Mobility Extraction Using Improved Resistance Partitioning Methodology for Normally-OFF Fully Vertical GaN Trench MOSFETs
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ji, D.; Laurent, M.A.; Agarwal, A.; Li, W.; Mandal, S.; Keller, S.; Chowdhury, S. Normally OFF Trench CAVET With Active Mg-Doped GaN as Current Blocking Layer. IEEE Trans. Electron Devices 2017, 64, 805–808. [Google Scholar] [CrossRef]
- Nie, H.; Diduck, Q.; Brian, A.; Edwards, A.P.; Kayes, B.M.; Zhang, M.; Ye, G.; Prunty, T.; Bour, D.; Kizilyalli, I.C. 1.5-kV and 2.2-mΩ.Cm² Vertical GaN Transistors on Bulk-GaN Substrates. IEEE Electron Device Lett. 2014, 35, 939–941. [Google Scholar] [CrossRef]
- Shibata, D.; Kajitani, R.; Ogawa, M.; Tanaka, K.; Tamura, S.; Hatsuda, T.; Ishida, M.; Ueda, T. 1.7 KV/1.0 MΩcm 2 Normally-off Vertical GaN Transistor on GaN Substrate with Regrown p-GaN/AlGaN/GaN Semipolar Gate Structure. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, M.; Perozek, J.; Liu, Z.; Zubair, A.; Piedra, D.; Chowdhury, N.; Gao, X.; Shepard, K.; Palacios, T. Large Area 1.2 KV GaN Vertical Power FinFETs with a Record Switching Figure-of-Merit. IEEE Electron Device Lett. 2018, 40, 1. [Google Scholar] [CrossRef]
- Otake, H.; Chikamatsu, K.; Yamaguchi, A.; Fujishima, T.; Ohta, H. Vertical GaN-Based Trench Gate Metal Oxide Semiconductor Field-Effect Transistors on GaN Bulk Substrates. Appl. Phys. Express 2018, 1, 011105. [Google Scholar] [CrossRef]
- Oka, T.; Ina, T.; Ueno, Y.; Nishii, J. 1.8 MΩ·cm 2 Vertical GaN-Based Trench Metal–Oxide–Semiconductor Field-Effect Transistors on a Free-Standing GaN Substrate for 1.2-KV-Class Operation. Appl. Phys. Express 2015, 8, 054101. [Google Scholar] [CrossRef]
- Khadar, R.A.; Liu, C.; Soleimanzadeh, R.; Matioli, E. Fully Vertical GaN-on-Si Power MOSFETs. IEEE Electron Device Lett. 2019, 40, 443–446. [Google Scholar] [CrossRef]
- Zhu, R.; Jiang, H.; Tang, C.W.; Lau, K.M. Effects of P-GaN Body Doping Concentration on the ON-State Performance of Vertical GaN Trench MOSFETs. IEEE Electron Device Lett. 2021, 42, 970–973. [Google Scholar] [CrossRef]
- Kodama, M.; Sugimoto, M.; Hayashi, E.; Soejima, N.; Ishiguro, O.; Kanechika, M.; Itoh, K.; Ueda, H.; Uesugi, T.; Kachi, T. GaN-Based Trench Gate Metal Oxide Semiconductor Field-Effect Transistor Fabricated with Novel Wet Etching. Appl. Phys. Express 2008, 1, 021104. [Google Scholar] [CrossRef]
- Ishida, T.; Nam, K.P.; Matys, M.; Uesugi, T.; Suda, J.; Kachi, T. Improvement of Channel Property of GaN Vertical Trench MOSFET by Compensating Nitrogen Vacancies with Nitrogen Plasma Treatment. Appl. Phys. Express 2020, 13, 124003. [Google Scholar] [CrossRef]
- Gupta, C.; Chan, S.H.; Lund, C.; Agarwal, A.; Koksaldi, O.S.; Liu, J.; Enatsu, Y.; Keller, S.; Mishra, U.K. Comparing Electrical Performance of GaN Trench-Gate MOSFETs with a-Plane and m-Plane Sidewall Channels. Appl. Phys. Express 2016, 9, 121001. [Google Scholar] [CrossRef]
- Mukherjee, K.; De Santi, C.; Borga, M.; You, S.; Geens, K.; Bakeroot, B.; Decoutere, S.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Use of Bilayer Gate Insulator in GaN-on-Si Vertical Trench MOSFETs: Impact on Performance and Reliability. Materials 2020, 13, 4740. [Google Scholar] [CrossRef] [PubMed]
- Goncalez Filho, W.; Borga, M.; Geens, K.; Cingu, D.; Chatterjee, U.; You, S.; Bakeroot, B.; Decoutere, S.; Knaepen, W.; Arnou, P.; et al. AlON gate dielectric and gate trench cleaning for improved reliability of vertical GaN MOSFETs. In Proceedings of the CIPS 2022; 12th International Conference on Integrated Power Electronics Systems, Berlin, Germany, 15–17 March 2022; pp. 1–5. [Google Scholar]
- Zhu, R.; Jiang, H.; Tang, C.W.; Lau, K.M. Enhancing ON- and OFF-State Performance of Quasi-Vertical GaN Trench MOSFETs on Sapphire With Reduced Interface Charges and a Thick Bottom Dielectric. IEEE Electron Device Lett. 2022, 43, 346–349. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Xie, B.; Wen, C.P.; Wang, J.; Hao, Y.; Wu, W.; Chen, K.J.; Shen, B. High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique. IEEE Electron Device Lett. 2013, 34, 1370–1372. [Google Scholar] [CrossRef]
- Hu, Q.; Hu, B.; Gu, C.; Li, T.; Li, S.; Li, S.; Li, X.; Wu, Y. Improved Current Collapse in Recessed AlGaN/GaN MOS-HEMTs by Interface and Structure Engineering. IEEE Trans. Electron Devices 2019, 66, 4591–4596. [Google Scholar] [CrossRef]
- Le Royer, C.; Mohamad, B.; Biscarrat, J.; Vauche, L.; Escoffier, R.; Buckley, J.; Becu, S.; Riat, R.; Gillot, C.; Charles, M.; et al. Normally-OFF 650V GaN-on-Si MOSc-HEMT Transistor: Benefits of the Fully Recessed Gate Architecture. In Proceedings of the 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Vancouver, BC, Canada, 22–25 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 49–52. [Google Scholar] [CrossRef]
- Kammeugne, R.K.; Leroux, C.; Cluzel, J.; Vauche, L.; Le Royer, C.; Krakovinsky, A.; Gwoziecki, R.; Biscarrat, J.; Gaillard, F.; Charles, M.; et al. Accurate Statistical Extraction of AlGaN/GaN HEMT Device Parameters Using the Y-Function. Solid-State Electron. 2021, 184, 108078. [Google Scholar] [CrossRef]
- Piotrowic, C.; Mohamad, B.; Fernandes Paes Pinto Rocha, P.; Malbert, N.; Ruel, S.; Pimenta-Barros, P.; Jaud, M.-A.; Vauche, L.; Le Royer, C. Impact of Gate Morphology on Electrical Performances of Recessed GaN-on Si MOS Channel-HEMT for Different Channel Orientations. In Proceedings of the 2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Hong Kong, 28 May–1 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 382–385. [Google Scholar] [CrossRef]
- Ruzzarin, M.; Geens, K.; Borga, M.; Liang, H.; You, S.; Bakeroot, B.; Decoutere, S.; De Santi, C.; Neviani, A.; Meneghini, M.; et al. Exploration of Gate Trench Module for Vertical GaN Devices. Microelectron. Reliab. 2020, 114, 113828. [Google Scholar] [CrossRef]
- Esposto, M.; Krishnamoorthy, S.; Nath, D.N.; Bajaj, S.; Hung, T.-H.; Rajan, S. Electrical Properties of Atomic Layer Deposited Aluminum Oxide on Gallium Nitride. Appl. Phys. Lett. 2011, 99, 133503. [Google Scholar] [CrossRef]
- Bisi, D.; Chan, S.H.; Liu, X.; Yeluri, R.; Keller, S.; Meneghini, M.; Meneghesso, G.; Zanoni, E.; Mishra, U.K. On Trapping Mechanisms at Oxide-Traps in Al2O3/GaN Metal-Oxide-Semiconductor Capacitors. Appl. Phys. Lett. 2016, 108, 112104. [Google Scholar] [CrossRef]
- Rrustemi, B.; Piotrowicz, C.; Jaud, M.-A.; Triozon, F.; Vandendaele, W.; Mohamad, B.; Gwoziecki, R.; Ghibaudo, G. Effect of Doping on Al2O3/GaN MOS Capacitance. Solid-State Electron. 2022, 194, 108356. [Google Scholar] [CrossRef]
- Götz, W.; Johnson, N.M.; Walker, J.; Bour, D.P.; Street, R.A. Activation of Acceptors in Mg-Doped GaN Grown by Metalorganic Chemical Vapor Deposition. Appl. Phys. Lett. 1996, 68, 667–669. [Google Scholar] [CrossRef]
- Treidel, E.B.; Hilt, O.; Hoffmann, V.; Brunner, F.; Bickel, N.; Thies, A.; Tetzner, K. On the Conduction Properties of Vertical GaN N-Channel Trench MISFETs. IEEE J. Electron Devices Soc. 2021, 9, 215–228. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, M.; Liu, Z.; Piedra, D.; Hu, J.; Gao, X.; Palacios, T. Trench Formation and Corner Rounding in Vertical GaN Power Devices. Appl. Phys. Lett. 2017, 110, 193506. [Google Scholar] [CrossRef]
- Yamada, S.; Sakurai, H.; Osada, Y.; Furuta, K.; Nakamura, T.; Kamimura, R.; Narita, T.; Suda, J.; Kachi, T. Formation of Highly Vertical Trenches with Rounded Corners via Inductively Coupled Plasma Reactive Ion Etching for Vertical GaN Power Devices. Appl. Phys. Lett. 2021, 118, 102101. [Google Scholar] [CrossRef]
- Zhu, R.; Jiang, H.; Tang, C.W.; Lau, K.M. GaN quasi-vertical trench MOSFETs grown on Si substrate with ON-current exceeding 1A. Appl. Phys. Express 2022, 15, 121004. [Google Scholar] [CrossRef]
Trench Area | Sheet Resistance (kΩ·sq) | Q (C·cm−2) | N (cm−2) | µ (cm2/V·s) |
---|---|---|---|---|
Channel | ~91.0 | 9.86 × 10−7 (A) | 6.15 × 1012 (A) | 11.1 |
Bottom | 39.0 | 1.70 × 10−6 (B) | 1.06 × 1013 (B) | 15.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ackermann, V.; Mohamad, B.; El Rammouz, H.; Maurya, V.; Frayssinet, E.; Cordier, Y.; Charles, M.; Lefevre, G.; Buckley, J.; Salem, B. Mobility Extraction Using Improved Resistance Partitioning Methodology for Normally-OFF Fully Vertical GaN Trench MOSFETs. Electronics 2024, 13, 2350. https://doi.org/10.3390/electronics13122350
Ackermann V, Mohamad B, El Rammouz H, Maurya V, Frayssinet E, Cordier Y, Charles M, Lefevre G, Buckley J, Salem B. Mobility Extraction Using Improved Resistance Partitioning Methodology for Normally-OFF Fully Vertical GaN Trench MOSFETs. Electronics. 2024; 13(12):2350. https://doi.org/10.3390/electronics13122350
Chicago/Turabian StyleAckermann, Valentin, Blend Mohamad, Hala El Rammouz, Vishwajeet Maurya, Eric Frayssinet, Yvon Cordier, Matthew Charles, Gauthier Lefevre, Julien Buckley, and Bassem Salem. 2024. "Mobility Extraction Using Improved Resistance Partitioning Methodology for Normally-OFF Fully Vertical GaN Trench MOSFETs" Electronics 13, no. 12: 2350. https://doi.org/10.3390/electronics13122350
APA StyleAckermann, V., Mohamad, B., El Rammouz, H., Maurya, V., Frayssinet, E., Cordier, Y., Charles, M., Lefevre, G., Buckley, J., & Salem, B. (2024). Mobility Extraction Using Improved Resistance Partitioning Methodology for Normally-OFF Fully Vertical GaN Trench MOSFETs. Electronics, 13(12), 2350. https://doi.org/10.3390/electronics13122350