certain methods [26] aim to invert images into diverse latent spaces simul-
taneously, thereby enhancing both the reconstruction quality and editing effects. HFGI [8]
treats the difference between the reconstructed image in the W space and the input im-
age as overlooked specific information, projecting it into a higher-dimensional space for
improved reconstruction. StyleRes [28] allows low-dimensional latent codes to transform
high-dimensional features through period consistency constraint models. CLCAE [29]
inverts the image into the W space and uses cross-attention to guide the W space to be
optimized towards the W+ space and F space. These attempts not only further optimize
the reconstruction quality, but also have better editing effects. Nonetheless, these methods
still rely on inversion to the W space. They typically begin with an initial inversion and
reconstruction in the W space and then learn the distortion between the source image and
the reconstructed image to refine the details in the F space. During editing, the F space
features must be aligned with the W space to prevent artifacts. Overall, these methods are
complex, involving three steps that lead to insufficient space fusion, poor reconstruction
quality, and artifacts during editing.

We propose a more efficient approach by mapping images directly into the F space,
bypassing the initial inversion in the W space. By learning how changes in the W space
affect the F space, we achieve transformations directly in the F space, simplifying the
process. Unlike traditional methods that perform reconstruction and editing simultane-
ously in the W space, our method inputs only the changes from the W space (excluding
reconstruction information), allowing the W space to focus on editing and the F space to
focus on reconstruction. This division of labor simplifies network training and accelerates
the fusion of multiple latent spaces. Figure 2 illustrates the advantages and disadvantages
of inverting images into the W space and the F space and demonstrates how fusing both
spaces can combine their strengths to achieve high-fidelity architectural image editing.
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Figure 2. Comparison of methods for inversion to different latent spaces. When images are inverted
to the W space, as shown in (a), the reconstructed images have structural distortion but decent editing
effects. As shown in (b), more spatial information can be learned in the F space, but it may produce
artifacts during editing. As shown in (c), choosing a method that fuses the spaces can achieve good
results in both aspects.

2.3. Residual Network and Cross-Attention Mechanism

The residual network (ResNet) [30] is a deep neural network architecture that in-
troduces skip connections to address the degradation problem in the training of deep
networks. Skip connections allow gradients to propagate directly to earlier layers, miti-
gating the vanishing gradient problem and facilitating the training of deeper networks.
ResNet enhances the feature extraction capabilities and network expressiveness through
more complex topological structures and connection methods. We opt for the residual
network to design our spatial feature extractor, which can better learn image features, and
the concept of skip connections is utilized throughout the overall model design, accelerating
model convergence.

The cross-attention mechanism is an attention mechanism that is widely used in the
Transformer architecture [31] to capture the correlations between two different sequences,
enabling richer information interaction. DETR [32] introduced a Transformer structure
to achieve end-to-end object detection, where the cross-attention mechanism facilitates
information interaction between image features and object queries, thereby enhancing
the detection performance. CrossViT [33] uses the cross-attention mechanism to fuse im-
age features at different scales, achieving excellent results in image classification tasks.
This mechanism enhances the integration of multi-scale features by introducing interac-
tions between feature maps at different scales. In image editing tasks, the cross-attention
mechanism can be used to establish connections between different representations in the
latent space, merging multiple latent spaces to improve the quality and consistency of
the generated images. For instance, CLCAE [29] attempts to fuse two spaces using the
cross-attention mechanism, but primarily performs inversion in the low-dimensional latent
space, with only guidance in the high-dimensional latent space, resulting in limited practi-
cal improvements. By combining residual networks with the cross-attention mechanism,
we can simultaneously extract rich image features and focus on the changes in the features
induced by the editing vectors, achieving high-fidelity architectural image editing and
improving the precision and effectiveness of the editing process.
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3. Method

In this section, we describe the proposed high-fidelity architectural image editing
method. We first present an overview and the objectives of the model. Subsequently, we
elaborate on our proposed spatial feature extractor module and residual cross-attention
module. Lastly, we provide detailed information about the training process.

3.1. Overview

Figure 3 illustrates an overview of the proposed method RSCAN, which comprises
three main components: a spatial feature extractor module, a residual cross-attention
module, and a synthesis network module.
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Figure 3. The overall framework of RSCAN, which consists of a spatial feature extractor module, a
residual cross-attention module, and a synthesis network module. The input to the spatial feature
extractor module is the image, while the input to the residual cross-attention module is the extracted
spatial features and the variation ∆w in the w vector. Finally, we residually connect the sum of the
outputs of the two modules to the synthesis network to generate the output image. The synthesis
network is a pre-trained StyleGAN2 synthesis network with frozen parameters.

The spatial feature extractor module extracts features of different dimensions for the
high-quality reconstruction of architectural images. These features are then input into
the cross-attention module, along with changes in different latent vectors w, to obtain the
predicted feature variations. Finally, the predicted residual feature f̂ is connected to the
synthesis network module with a locked parameter, and the final image is output through
the synthesis network.

Specifically, given randomly sampled Gaussian noise z, inputting it into the mapping
network M of StyleGAN yields a latent code wgt = M(z). Modifying the latent code
wgt to obtain wedit results in a change value ∆w. By inputting wgt and wedit separately
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into the synthesis network, one obtains an image and its edited version, denoted as Igt
and Iedit, respectively. Inputting Igt to the spatial feature extractor module produces
feature f . Feature f is aligned in the F space during training in the synthesis network. f
and the change in latent code ∆w serve as inputs to the residual cross-attention module.
Subsequently, feature f is set as the query, and ∆w is set as the key and value. The module
outputs the sum of feature f and the change in feature ∆ f , denoted as f̂ . Finally, f̂ is input
into the synthesis network, where the latent code is the average latent code wavg. The
objective is to learn a function R, such that, given inputs Igt and ∆w, it outputs the edited
image Iedit of Igt. The overall optimization objective is as follows:

min
R

(
G
(
wavg, R

(
G
(
wgt

)
, ∆w

))
, G

(
wgt + ∆w

))
. (1)

3.2. Spatial Feature Extractor Module

As shown in the bottom-left corner of Figure 3, the spatial feature extractor module F
is constructed as a pyramid structure from spatial feature extractor blocks, which maps
the image to the F space of the synthesis network. Given an input image I, the feature
extractor module downsamples from 256 × 256 to 4 × 4, resulting in multi-level spatial
features f = F(I). Each block i of the feature fi is defined as follows:

fi = ZeroConv(ResBlock(Conv( fi−1))), (2)

where i ∈ {1, 2, 3, · · · , 13}. When i = 1, f0 represents the input image I. ZeroConv(·)
denotes a convolutional layer with weights and biases initialized to 0, facilitating training
initialization, and each update step tends to be closer to the true value. ResBlock(·) repre-
sents a residual convolutional block comprising 4 convolutional layers. Conv(·) refers to a
convolutional block containing a convolutional layer followed by a ReLU activation layer.

3.3. Residual Cross-Attention Module

Mapping the image to the F space of the synthesis network preserves the spatial
information of the image effectively, but when there is a need to manipulate the latent code
to edit the image, the following equation can be derived:

G(wgt) ≈ G(wavg, F(I)),

G(wgt + ∆w) ̸= G(wavg + ∆w, F(I)),
(3)

where the learned image spatial features fi by F cannot vary according to the changes in w,
thus leaving artifacts on the image.

The concept of cross-attention seeks to enable one vector to attend to another vector.
Therefore, as shown at the bottom of Figure 3, we introduce the residual cross-attention
module, which consists of residual cross-attention blocks with progressive upsampling,
and it can learn the changes in feature f with respect to the changes in the latent code ∆w.
We set f as the query vector (Q) and ∆w as the key (K) and value (V).

∆ f = CrossAttention( f , ∆w) = So f tmax
(

QKT
√

d

)
V,

Q = WQ f , K = WK∆w, V = WV∆w,
(4)

where WQ, WK, WV ∈ R512×512, and the feature dimension is 512. Softmax is used as the
activation function.

Finally, by residually connecting the edited spatial feature f̂ to the corresponding
dimension of the synthesis network block, the generated image can be edited according to
the changes in the latent code w. At this point,

G(wgt + ∆w) ≈ G(wavg + ∆w, R(I, ∆w)). (5)
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We obtain the new synthesized network features for each resolution block i and
connect them to the synthesis network. As shown in the bottom-right corner of Figure 3,
the output features of each synthesis network block are continuously upsampled to obtain
the output image:

Fi = f̂i + Gi(Fi−1),

f̂i = fi + ∆ fi + UpSample( f̂i−1),

Gi(Fi−1) = ModulatedConv(a ff ine(wavg), Fi−1),

(6)

where i ∈ {1, 2, 3, · · · , 13}, and UpSample denotes upsampling. ModulatedConv(·, ·) is the
modulated convolutional layer, and a ff ine(·) is a linear affine function. When i = 0, F0 is a
fixed-dimensional feature with dimensions 512 × 4 × 4, initialized randomly. When i = 13,
F13 represents the output image.

3.4. Training Details

As shown in Figure 4a, to better facilitate the learning of the feature changes cor-
responding to the variations in the latent code w, the variation ∆w is set to a randomly
sampled latent code M(z) generated by random Gaussian noise z. Different editing di-
rections d are introduced randomly, drawn from the editing method InterFaceGAN [34].
Initially, a large number of images are generated through StyleGAN, and an attribute
predictor is employed to score each image. The top and bottom 1000 images are selected as
positive and negative samples, respectively, based on their scores. A support vector ma-
chine (SVM) is trained using their corresponding latent codes w, which yields the decision
boundary for a particular attribute in StyleGAN. The normal vector d of this boundary
represents the editing direction. Thus, the expression for ∆w is given as

∆w = αM(z) + σd, (7)

where α ∈ (0, 1), σ ∈ (−10, 10).

w0
(zero vector)

z1~N(0, 1) Iinput

Synthesizing

Irecon

wavg
Synthesizing

Iinput

Δw
(edit direction)

Ioutput

wavg
Synthesizing

Loss

Loss

IeditIinput

FusingEncodingEncoding Nothing

wgt
Mapping

hyperplane

d

d

z2~N(0, 1)
Mapping

M(z2)
Δw

T
ra

in
 S

V
M

×α

×σ

wgt

Iedit

Synthesizing
wgt

Δw

(a) Get Latent Code wgt and Δw (b) Get Groud Truth Images Iinput and Iedit

(c) Get ReconstructionImage Irecon (d) Get the Final Output Image Ioutput

Figure 4. The training procedure of RSCAN. (a) First, obtain the real latent code wgt and the editing
vector ∆w. (b) Input the latent code into the synthesis network to obtain the RSCAN input image
Iinput and the real edited image Iedit. (c) Input Iinput into RSCAN; input the zero vector w0 into the
residual cross-attention module, disabling its editing function; and output the reconstructed image
Irecon, aligning it with Iinput. (d) Replace w0 with ∆w to input into the residual cross-attention module,
obtaining the edited output image Ioutput and aligning it with Iedit.
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The goal of RSCAN is to align the features of the predicted image with the F space of the
synthesis network and, at the same time, be able to learn the corresponding image spatial fea-
ture change ∆ f when editing the latent code. Therefore, we must align the generated edited
image and the real edited image and ensure that when ∆w = 0, the reconstructed image Irecon
is aligned with the input image. Additionally, a substantial amount of data is necessary to fa-
cilitate the cross-attention module’s effective learning of information from the W space. Con-
sequently, we employ a self-supervised approach, wherein all inputs are images produced by
the synthesis network, as depicted in Figure 4. Thus, 4 images, Iinput, Iedit, Irecon, Ioutput, and
2 latent codes, wgt, ∆w, need to be generated. Here, Iinput and Iedit are generated by the syn-
thesis network, Iinput = G(wgt), Iedit = G(wgt + ∆w). Irecon and Ioutput are the outputs of the
entire RSCAN structure, Irecon = G(wavg, R(Iinput, ∆w0)), Ioutput = G(wavg, R(Iinput, ∆w)),
where ∆w0 is a zero vector with dimensions of 14 × 512. During training, we simultaneously
align the reconstructed image pair ⟨Irecon, Iinput⟩ and the edited image pair ⟨Ioutput, Iedit⟩.

3.5. Loss Function

We employ both the reconstruction loss and editing loss to align the output images
with the input images, and the total loss function of the training process is expressed as

Ltotal = λeditLedit + λreconLrecon, (8)

where Ledit represents the editing loss, designed to ensure that the model can effectively
learn the corresponding image changes for variations in w. The expression for Ledit is
as follows:

Ledit = λL2 L2 + λLlp Llp + λLspatial Lspatial + λLadv Ladv, (9)

where L2 is the L2 norm loss function, used to measure the pixel similarity, and Llp is the
global perceptual loss. L2 and Llp are defined as follows:

L2 =
∥∥Iedit − Ioutput

∥∥
2,

Llp =
∥∥∥Flp(Iedit)− Flp

(
Ioutput

)∥∥∥
2
,

(10)

where Flp represents the perceptual feature extractor [35], using the pre-trained version of
AlexNet [36]. To enable the image to express better spatial features at each feature layer, we
add another spatial matching loss to the objective function:

Lspatial =
1
N ∑

i

∥∥∥Gi
(

wedit − Gi
(

wavg, Ri(Ioutput
)))∥∥∥

2
, (11)

where Gi(·) is the spatial feature output by the i-th convolution of the pre-trained StyleGAN
synthesis network, and Ri(·) is the residual space of the dimension corresponding to Gi(·).

In order to make the edited image more realistic, the adversarial loss Ladv is also added.
The original StyleGAN uses the adversarial loss to guide network convergence, so this
study uses the pre-trained StyleGAN discriminator to guide the encoder to converge to the
original intermediate space. Ladv and the discriminator loss are defined as follows:

Ladv = −EIoutput

[
log

(
D
(

Ioutput
))]

,

LD = −EIedit [log(D(Iedit))]−EIoutput

[
log

(
D
(
1 − Ioutput

))]
+EIedit

[∥∥∇Iedit D(Iedit)
∥∥2

2

]
,

(12)

where D is the discriminator, which is initialized using the pre-trained StyleGAN discrim-
inator weights. The discriminator D is trained together with RSCAN in an adversarial
manner. Finally, R1 regularization is further applied to the D loss [37].
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To ensure better reconstruction quality, the image reconstruction loss Lrecon is added,
so that the output image is reconstructed as the input image when the latent code is not
changed. Lrecon is defined as follows:

Lrecon = λL2 L2(Iinput, Irecon) + λLlp Llp(Iinput, Irecon) + λLspatial Lspatial(Iinput, Irecon)

+λLgrad Lgrad,

Lgrad =
∥∥∇(

Iinput
)
−∇(Irecon)

∥∥
2,

(13)

where ∇(·) is the image gradient. The image gradient can well represent the edge of the
object in the image. Preserving the good gradient properties of the image ensures the reality
and fidelity of the image to a certain extent [38].

4. Experiment

In this section, we conduct extensive experiments on the proposed Residual Spatial
Cross-Attention Network (RSCAN) to validate its effectiveness in high-fidelity architec-
tural image editing. We begin by introducing the dataset and evaluation metrics used in
our experiments, followed by a description of the experimental setup. Subsequently, we
qualitatively and quantitatively compare the RSCAN method with other existing methods
in terms of the reconstruction quality and editing effects, highlighting its advantages. The
comparison methods include PSP, E4E, HyperStyle, HyperInverter, and CLCAE. Addi-
tionally, we perform ablation studies to verify the effectiveness of the proposed modules.
The experimental results of image blending are also presented, further demonstrating the
potential of the RSCAN method in practical applications.

4.1. Datasets and Evaluation Metrics

We use the LSUN Church [39] dataset to train the synthesis network, and we use a
randomly sampled z to input the generated church data obtained by the synthesis network
as the training set of RSCAN. The LSUN Church dataset is a large-scale, high-quality
collection of church images, comprising 126,226 images of various resolutions. It is widely
used in architectural image editing tasks, where it enables the training of high-quality
generators, thereby enhancing the quality of the generated images. Furthermore, the
extensive range of the LSUN Church dataset, which covers diverse architectural styles
and scenes, significantly contributes to validating the effectiveness and robustness of our
method when dealing with a variety of architectural images. We unify the image size to
256 × 256 to facilitate training. Additionally, to enable the editing of architectural style
attributes, we use the architectural style dataset [40] to train the ResNet50 [30] style classifier
to obtain the style editing vector. The architectural style dataset comprises 10,113 images
spanning 25 architectural styles. Its diverse range of style types and abundant image
resources provide us with a rich set of samples for style editing, which contributes to
enhancing the accuracy and diversity of the editing process.

The editing method in our research follows the principle of reconstruction first and
then editing, so the evaluation indicators are divided into the reconstruction quality and
editing effect. We employ a variety of evaluation metrics to comprehensively assess the
reconstruction quality, including the pixel-level L2 distance, peak signal-to-noise ratio
(PSNR) [41], structural similarity index (SSIM) [42], learning perceptual image patch sim-
ilarity (LPIPS) [35], and Fréchet inception distance (FID) [43] indicators. The evaluation
metrics are introduced as follows:

• Pixel-level L2 distance: It measures image differences by calculating pixel-level
discrepancies.

• PSNR: It is based on the L2 distance and evaluates the image quality through the ratio
of the peak signal to noise power.

• SSIM: It provides a holistic assessment of the image quality considering the brightness,
contrast, and structure, taking into account the structural information of the image.
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• LPIPS: It utilizes a pre-trained neural network to simulate the human visual system’s
perception, capturing detailed differences in images.

• FID: It assesses the overall quality and style consistency of images at a higher level
by comparing the distance between the generated images and real images in the
feature space.

Furthermore, we test the editing effects of the different methods under the same
editing magnitude. In this experiment, we input the edited images into style classifiers and
attribute predictors to obtain scores for the corresponding editing attributes. To objectively
compare the impacts of the editing, we calculate the absolute differences between the
attribute scores of the edited images and the reconstructed images, denoted as ∆S [19].

4.2. Experiment Setting

We utilize the Adam [44] optimizer; the learning rate is set to 0.0001, α = 0.5, β = 0.999
during training; the training batch size is set to 8; and the training runs for 200,000 iterations.
The loss function hyperparameters are set as follow: λL2 = 1.0, λLlp = 0.8, λLgrad = 0.6,
λLspatial = 1.0, λLadv = 0.15, λLrecon = 0.5. As shown in Figure 5, we choose to use a
grid search to validate the settings of λLgrad and λLspatial . For other hyperparameters and
learning rates, we adopt the values from E4E [24] and also use a grid search to verify
their effectiveness.

The experiment was conducted using Python 3.7 and PyTorch 1.8. In the training,
a Tesla V100 SMX3 graphics card equipped with 32 GB of video memory was utilized.
During the test, a 3060 Laptop graphics card with 6 GB of video memory was employed.

Figure 5. Comparative visual analysis of λLgrad with different values.

4.3. Comparisons with Other Methods in Terms of Reconstruction Quality
4.3.1. Qualitative Evaluation

Figure 6 shows the reconstruction results: the first column shows the input image,
and the remaining six columns show the reconstruction results of different methods. Our
proposed approach excels in preserving intricate architectural details, evident in instances
such as the small window on the castle’s left and the square structure outlined on the right,
highlighted within the red frame in the first row. Notably, the PSP and E4E methods only
provide rudimentary outlines of the building, inaccurately placing and numbering the
windows, while HyperInverter produces a cluttered amalgamation of windows. For the
horizontal lines on the main structure of the church, our method can successfully restore the
straight horizontal lines. Although HyperStyle achieves this, the picture is blurry. CLCAE
has a good effect in color restoration, but, in some details, such as the lines on the top of the
castle, the building cannot be completely reconstructed.
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E4E HyperInverter OursCLCAEHyperStylePSPInput

Figure 6. Qualitative reconstruction quality comparison of our method with existing works. The
second row is the enlarged result of the red box in the first row.

4.3.2. Quantitative Evaluation

Table 2 shows a quantitative comparison of the reconstruction quality of different
methods. Our method significantly outperforms other methods in this regard. RSCAN pro-
duces higher results than the other five methods in terms of the L2, PSNR, SSIM, LPIPS, and
FID. For the SSIM and FID, its scores are 29.49% and 17.29% higher than those of the next
best method, respectively. Regarding the L2, LPIPS, and PSNR, they are improved by 8.81%,
11.43%, and 11.26% respectively. This quantitative analysis demonstrates the effectiveness
of the proposed method in terms of the architectural image reconstruction quality.

Table 2. Quantitative evaluation of reconstruction quality. The bold values represent the best performances.

PSNR↑ SSIM↑ FID↓ L2↓ LPIPS↓

PSP [24] 17.6227 0.4464 40.9037 0.1621 0.2279
E4E [16] 15.9481 0.4175 41.9608 0.1991 0.3163

HyperInverter [19] 17.0909 0.4511 35.2321 0.1671 0.1773
HyperStyle [18] 19.4163 0.4999 39.6117 0.1284 0.1303

CLCAE [29] 19.4931 0.5628 51.3415 0.1353 0.1493
Ours 21.6889 0.7288 29.1387 0.1171 0.1154

4.4. Comparisons with Other Methods in Terms of Editing Effects

The evaluation of the editing effects in our study encompasses two dimensions: ar-
chitectural style editing and architectural element editing. InterfaceGAN [34] is employed
as the editing method. The style editing uses Resnet50 [30] for style prediction to obtain
the editing vector. Four architectural styles—Gothic, Greek, Baroque, and Byzantine—are
evaluated. Element editing uses the attribute predictor [45] for scoring to obtain the edit
vector. Three attributes of glass, clouds, and trees are considered in the evaluation.

4.4.1. Qualitative Evaluation

Figure 7 shows the visual results of style editing, showing a total of two cases and
four styles. In style editing, HyperStyle solely introduces color modifications, while Hy-
perInverter exhibits subtle alterations. PSP and CLCAE cannot maintain consistency in the
architectural structure and produce distorted and blurred artifacts. E4E and our RSCAN can
achieve good editing effects among the four attributes, but E4E fails to change the Gothic
and Byzantine architectural styles well in the second and third rows of the first sample. The
spire at the top of the tower is due to E4E inverting the image into the W+ space, which
results in the loss of the editing effect. Our method successfully converts the spire into
the two types of Gothic architecture and a dome representing Byzantine architecture. As
shown in Figure 8, in the element editing, PSP, CLCAE, and E4E can add clouds and reduce
trees in the image, but the former two produce blur in the house part after editing. When
adding glass, an extra window is opened at the top of the building in our method. When
adding cloud and tree attributes, our method can achieve successful editing and ensure that
no other changes occur to the original building. At the same time, our method creates a
smaller distortion. When editing the building, it also retains the integrity of the building
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structure, which is more consistent with the effect of modification on the original image. In
contrast, other methods with lower reconstruction quality may hinder the editing based on
the semantics of the original image.
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Figure 7. Qualitative style editing comparison of our method with existing works.
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Figure 8. Qualitative element editing comparison of our method with existing works.
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4.4.2. Quantitative Evaluation

As shown in Table 3, our method achieves the highest editing scores ∆S for both
style editing and element editing, while E4E obtains the second highest values, consistent
with the qualitative evaluation. Our approach exhibits superior reconstruction quality and
editing effects because we invert the image features into the F space, ensuring the best
reconstruction quality, and we utilize cross-attention to learn the mapping relationship
between the W space and F space, replacing the role of the modulation layers in synthesis
networks, thus ensuring consistent editing effects. Regarding the total editing score, our
method improves the style editing and element editing by 25.0% and 70.6%, respectively,
compared with the other methods.

Table 3. Quantitative evaluation of architectural style editing and element editing effects. The bold
values represent the best performances.

∆S ↑
Style Editing Element Editing

Gothic Greek Byzantine Baroque Total Trees Clouds Glass Total

PSP [24] 2.2884 1.2974 1.2148 0.7145 5.5151 0.0131 0.0125 0.0151 0.0407
E4E [16] 3.3226 1.6265 2.5017 1.7826 9.2334 0.0912 0.0586 0.1045 0.2543

HyperInverter [19] 1.3079 0.0679 0.8607 0.3201 2.5566 0.0569 0.0251 0.0291 0.1111
HyperStyle [18] 1.3246 0.4062 0.6361 0.3893 2.7562 0.0622 0.0165 0.0258 0.1045

CLCAE [29] 1.4427 0.4762 1.4154 0.6469 3.9812 0.0191 0.0389 0.0548 0.1128
Ours 4.1377 2.0002 3.3117 2.0877 11.5373 0.2003 0.0784 0.1551 0.4338

4.5. Ablation Study
4.5.1. Impact of Mapping Space and Loss Function on Reconstruction Quality

We compared the approaches of mapping images to the W+ space, methods lacking
the reconstruction loss (w/o RL), methods lacking the gradient loss (w/o GL), and methods
preserving all functionalities in RSCAN. As shown in Table 4 and Figure 9, mapping images
to the W+ space results in more distortion compared to mapping to the F space, yielding
only partial reconstruction in terms of contours and colors. Following mapping to the F
space, the absence of the reconstruction loss leads the model to prioritize the learning of
image features, consequently neglecting the reconstruction quality, as seen in the windows
of the second-row building and the leaves on the left. As shown in Figure 10, in self-
supervised training, there exists a domain gap between the synthetically generated fake
images and real ones. With the absence of the gradient loss, the reconstruction of the fake
images improves while the loss of image features decreases, whereas the reconstruction of
the real images deteriorates. Incorporating the gradient loss enhances the reconstruction
of the architectural contours and line details, reducing the influence of differences in data
content and minimizing the domain gap between the generated and real images. Although
fluctuations occur in the loss of the real images, there is no increasing trend, and the
overall values are lower. Thus, while learning the image features, the reconstruction quality
is preserved.

Table 4. Ablation study of reconstruction quality. The bold values represent the best performances.

PSNR↑ SSIM↑ FID↓
W+ Space 15.9481 0.4175 41.9608
w/o RL 17.2613 0.4813 38.6894
w/o GL 18.5846 0.5546 32.7428

Ours 21.6889 0.7288 29.1387
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Input w/o RLW+ Space w/o GL Ours

Figure 9. Visual examples of ablation study on reconstruction quality.

Figure 10. Spatial matching loss and L2 loss lacking different loss functions.

4.5.2. Impact of Residual Cross-Attention on Editing Effects

In order to verify the effectiveness of the residual cross-attention module, we remove
it and directly edit the w vector in the W space. As shown in Figure 11 and Table 5, directly
manipulating the latent vector in the W space has little impact on the image. This is
because altering the latent vectors in the synthesis network does not affect the residual
reconstruction features of the image, resulting in a reduction in the overall feature variation
in the synthesis network. Reconstructed features may exhibit artifacts in unintended areas,
as seen in the second row, where the circular roofs only slightly change in color but remain
attached to the image. After adding residual cross-attention, the reconstructed features
vary according to the changes in the latent vectors, leading to the disappearance of artifacts
and a greater magnitude of feature variation. Editing the latent vectors in the residual
cross-attention and W space at the same time will produce more obvious changes in the
image, such as fewer trees in the first row, darker Gothic buildings, and larger windows.

Table 5. Ablation study of editing effects. The bold values represent the best performances.

∆S ↑ W Space Attention Ours

Style 3.8752 10.8075 11.5373
Element 0.1204 0.3927 0.4338
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Figure 11. Visual examples of ablation study on editing effects.

4.6. Image Blending

In this section, we propose a novel method to interpolate between real images and
reference style images. A commonly used method involves first finding the corresponding
latent codes through GAN inversion, computing the linear interpolation between the latent
codes of the real and reference images, and then obtaining the interpolated image through
the GAN model. Based on our model, cross-attention can only learn the change in w
corresponding to f , so we introduce a new interpolation method and input the latent code
corresponding to the reference style image into the residual cross-attention at the same
time, and the w mean of the original w latent space is interpolated with the reference latent
code. Figure 12 shows some qualitative results comparing our method with methods that
only interpolate latent codes. It can be observed that our method not only reconstructs the
input image with the correct details (e.g., windows, building outlines) but also produces
smoother and more realistic transition images during the blending process.
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Figure 12. Qualitative evaluation of image blending.



Electronics 2024, 13, 2327 19 of 21

5. Conclusions

The proposed method RSCAN achieves the high-fidelity editing of architectural im-
ages by introducing a feature extractor, residual cross-attention, and synthesis network
modules. Different from the traditional GAN inversion method that directly encodes the
image into the W space of StyleGAN, our method inverts the image into the F space with
more spatial information and learns the mapping relationship between the F space and W
space through cross-attention. We address the issues of spatial information loss and poor
reconstruction quality encountered by traditional methods, while preserving the editing
capabilities of the original W space. The experimental results demonstrate significant
improvements over existing methods across multiple evaluation metrics, addressing the
issues of poor reconstruction and editing effects. Therefore, the architectural image editing
method that we propose provides an efficient and accurate image editing solution for the
field of digital architecture. Our method also has certain limitations: due to the differing
operational principles of cross-attention and the originally modulated convolution, our
residual cross-attention cannot learn the comprehensive mapping relationship between
the F space and W space. If an input latent vector outside the domain seen by the cross-
attention module is provided, there will be a decline in the editing performance. In the
future, we will focus on further optimizing the algorithm to enhance the editing efficiency
and quality, as well as exploring the model’s scalability to other datasets.
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