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Abstract: Neonatal epilepsy is an early postnatal brain disorder, and automatic seizure detection is
crucial for timely diagnosis and treatment to reduce potential brain damage. This work proposes
a novel Lightweight Multi-Attention Network, LMA-EEGNet, for diagnosing neonatal epileptic
seizures from multi-channel EEG signals employing dilated depthwise separable convolution (DDS
Conv) for feature extraction and using pointwise convolution followed by global average pooling for
classification. The proposed approach substantially reduces the model size, number of parameters,
and computational complexity, which are crucial for real-time detection and clinical diagnosis of
neonatal epileptic seizures. LMA-EEGNet integrates temporal and spectral features through distinct
temporal and spectral branches. The temporal branch uses DDS Conv to extract temporal features,
enhanced by a channel attention mechanism. The spectral branch utilizes similar convolutions
alongside a spatial attention mechanism to highlight key frequency components. Outputs from both
branches are merged and processed through a pointwise convolution layer and a global average
pooling layer for efficient neonatal seizure detection. Experimental results show that our model,
with only 2471 parameters and a size of 23 KB, achieves an accuracy of 95.71% and an AUC of
0.9862, demonstrating its potential for practical deployment. This study provides an effective deep
learning solution for the early detection of neonatal epileptic seizures, improving diagnostic accuracy
and timeliness.

Keywords: neonatal seizure detection; EEG signals; deep learning; attention mechanism; lightweight
network

1. Introduction

Neonatal epilepsy is a neurological disorder that occurs within the first 28 days of
life, characterized by recurrent seizures. The causes are varied, including genetic factors,
brain development abnormalities, infections, metabolic disorders, and hypoxic-ischemic
encephalopathy. Seizure symptoms may include convulsions, apnea, and eye deviation.
Timely and accurate detection of such seizures is crucial for preventing potential long-term
brain damage, guiding appropriate treatment strategies, and improving health outcomes
for neonates [1].

In recent years, deep learning has been widely applied across numerous fields. By con-
structing multi-layered neural network architectures, it can automatically extract features
and recognize patterns from large datasets, thereby addressing many complex real-world
problems. For instance, D Ai et al. [2] proposed an innovative deep learning approach
that utilizes one-dimensional convolutional neural networks (1D CNNs) to analyze raw
electromechanical impedance (EMA) data for identifying structural damage in concrete,
significantly improving damage detection accuracy. Similarly, W Zhang et al. [3] intro-
duced a deep convolutional neural network (CNN) with new training methods for bearing
fault diagnosis in noisy environments and under varying working loads, enhancing the
reliability and robustness of fault diagnosis. These successful applications showcase the
immense potential of deep learning in tackling complex issues across different industries.
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As deep learning techniques have been widely applied in the healthcare domain [4],
particularly with significant advancements in medical image analysis, automated disease
diagnosis methods have rapidly evolved. In recent years, various machine learning and
deep learning-based methods have been proposed to improve the diagnostic accuracy of
neonatal epilepsy. Y Liu et al. [5] proposed a method that utilizes ordinal pattern repre-
sentation combined with a nearest neighbor classifier to detect seizures in EEG signals,
demonstrating its effectiveness in epilepsy diagnosis. Utilizing convolutional neural net-
works (CNN), O’Shea et al. [6,7] successfully enhanced the recognition rate of neonatal
epilepsy. They further developed an FCN architecture capable of learning hierarchical
representations of raw EEG data, demonstrating both the efficiency and practicality of this
approach in neonatal seizure detection. AM Pavel et al. [8] conducted a two-arm, parallel,
controlled trial to evaluate the diagnostic accuracy of an automated machine learning
algorithm known as ANSeR (Algorithm for Neonatal Seizure Recognition) in identifying
neonatal epileptic seizures. The study findings indicate that the ANSeR algorithm performs
well in terms of safety and accuracy, effectively detecting neonatal epilepsy. In addition,
P. Striano et al. [9] explored the application of machine learning in epilepsy detection. Al-
though still in its early stages, this approach has demonstrated potential for automatically
detecting epileptic seizures from EEG signals. A Gramacki et al. [10] developed a deep
learning framework for epilepsy detection and proposed an efficient automatic epilepsy de-
tection method by analyzing selected neonatal EEG recordings. For a diagnosis of severity
levels in neonatal epileptic seizures, BS Debelo et al. [11] introduced a diagnostic system
based on deep convolutional neural networks, which demonstrated high efficiency and
accuracy on actual medical datasets. K Visalini et al. [12] demonstrated a machine learning
architecture based on Deep Belief Networks (DBN) for binary classification of epileptic
and non-epileptic phases. This DBN-based approach offers a novel technological method
for the automatic monitoring and diagnosis of neonatal epilepsy, possessing potential for
future clinical application.

These research efforts demonstrate the applicability and potential of deep learning
approaches in the detection of neonatal epilepsy. These approaches not only utilize the
traditional time–frequency characteristics of EEG signals but also pioneer new directions in
the in-depth analysis of EEG features through deep learning architectures. Nevertheless,
existing methods still face challenges when dealing with highly complex and nonlinear
EEG data [13]. These challenges include but are not limited to improving detection accuracy,
reducing false-positive rates, and the computational burden of real-time monitoring.

Deep learning models typically feature extensive parameters and high computational
demands, which particularly present challenges in actual medical settings. In recent years,
there has been extensive research into lightweight deep learning networks due to their abil-
ity to deliver high performance with low computational costs. For instance, X Hu et al. [14]
proposed a lightweight multi-scale attention-guided network for real-time semantic seg-
mentation, significantly enhancing the efficiency and accuracy of pixel-level classification.
Similarly, F Xie et al. [15] developed a multi-scale convolutional attention network designed
for lightweight image super-resolution, demonstrating superior performance in enhancing
image resolution while maintaining low computational costs. Moreover, Ziya Ata Yazıcı
et al. [16] introduced GLIMS, an attention-guided lightweight multi-scale hybrid network
for volumetric semantic segmentation, significantly improving 3D medical image analysis.
Yufeng Z et al. [17] proposed a lightweight deep convolutional network with inverted
residuals to effectively match optical and SAR images, enhancing the robustness and accu-
racy of image matching tasks. These studies highlight the potential and effectiveness of
lightweight deep learning networks across various fields.

In this study, our main contributions are as follows: First, we introduced a novel
lightweight multi-attention network (LMA-EEGNet) specifically designed for diagnosing
neonatal epileptic seizures. Second, we integrated dilated depthwise separable convolution
(DDS Conv) in the feature extraction process, which significantly reduces the model size
and computational complexity, thus providing an efficient solution for resource-constrained
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environments. Additionally, we designed temporal and spectral branches to extract the
respective features of EEG signals and enhanced them using attention mechanisms, thereby
improving seizure detection accuracy. Finally, unlike traditional methods that use fully
connected layers for classification, we employed pointwise convolution and global av-
erage pooling layers. This approach not only ensures high accuracy but also maintains
a small number of parameters and a compact model size. Through these innovations
and contributions, our research provides an effective and efficient solution for detecting
neonatal seizures.

2. Methods
2.1. Dataset

The dataset applied to our algorithm contains medical data from the publicly available
dataset of Helsinki University Hospital, which recorded multi-channel electroencephalo-
grams (EEGs) from 79 full-term neonates admitted to the Neonatal Intensive Care Unit
(NICU) at Helsinki University Hospital [18]. The study involving this dataset had received
the necessary ethical approval. The EEG signals were sampled at 256 Hz, with a recording
length of approximately 60 min.

Each file includes potentials from 19 electrodes, with each electrode positioned and la-
beled according to the international 10–20 system. Figure 1 shows the standard 10–20 electrode
placement for EEG recording. The 18 bipolar montage channels formed between the elec-
trodes are described as follows: Fp2-F4, F4-C4, C4-P4, P4-O2, Fp1-F3, F3-C3, C3-P3, P3-O1,
Fp2-F8, F8-T4, T4-T6, T6-O2, Fp1-F7, F7-T3, T3-T5, T5-O1, Fz-Cz, and Cz-Pz. Figure 2
shows the EEG activity of Sample 9, highlighting sections of non-seizure and seizure states.
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2.2. Data Preprosessing

The dataset includes annotations from three experts who independently labeled each
second of each sample. A label of 0 indicates that the expert did not observe a seizure in
that second, whereas a label of 1 indicates that the expert observed a seizure.

We found that there were discrepancies among the experts regarding the seizure labels.
Therefore, it was necessary to unify the label processing. If two or more experts labeled
a particular second as a seizure, we considered that the neonate indeed experienced a
seizure during that time. Conversely, if only one or no expert labeled a particular second as
a seizure, we considered that there was no seizure during that second. For each second
of each infant, we calculated the seizure label frequency (frequency of 0, 1, 2, or 3). We
regarded frequencies of 0 and 1 as no seizure experienced, and frequencies of 2 and 3 as a
seizure experienced. Evidently, for each second, a seizure label frequency of 0 or 3 meant
that the three experts had no disagreement about the state during that second, while a
seizure label frequency of 1 or 2 meant that the experts had inconsistent opinions about the
state during that second. We counted the total time for seizure label frequencies of 0, 1, 2,
and 3, denoted as T0, T1, T2, T3, respectively. In our study, the Annotation Difference Rate
(ADR) is defined for each sample as a measure to quantify the degree of discrepancy in
annotations among experts:

ADR =
T1 + T2

T1 + T2 + T0 + T3
× 100% (1)

Among the 79 infants, 22 were considered by all three experts as not having seizures,
while 39 were considered by these three experts as having experienced seizures. Among
these 39 infants, there were some whose labels showed significant disagreement among
the three experts, with some infants having an ADR as high as 67.8%. Table 1 shows the
annotation data for partial infant EEG samples.

Considering that data with significant expert disagreement may affect the model’s
performance, among the samples that experts considered as having experienced seizures,
we selected patients 9, 13, 14, 36, 39, 44, 47, and 62 as experimental samples, as the difference
in annotations by the three experts was not too significant for these patients. At the same
time, we also selected patients 3, 10, 27, 28, 30, 32, and 35 from the samples that experts
considered as not having experienced seizures, to construct the dataset along with the
aforementioned samples. This enriches the diversity of the dataset and improves the
generalization performance of the model.

The raw EEG files in the dataset are stored in the EDF format, with each file containing
data from 19 electrodes, as well as electrocardiogram (ECG) and respiration effort (Resp
Effort) data. We need to subtract the data from the two electrodes at the ends of the
desired channels to form the channel data, eventually forming EEG data from 18 channels.
Since EEG signals can be affected by various noise such as electromyographic noise and
ocular noise [19], we applied a 0.5–32 Hz bandpass filter to each channel. Additionally, the
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sampling rate of 256 Hz is relatively high, requiring substantial computational resources
for processing. Therefore, we chose to downsample the data from each channel to 64 Hz.

Table 1. Annotation data for partial infant EEG samples.

Sample ID T0 (s) T1 (s) T2 (s) T3 (s) ADR (%)

1 3541 1909 798 745 38.7
16 1671 2560 1468 242 67.8
54 1833 1603 908 0 57.8
63 1648 1394 514 344 48.9

9 2507 163 18 862 5.1
13 13,980 69 132 1235 1.3
14 1221 225 196 2084 11.2
36 4549 42 40 451 1.6
39 2065 300 87 2177 8.3
44 2961 40 44 315 2.5
47 3291 106 9 200 3.1
62 5462 8 2 380 0.1

To obtain the input data for our deep learning network, we need to segment the EEG
data into labeled windows. To ensure that the label within each window is consistent, we
use a sliding window approach to segment the 18-channel EEG signals [20]. Each window
contains 6 s of EEG signals, resulting in a time-domain window size of (18, 384). Next,
to obtain the frequency-domain representation of each channel, we employ the Welch
power spectral density estimation method [21]. This involves dividing the time signal into
segments, computing the periodogram for each segment, and then averaging to obtain the
power spectral density for each channel. The advantage of this method is that it can reduce
the influence of noise and improve the accuracy of power spectral density estimation,
particularly when the input signal is non-stationary (such as EEG signals), where the Welch
method can yield more accurate results. The size of each frequency-domain window is (18,
129). Figure 3 shows the diagram of data processing.
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2.3. LMA-EEGNet’s Entire Structure
2.3.1. Model Overview

Lightweight Muti-Attention EEGNet (LMA-EEGNet) is a lightweight neural network
designed for detecting neonatal epileptic seizures. The network adopts a dual-path architec-
ture that can process time-domain and frequency-domain features in parallel while employ-
ing multiple attention mechanisms to enhance the extraction of critical information [22].
Furthermore, by replacing traditional 1D convolutional layers and fully connected layers
with dilated depthwise separable convolutions and pointwise convolutions, respectively,
the network reduces the number of parameters and network complexity while maintaining
efficient feature extraction capabilities. Figure 4 shows the structure of LMA-EEGNet.
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For the time-domain path, it first uses pointwise convolution for cross-channel infor-
mation fusion, then employs dilated depthwise separable convolution to extract features
from the time-series data, followed by the RELU activation function to enhance non-linear
representational capability. Pooling layers and dropout layers are used to reduce feature di-
mensions and prevent overfitting. Finally, a channel attention module (CAM) is employed
to enhance the model’s attention to the most informative channels.

The frequency-domain path also employs pointwise convolution and dilated depth-
wise separable convolution for extracting frequency-domain features. An adaptive average
pooling layer (AdaptiveAvgPool1d) is used to match the time-domain sequence length,
ensuring time–frequency alignment of the feature maps. After extracting the frequency-
domain features, a spatial attention module (SAM) is used to generate an attention map,
which is then expanded and applied to the frequency-domain feature maps, enabling the
model to focus on important frequency components.

After processing the time-domain and frequency-domain features, the model fuses the
two sets of feature maps. The fused feature map goes through a pointwise convolutional
layer for final classification, where the number of output channels matches the number
of target classes. Next, global average pooling is applied to reduce the response of each
classification channel to a single scalar value, ultimately outputting a one-dimensional
feature vector that represents the predicted probabilities for different classes (i.e., seizure or
non-seizure).

2.3.2. Dilated Depthwise Separable Convolution (DDS Conv)

Depthwise separable convolutions significantly reduce the number of model param-
eters and computational costs by decomposing a standard convolution into two steps: a
depthwise convolution and a pointwise convolution [23]. Specifically, the depthwise con-
volution is applied independently on each input channel, while the pointwise convolution
is responsible for merging the outputs of these channels. This decomposition makes the
number of parameters linearly related to the size of the convolution kernels and the number
of input channels, rather than the cubic relationship in traditional convolutions.

In a standard 1D convolution, if there are M input channels and N output channels, and
a convolution kernel of length K is used, then the total number of parameters NCNN−para
would be as follows:

NCNN−para= K × M×N (2)

In depthwise separable convolutions, the number of parameters is divided into two
parts: the depthwise convolution applies a convolution kernel of length K independently
to each input channel, and the pointwise convolution uses a 1 × 1 convolution kernel to
combine the results of the depthwise convolution across channels. The total number of
parameters NDSC−para is the following:

NDSC−para= K × M+N × M (3)

In depthwise separable convolutions, the reduction in the number of parameters
relative to standard convolutions can be quantified by the following ratio:

NDSC−para

NCNN−para
=

K × M + N × M
K × M × N

=
1
N
+

1
K

(4)

This ratio demonstrates the direct relationship between the parameter reduction ratio
and the size of the convolution kernel K and the number of output channels N. Particularly,
when the size of the convolution kernel K or the number of output channels N increases,
the parameter savings achieved by depthwise separable convolutions relative to standard
convolutions become more significant. This parameter-saving property makes depthwise
separable convolutions beneficial for constructing lightweight and computationally efficient
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neural network architectures, especially when processing one-dimensional signals like
EEGs with a large number of channels.

To further lighten the network, we improved the depthwise separable convolutional
layer by introducing dilation in the depthwise convolutional layer, resulting in a dilated
depthwise separable convolution (DDS Conv). Dilated convolutions enlarge the convo-
lution kernel by inserting gaps between the kernel elements, effectively increasing the
kernel size without increasing the number of parameters. From another perspective, with
a fixed kernel size, dilated convolutions reduce the number of parameters compared to
standard convolutions by removing some elements from the convolution kernel. Figure 5
shows that dilated convolution achieves the same receptive field with fewer parameters.
By introducing dilation, we further reduced the number of parameters in the network,
achieving the goal of a lightweight network.
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2.3.3. Channel Attention Module (CAM)

In the time-domain branch, the introduction of the channel attention module (CAM)
aims to enhance the model’s adaptability to the importance of different channels in rep-
resenting key information in time-series data [24]. It is based on the assumption that
different channels contribute differently to representing crucial information in the time
series. Through global average pooling and global max pooling, CAM extracts global
statistical features from the multi-channel data, which are subsequently used to train a
multi-layer perceptron (MLP). The MLP learns non-linear relationships between channels
by setting a bottleneck layer (i.e., reducing the number of channels via the reduction ratio),
effectively reducing model complexity and mitigating the risk of overfitting. The resulting
channel weight map, obtained through the sigmoid activation function, guides the model to
concentrate resources on processing the most informative channels, thereby improving the
representational capability of time-domain features within a limited computational budget.

The channel attention module (CAM) computes the channel attention weights
as follows:

Mc(X) = σ(MLP(AvgPool(X)) + MLP(MaxPool(X))) (5)

where X is the input feature map; AvgPool(X) and MaxPool(X) represent global average
and max pooling operations, which compress the spatial dimensions to focus on channel-
wise statistics. The MLP function processes these statistics to capture non-linear inter-
channel relationships. The final attention weights Mc(X) are obtained by applying the
sigmoid function σ, normalizing the outputs to emphasize more informative channels
effectively. Figure 6 shows the diagram of CAM.
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2.3.4. Spatial Attention Module (SAM)

Meanwhile, in the frequency domain branch, the spatial attention module (SAM)
is employed, which utilizes large-kernel convolutions along the spatial dimension to
capture long-range dependencies between frequency domain features. In frequency domain
analysis, different signal components (e.g., waves of different frequencies) correspond to
different temporal behaviors. For instance, low-frequency components may correspond
to long-term trends in the signal, while high-frequency components may relate to short-
term fluctuations. By focusing on regions in the frequency domain that exhibit significant
temporal structure through the spatial attention module (SAM), the model can more
effectively identify and utilize these time-varying frequency domain features for decision-
making or prediction tasks. SAM generates a one-dimensional attention map using single-
channel convolution kernels and an expanded receptive field, which is then modulated by
the sigmoid function and interpolated to match the original size of the frequency domain
feature maps. This strategy allows the network to learn which frequency components are
more important for the current task, enabling it to allocate more attention to processing
these components. Consequently, the network can focus more on the frequency domain
features that are more helpful for seizure detection rather than treating all frequency
components as equally important, potentially improving model performance.

The spatial attention module (SAM) computes the spatial attention weights as follows:

Ms(X) = Interp(σ(Conv1d(X))) (6)

where X denotes the input feature map. The operation Conv1d(X) applies a convolution to
X to capture local dependencies and patterns. The sigmoid function σ normalizes these
convolution outputs into the range [0, 1], producing a preliminary attention map. The
function Interp then adjusts the size of this attention map to match the spatial dimensions
of the input X. This resizing is crucial to ensure that the attention weights can be applied
element-wise to the original input feature map X. Figure 7 shows the diagram of SAM.
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2.3.5. Pointwise Convolution and Global Average Pooling

At the classification stage, to further alleviate the network burden and reduce the
number of model parameters, we pioneered the use of a pointwise convolutional layer and
global average pooling instead of a traditional fully connected layer for feature fusion and
dimensionality reduction in the field of neonatal seizure detection. Pointwise convolution,
commonly known as 1 × 1 convolution, has the main advantage of enabling linear combina-
tions across channels while preserving the spatial dimensions of the feature maps, thereby
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significantly reducing the number of model parameters [25]. This design aims to achieve
effective feature compression while retaining spatial information. Additionally, global
average pooling is employed to further downsample the spatial dimensions, reducing the
computational complexity [26].

Through the pointwise convolutional layer, we reduced the number of channels for
merging features from 32 to the required number of classes. Immediately after, we applied
a global average pooling layer to the output of the pointwise convolutional layer, which
compressed the spatial dimensions of the entire feature map to 1. The purpose of this step
was to average the global information across each feature channel, generating a tensor with
dimensions (batch size, num classes). This tensor was then directly used for computing
the classification loss, thereby completing the class prediction. This approach not only
improved the computational efficiency of the model but also helped mitigate overfitting,
making the model more robust in practical applications.

3. Experiment
3.1. Evaluation Metrics

To evaluate the model’s performance, we chose accuracy, sensitivity, specificity, and
AUC as the evaluation metrics. The following equations are used to calculate these metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Sensitivity =
TP

TP + FN
(8)

Specificity =
TP

TP + FP
(9)

At the same time, we also selected the number of model parameters and the number
of floating-point operations (Flops) to assess the model’s complexity, highlighting the
lightweight nature of our model.

3.2. Experimental Setup and Results

In our experiments, all neural networks were implemented using the PyTorch 2.1.2
framework and trained in a supervised manner on an Nvidia GPU. The Adam optimizer
was used for training with a minimum batch size of 16. The learning rate was set to 0.001,
and the models were trained for 150 epochs.

As mentioned above, we used the Helsinki dataset to validate the performance of our
model. After segmenting the data into windows, we balanced the number of positive and
negative samples in the dataset through undersampling, as the imbalance between positive
and negative samples can cause the model to overfit to the majority class and perform
poorly on the minority class, affecting the overall model performance [27].

The proportion of dataset division significantly impacts the final performance of the
model. To determine the optimal division ratio, we experimented with three different
proportions: 60% training, 20% validation, and 20% testing; 70% training, 15% validation,
and 15% testing; and 80% training, 10% validation, and 10% testing. For each division ratio,
we conducted five repeated experiments and compared various performance metrics (see
Table 2 for detailed results). Ultimately, we selected the division ratio of 80% training, 10%
validation, and 10% testing. To ensure that the training results of the model did not become
biased towards one class, we maintained a balanced number of samples from both classes
in each subset during the dataset division.

We trained our model on the dataset, and to achieve optimal performance and pre-
vent overfitting, the training process was repeated multiple times, up to a maximum of
150 epochs, and stopped when the specified stopping criteria were met. We then evaluated
the trained model on the test set. Our model achieved an accuracy of 95.71%, a sensitivity of
95.00%, a specificity of 96.43%, and an AUC of 0.9862. In terms of evaluating the lightweight
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metrics of our model, it contains only 2467 parameters, requires only 363,248 floating-point
operations, and the complete model size is merely 23.1 KB.

Table 2. Comparison results with different dataset division ratios.

Ratios Mean Acc (%) Mean Sen (%) Mean Spe (%) Mean AUC

60%; 20%; 20% 93 90.216 95.788 97.848
70%; 15%; 15% 93.236 91.142 95.332 97.698
80%; 10%; 10% 93.928 93.288 94.57 98.446

As research on lightweight networks in the field of neonatal epilepsy detection is scarce,
in this study, we compared the performance of the LMA-EEGNet model with several
other classifiers in the task of seizure detection. Table 3 shows that while maintaining
comparable performance, our network significantly reduces the number of parameters
compared to other studies, with the parameter count being only 0.0087% to 4.9% of other
models. This significant reduction not only implies lower memory usage and computational
costs but also enhances the deployability of the model on various computing devices.
Furthermore, despite the drastic reduction in parameters, our network can still maintain a
high level of diagnostic performance, demonstrating the effectiveness and practicality of
our lightweight design.

Table 3. Comparison results with other epilepsy seizure detection methods.

Model Parameters Acc (%) Sen (%) Spe (%) AUC

LMA-EEGNet 2467 95.7 95.0 96.4 0.9862
PCA+LDA [28] - 94.7 94.8 89.1 -

DLWH [29] - 95.1 94.3 95.4 -
2D-CNN [30] 49,560 98.2 82.7 88.2 -
TSKCNN [31] 28,459,615 98.0 96.0 99.0 -

LRCN [32] 9,695,012 99.0 84.0 99.0 -
2D-CNN [10] 424,321 96.2 - - -
Fd-CAE [33] - 92.3 - 98.7 -

The symbol ‘-’ represents undisclosed model performance metrics data for which no related information has been
released at present.

3.3. Exploring the Impact of Different Dilation Rates

In this study, we explored the impact of key hyperparameters on the performance
of the proposed model, with the main objective of optimizing the model to enhance its
overall performance. We selected 20% of the dataset as the test set and used the remaining
80% for training and validation. The training and validation sets were utilized in a 5-fold
cross-validation to compare model performance. After each parameter adjustment, we
retrained the model using this 5-fold cross-validation approach, took the average of the test
results from each fold, and reevaluated the model using these metrics. Figure 8 Shows the
diagram of five-fold cross-validation.

These metrics helped us understand the specific impact of different parameter config-
urations on the model’s predictive ability. We investigated the effect of different dilation
rates on the model’s performance, and the experimental results are presented in Figure 9.

To determine if there are statistically significant differences in AUC scores among
models with different dilation rates, we utilized ANOVA(see Tables 4 and 5 for detailed
results). Based on Levene’s test for homogeneity of variances, all significance levels are
above 0.05, indicating that the variances across groups are equal. The ANOVA results
show significant differences in AUC scores among the models with different dilation rates
(F = 15.261, p < 0.001). This indicates that the dilation rates have a significant impact on
model performance. To further explore these differences, we performed post hoc tests
using Bonferroni’s method(see Table 6 for detailed results). The analysis revealed that the
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AUC scores between Dilation Rate 1 and 2, Dilation 2 and 8, and Dilation Rate 4 and 8
differ significantly.
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Table 4. Levene’s test for homogeneity of variances.

AUC Test Statistic df1 df2 Significance

Based on Mean 0.329 3 16 0.805
Based on Median 0.195 3 16 0.898

Based on Median and with Adjusted df 0.195 3 15.213 0.898
Based on Trimmed Mean 0.320 3 16 0.811

Table 5. ANOVA results for AUC scores.

AUC Sum of Squares df Mean Square F Significance

Between Groups 10.784 3 3.595 15.261 <0.001
Within Groups 3.769 16 0.236

Total 14.553 19

From the experimental results, we can observe that the model achieved optimal
performance when the dilation rate was set to 2. This suggests that a moderate dilation rate
helps the model more effectively capture meaningful temporal features without overfitting
or losing important information.



Electronics 2024, 13, 2354 13 of 18

Table 6. Multiple comparisons of AUC for different dilation rates (Bonferroni’s method).

(I) Dilation
Rate

(J) Dilation
Rate

Mean
Difference (I-J) Std. Error Significance 95% Confidence Interval

Lower Bound Upper Bound

1
2 −1.572 * 0.30695 <0.001 −2.4954 −0.6486
4 −0.700 0.30695 0.220 −1.6234 0.2234
8 0.348 0.30695 1.000 −0.5754 1.2714

2
1 1.572 * 0.30695 <0.001 0.6486 2.4954
4 0.872 0.30695 0.071 −0.0514 1.7954
8 1.920 * 0.30695 <0.001 0.9966 2.8434

4
1 0.700 0.30695 0.220 −0.2234 1.6234
2 −0.872 0.30695 0.071 −1.7954 0.0514
8 1.048 * 0.30695 0.021 0.1246 1.9714

8
1 −0.348 0.30695 1.000 −1.2714 0.5754
2 −1.920 * 0.30695 <0.001 −2.8434 −0.9966
4 −1.048 * 0.30695 0.021 −1.9714 −0.1246

* The mean difference is significant at the 0.05 level.

When the dilation rate was 1 (in which case the convolutional layer was a regular
deep convolution), the model had the smallest receptive field, which might have caused
the model to be overly sensitive to noise and minor variations, affecting its generalization
ability. As the dilation rate increased from 2, the model’s performance showed a significant
decline. In the case of a dilation rate of 8, the model’s performance dropped noticeably,
which could be attributed to the excessively large dilation rate, leading to the loss of
important local features despite increasing the receptive field, thus impacting the overall
judgment capability of the model. For tasks like epilepsy detection, precise temporal and
frequency information is crucial, and if the receptive field is too large, ignoring these details
may result in performance degradation.

3.4. Ablation Studies

To verify the performance improvements brought by the introduction of various
attention mechanisms, we conducted ablation experiments on the attention mechanism
modules. Specifically, we performed experiments by separately removing the temporal
branch attention module, the frequency branch attention module, and both modules
simultaneously. For each configuration, we trained the model five times using a dataset
split of 80% training, 10% validation, and 10% testing. We reported the average performance
metrics to ensure the reliability and robustness of our results.

In this experiment, we designate the full LMA-EEGNet model as Model 1. Model 2
refers to the LMA-EEGNet model with the CAM module removed, while Model 3 denotes
the LMA-EEGNet model without the SAM module. Finally, Model 4 represents the LMA-
EEGNet model with all attention modules removed. This nomenclature allows for a clear
distinction between the different versions of the LMA-EEGNet model throughout the
discussion and analysis.

To determine if there are statistically significant differences in the AUC scores among
the models presented in Table 7, we employed a one-way ANOVA(see Tables 8 and 9 for
detailed results). This method allows us to rigorously assess the performance variations
and ensure the reliability of our ablation study findings.

Table 7. Performance metrics of various models on the test set from the ablation study.

Model Mean Acc (%) Mean Sen (%) Mean Spe (%) Mean AUC

1 93.29 94.43 92.14 0.9853
2 91.00 89.86 92.09 0.9723
3 91.36 89.57 93.14 0.9744
4 89.86 89.14 90.57 0.9648
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Table 8. Levene’s test for homogeneity of variances in the ablation Study.

AUC Test Statistic df1 df2 Significance

Based on Mean 1.710 3 16 0.205
Based on Median 0.852 3 16 0.486

Based on Median and with Adjusted df 0.852 3 9.447 0.498
Based on Trimmed Mean 1.668 3 16 0.214

Table 9. ANOVA results for AUC scores in the ablation Study.

AUC Sum of Squares df Mean Square F Significance

Between Groups 10.720 3 3.573 10.399 <0.001
Within Groups 5.498 16 0.344

Total 16.218 19

The results of Levene’s test for homogeneity of variances indicate that the assumption
of equal variances is met, as none of the significance levels are below 0.05; specifically,
the significance level based on the mean is 0.205, indicating no significant difference in
variances across groups.

The ANOVA results reveal that there are statistically significant differences in the
AUC scores among the models. The F-value is 10.399 with a significance level of less than
0.001, which is well below the 0.05 threshold. This indicates that the differences in AUC
scores between the groups are highly significant. Consequently, we can conclude that the
introduction of different attention mechanisms leads to statistically significant variations
in model performance. To further investigate these differences, we conducted post hoc
tests using Bonferroni’s method(see Table 10 for detailed results). The results indicate that
there are significant differences in AUC scores between Model 1 and Model 2 as well as
between Model 1 and Model 4. Figure 10 shows the ROC curves of different models in the
ablation study.

Table 10. Post hoc multiple comparisons of AUC for different models (Bonferroni’s method) in the
ablation Study.

(I) Model (J) Model
Mean

Difference (I-J) Std. Error Significance 95% Confidence Interval
Lower Bound Upper Bound

1
2 1.298 * 0.37073 0.018 0.1827 2.4133
3 1.088 0.37073 0.058 −0.0273 2.2033
4 2.046 * 0.37073 <0.001 0.9307 3.1613

2
1 −1.298 * 0.37073 0.018 −2.4133 −0.1827
3 −0.210 0.37073 1.000 −1.3253 0.9053
4 0.748 0.37073 0.364 −0.3673 1.8633

3
1 −1.088 0.37073 0.058 −2.2033 0.0273
2 0.210 0.37073 1.000 −0.9053 1.3253
4 0.958 0.37073 0.120 −0.1573 2.0733

4
1 −2.046 * 0.37073 <0.001 −3.1613 −0.9307
2 −0.7480 0.37073 0.364 −1.8633 0.3673
3 −0.958 0.37073 0.120 −2.0733 0.1573

* The mean difference is significant at the 0.05 level.

The experimental results showed that the complete LMA-EEGNet model (containing
all attention mechanisms) not only achieved a mean accuracy of 93.29% on the test set
but also exhibited a mean AUC value of 0.9853, indicating the model’s high classification
performance and excellent generalization ability.
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When the channel attention and spatial attention modules were removed separately,
the model’s performance declined. After removing the channel attention, the model’s mean
accuracy dropped to 91.00%, and the mean AUC value decreased to 0.9723. This suggests
that channel attention plays an important role in enhancing the model’s ability to capture
the associations between different channels. When the spatial attention was removed, the
model’s mean accuracy dropped to 91.36%, and the mean AUC value decreased to 0.9744,
reflecting the crucial role of spatial attention in enhancing the model’s ability to capture
spatial features.

The most significant performance decline occurred in the model where all attention
mechanisms were removed simultaneously, with the mean accuracy dropping to 89.86%
and the mean AUC value decreasing to 0.9648. This significant performance degradation
highlights the importance of attention mechanisms in integrating and enhancing temporal
and frequency features, especially when dealing with complex EEG signal data.

4. Conclusions

This study successfully developed a novel neonatal epilepsy detection network based
on deep learning. Our network introduces two major innovations in the field of neonatal
brain seizure detection: the first application of dilated depthwise separable convolution
(DDS Conv), and the initial use of point convolution layers for efficient and accurate classi-
fication. These two lightweight design innovations significantly reduce the number of pa-
rameters and computational complexity, lowering the demand for computational resources,
which makes the model particularly suitable for deployment in resource-constrained envi-
ronments. Additionally, the performance of the model is enhanced by employing various
attention mechanisms and by integrating temporal and spectral features.

In the experimental section, we utilized a publicly available neonatal electroencephalo-
gram (EEG) dataset for validation. The results demonstrate that, compared to existing
methods, the model proposed in this study exhibits superior performance on key perfor-
mance indicators such as accuracy, sensitivity, specificity, and the Area Under the Curve
(AUC), while significantly reducing the model size and computational complexity. The
model achieved an accuracy of 95.71% on the test set, with a sensitivity of 95.00%, specificity
also at 96.43%, and an Area Under the Curve (AUC) of 0.9862. Additionally, we explored
the performance of the model under different configurations, including the effects of var-
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ious types of attention mechanisms and critical parameters (such as dilation rate). This
analysis not only validates the effectiveness of the techniques employed but also provides
valuable guidance for future research directions.

Although our model demonstrated outstanding performance in several aspects, there
are some limitations. Good generalization capability is crucial for a neonatal seizure
detection model [34], and our model’s training and validation were performed on a specific
dataset. Future research needs to validate the model’s generalization ability on a broader
range of datasets. We anticipate the availability of datasets with more samples, longer
sample durations, and high-quality labels. Moreover, while our model primarily focuses
on the detection of neonatal epileptic seizures, the types and specific forms of epilepsy
are diverse [35]. It is currently unclear whether the model is equally effective in detecting
different types of epileptic seizures. Therefore, future research should take into account
the diversity of epilepsy and develop algorithms capable of recognizing and classifying
different types of epileptic seizures.

Furthermore, the gap between our testing conditions and real-world application
scenarios must be acknowledged. In clinical settings, data quality and conditions can vary
significantly from the controlled environments typically used for model training and testing.
This discrepancy can affect the model’s performance in practice. Real-world applications
may involve more noise, variability in signal quality, and differences in patient conditions,
which are not fully captured in our current dataset. Addressing these differences will be
crucial for the successful deployment of our model in clinical practice.

In future research, we will focus on further optimizing the model structure to accom-
modate a wider range of application scenarios and data types. Additionally, considering
the highly complex, nonlinear, and noise-rich characteristics of EEG signals, we performed
certain preprocessing on the data. In real-time detection scenarios, this preprocessing can
consume significant computational resources. Therefore, we will also strive to develop
lightweight seizure detection models for raw EEG signals. Furthermore, as the labels
originate from subjective judgments by experts [36], we aim to leverage various possi-
ble methods to enhance the model’s interpretability, facilitating a better understanding
of the model’s decision-making process by medical professionals, thereby increasing its
acceptance and trust in clinical applications [37]. Moreover, improving the model’s inter-
pretability can also help us identify and address the model’s performance shortcomings
in specific situations, further enhancing its accuracy and robustness. To this end, we plan
to introduce more interpretability mechanisms, such as attention maps and activation
mappings, which can intuitively showcase the signal portions the model focuses on the
most when making predictions.
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