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Abstract: Light field (LF) cameras can capture the intensity and angle information of any scene in
one single shot, and are widely used in virtual reality, refocusing, de-occlusion, depth estimation, etc.
However, the fundamental limitation between angular and spatial resolution leads to low spatial
resolution of LF images, which limits their development prospects in various fields. In this paper, we
propose a new super-resolution network based on view interaction and hierarchical feature fusion to
effectively improve LF image spatial resolution and preserve the consistency of the reconstructed LF
structure. Initially, we provide novel view interaction blocks to represent the relationship between
all views, and efficiently combine hierarchical features using a feature fusion block consisting of
residual dense blocks (RDBs) to more effectively preserve the parallax structure. In addition, in
the process of extracting features, we introduce residual channel-reconstruction blocks (RCBs) to
minimize the duplication of channels in the features. An inter-view unit (InterU) and an intra-view
unit (IntraU) are employed to minimize redundancy in the spatial domain as well. Our suggested
method is tested using public LF datasets, which include large-disparity LF images. The experimental
results demonstrate that our method exhibits the best performance in terms of both quantitative and
qualitative results.

Keywords: light field image; spatial super-resolution; residual channel-reconstruction block; hierarchical
feature fusion

1. Introduction

LF cameras can simultaneously capture angular information and spatial information
because of the insertion of a micro-lens array between the imaging sensor and the main lens
to reconstruct multi-view images of a scene [1], that is, encoding three-dimensional (3D)
scenes into 4D LF images. The wealth of information contained in these images facilitates
many useful applications, such as post-capture refocusing [2], de-occlusion [3], saliency
detection [4], depth estimation [5] and virtual reality [6]. However, there is a fundamental
limitation between angular resolution and spatial resolution in the image sampling process
of LF cameras. In other words, in order to obtain high-resolution sub-aperture images
(SAIs), only sparse angular sampling can be performed. In order to achieve dense angular
sampling, the spatial resolution of LF images must be reduced. As a result, light field
super-resolution (LFSR) can be subdivided into three types: spatial super-resolution (SSR),
angular super-resolution (ASR) and spatial-angular super-resolution (SASR). The research
focus of this paper is on the SSR problem.

Most SSR approaches are subdivided into two categories: optimization-based ap-
proaches and learning-based approaches. The aim of the optimization-based approach is
to physically model the relationship between views with estimated disparity information,
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and formulate the SR problem as an optimization problem. This is a traditional LF image
SR method that explicitly records SAIs using the estimated differences. Alain et al. [7] used
LFBM5D sparse coding to implement SSR, and they transformed the SSR problem into an
optimization problem based on sparse priors. Rossi et al. [8] proposed an SSR network
based on graphical regularization to transform the SR problem into a global optimization
problem. Ghassab et al. [9] introduced an LFSR method based on edge-preserving map
regularization, which reduces the LF reconstruction error by using an enhanced ADMM
model. However, most of the existing disparity estimation methods have noise, occlusion
and untextured areas [10], which leads to obvious artifacts in the reconstructed LF images.

In recent years, there has been a gradual rise in learning-based methods, which
use complementary information between all SAIs to learn to perform mapping from low-
resolution (LR) images to high-resolution (HR) images. These are methods that can learn the
LF geometry implicitly. Most learning-based approaches solve the 4D LF SSR problem by
exploring complementary information between SAIs through data-driven training. For ex-
ample, Jin et al. [11] presented a novel LFSR framework for SSR through deep-combination
geometric embedding and structural consistency regularization. Zhang et al. [12] suggested
a learning-based residual convolutional method to accomplish LF SSR, which can achieve
LFSR from different angular resolutions. Zhou et al. [13] put forward a disentangled feature
distillation network for LF SSR with degradations. Wang et al. [14] proposed a spatial-
angular interaction framework for LFSR. It takes full advantage of the information within
each image and the information between all images to obtain HR SAIs. Wang et al. [15]
performed SR through deformable convolution. Cheng et al. [16] achieved SSR by combin-
ing external and internal similarities. Park et al. [17] presented a multilevel-based LF SSR
method to efficiently estimate and mix subpixel information in adjacent images. Although
those approaches have greatly promoted efficiency and performance, there are still two key
issues that remain unresolved. The first one is that the complementary information between
all SAIs is not fully used. The second one is that the consistency of the reconstructed LF
structure is not well reserved.

Therefore, in order to solve these two key problems, we propose a new super-
resolution network based on view interaction and hierarchical feature fusion. The network
is mainly composed of three key components: feature extraction blocks, view interaction
blocks and a reconstruction block. The contribution of this paper can be summarized in the
following three points:

(1) We propose residual channel-reconstruction blocks (RCBs) to reduce channel redun-
dancy between features and effectively perform feature extraction in feature extraction
blocks. In addition, we use residual atrous spatial pyramid pooling (ResASPP) to
enlarge the receptive field and capture information at several scales.

(2) We introduce InterU and IntraU to take full advantage of the complementary informa-
tion between all SAIs. At the same time, we further reduce redundancy in the spatial
domain by introducing a spatial reconstruction unit (SRU) in view interaction blocks.
Our multi-view aggregation block (MAB) is a long-term correlation model based on
extended 3D convolution, which further improves the performance of SR networks.

(3) We effectively fuse shallow features and deep features to retain the consistency of the
reconstructed LF structure to obtain high reconstruction accuracy in the reconstruction
block. We also perform a number of experiments to demonstrate that our network
can achieve state-of-the-art performance beyond several existing excellent methods.
Through a complete ablation study, we discuss the importance of the components
proposed in this article to give an insight into effective SSR.

The rest of this paper is organized as follows: Firstly, Section 2 gives a brief introduction
about LF representations and three different types of LF image super-resolution studies.
Section 3 elaborates on each sub-module of the proposed LF SSR network. Then, Section 4
describes a comparative analysis with state-of-the-art LF SSR methods and validates the
effectiveness of the proposed approach through ablation experiments. Finally, a brief
summary is provided in Section 5.
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2. Related Work

We will introduce LF representation briefly and discuss studies of SSR, ASR and SASR
in this section.

2.1. Light Field Representation

As the most important medium for visual perception of the world, light rays carry
a wealth of information about the 3D environment. Unlike traditional 2D images, which
capture a 2D projection of light through angular integration of the rays in each pixel,
LF describes the distribution of light rays in free space and therefore contains richer
information. The plenoptic function used to describe the distribution of rays is a 7D
function. It depicts the set of rays moving in all directions through each point in 3D space
from the perspective of geometrical optics, denoted as L(x, y, z, θ, ϕ, γ, t), where (x, y, z)
denotes location, (θ, ϕ) denotes angle, γ denotes wavelength and t denotes time. However,
these kinds of 7D data are very difficult to capture and process in practical applications.
As a result, the LF model was simplified twice in the process of practical application. The
first simplification was to remove two dimensions from the plenoptic function, which
were the wavelength dimension and time dimension, i.e., reducing the model from 7D
to 5D (L(x, y, z, θ, ϕ)). The second simplification was to simplify the model into a 4D one
by assuming that LF was measured in free space. So, the rays were finally parameterized
with the two-plane model L(u, v, h, w), where (u, v) denotes the camera plane and (h, w)
denotes the image plane [18].

2.2. Light Field Super-Resolution

SSR refers to the process of reconstructing given LR input images into HR LF images
by utilizing complementary information between adjacent SAIs. Performing a single-image
SR (SISR) approach for each SAI is a straightforward LF SSR method. But this method
cannot exploit the spatial information in a single image and the angular information
between different images at the same time. In recent years, many high-efficiency SSR
approaches have been created. Wafa et al. [19] introduced a deep learning-based LF SSR
network to achieve SR by utilizing full 4D LF angular information and spatial information.
Zhang et al. [20] suggested an end-to-end LF SSR network via multiple-epipolar geometry,
which divides all views in the LF into four view stacks and feeds them into four different
branches to obtain more complete sub-pixel details. Wang et al. [21] studied local feature
aggregation and global feature aggregation for LF SSR. Kar et al. [22] suggested adding an
adaptive module to a pre-trained SISR framework to improve resolution. Chen et al. [23]
used heterogeneous imaging to recover fine textures at large magnification factors for
LF SSR. Cheng et al. [24] used a zero-shot learning network for LF SSR through three
subtasks. Yao et al. [25] put forward a LF SSR approach via multi-modality fusion, and
adaptively enhanced the fused features through a frequency-focusing mechanism. The
transformer-based LF SSR method [26] has also achieved excellent results, and this method
treats LFSR as a sequence-to-sequence reconstruction task. None of the above methods can
maintain the parallax structure of LF images under the premise of fully extracting effective
features.

ASR refers to the process of reconstructing dense LF SAIs from a given set of sparse
views, i.e., synthesizing new views to improve the LF angular resolution. Densely sampled
LF is able to provide not only natural refocus detail, but also smooth parallax offsets,
which has led to a wide range of applications for ASR in recent years. Therefore, achieving
high-efficiency ASR has become an active research direction. For example, Yun et al. [27]
proposed geometrically aware LF angular SR based on a multi-receiving field network,
which is very simple and consists of only two main modules. Liu et al. [28] proposed an
efficient LF angular SR based on sub-aperture feature learning and macro pixel upsampling,
which can explore the spatial-angular correlation well. Jin et al. [29] proposed deep coarse-
to-fine dense LF reconstruction based on flexible sampling and geometric perception fusion.
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SASR refers to the simultaneous execution of SSR and ASR on LF images, which not
only improves the spatial resolution of each SAI, but also increases the number of views
of LF images. In recent years, there has been an increasing number of studies on SASR.
Zhou et al. [30] proposed end-to-end LF SASR based on a parallax structure reservation
strategy, which can generate an HR dense LF from an LR sparse LF with detailed textures.
Duong et al. [31] and Sheng et al. [32] also suggested approaches that can obtain high-
quality SASR reconstruction results.

In recent years, with the rapid development of deep convolutional neural networks
(CNNs), whether it is SSR, ASR or SASR, most people used learning-based methods. These
methods can not only save time to a large extent, but also accurately restore high-frequency
details of LF reconstructed images, which lays a good foundation for subsequent research.

3. Proposed Method

In this section, the networks proposed in this article will be described in detail. As
mentioned in Section 2.1 above, LF uses a two-plane model L(u, v, h, w) to parameterize the
rays. Therefore, a 4D LR LF image can be represented as Ilr ∈ RU×V×H×W , where U × V
represents angular resolution and H × W represents spatial resolution. In this paper, we
use a square SAI array (i.e., U = A = V), so a 4D LF image contains an A × A array of
SAIs. Our goal is to obtain an HR LF image Ihr ∈ RU×V×αH×αW from its LR counterpart Ilr,
and α denotes the spatial magnification factor. In order to decrease computing complexity,
the proposed approach is only executed on the Y channel of the LF image. A bicubic
interpolation algorithm is performed to obtain the super-resolution of the Cr and Cb
channels, and after that, the Y, Cr and Cb channels are converted into an RGB image.

3.1. Overall Network Framework

The overall network framework of our method is illustrated in Figure 1, and is com-
posed of three major components: a feature extraction block (FEB), view interaction blocks
and a reconstruction block. Firstly, the LR SAI Slr

i ∈ R1×H×W(i = 1, 2, . . . , A2) is fed into
the reshaping block of the upper branch, which is connected along the channel dimen-
sion to obtain Slr ∈ RA2×H×W ; then, the FEB is used to extract the global-view feature
Fg ∈ RC×H×W from Slr. Different from the upper branch, the lower branch does not need to
perform reshaping operation, but directly extracts features, and maps each SAI to the depth
feature representation to obtain the hierarchical feature Fl

i ∈ RC×H×W(i = 1, 2, . . . , A2).
For different views, the weights in the FEB of the lower branch are shared. In order to
thoroughly investigate the correlation between all views, the extracted features are subse-
quently passed continuously through four double-branched view interaction blocks. This
process enhances and connects the features in a sequential manner, effectively maintaining
the parallax structure. The view interaction block is composed of four parts: an inter-
view unit (InterU), a global-view feature, an intra-view unit (IntraU) and a multi-view
aggregation block (MAB). These are collectively referred to as IGIM. Finally, the HR SAIs
Shr

i ∈ R1×αH×αW(i = 1, 2, . . . , A2) are obtained through the reconstruction block, which is
composed of a feature fusion block and an upsampling block.
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3.2. Feature Extraction Block (FEB)

Our FEB is treated separately for each input SAI, and its weights are shared between
SAIs. Firstly, a 1 × 1 convolution in the FEB is introduced to extract the initial features of a
single SAI and then feed them into cascaded ResASPP and a residual channel-reconstruction
block (RCB) for further feature extraction. The depth C is set to 32. The architecture of
ResASPP is shown in Figure 1, which is to extend receptive field to gain rich contextual
information. We can extract multi-scale information by combining 3 × 3 dilated convolu-
tions with three different expansion rates in parallel, which are 1, 2 and 4. The Leaky ReLU
(LReLU) is an activation function, and its leaky factor is 0.1. Finally, the features obtained
by the three parallel branches are connected and then fused through 1 × 1 convolution.
In addition, we design an RCB to successfully reduce the channel redundancy between
features by introducing a channel reconstruction unit (CRU) [33]. As shown in Figure 1,
our RCB consists of two 3 × 3 convolutions, a CRU and a LReLU activation function.

The CRU is constructed by using a split-transform-fuse approach to reduce channel
redundancy, as shown in Figure 2. Firstly, the aim of the splitting part is to divide the input
features F ∈ Rc×h×w with C channels into the upper-branch features Fup ∈ R

αc
r ×h×w with

αC channels and the lower-branch features Flow ∈ R
(1−α)c

r ×h×w with (1 − α)C channels,
where α is the split ratio, the numerical range is between 0~1, and r is the squeeze ratio.
The channels of those feature maps are compressed by a 1 × 1 convolution to improve the
calculation speed.
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Secondly, the aim of the transforming part is to extract the rich representative feature
maps F1 ∈ Rc×h×w in the upper-branch features Fup through efficient group-wise convo-
lution (GWC) and point-wise convolution (PWC). GWC, which was first introduced in
AlexNet, can be regarded as a sparse convolution connection method in which each output
channel is linked to only a certain group of input channels. In addition, PWC is used
to keep the information flowing across channels and enable dimensionality reduction by
reducing the number of filters. The process can be represented as

F1 = MGFup + MP1 Fup (1)

where MG ∈ R
αc
gr ×k×k×c and MP1 ∈ R

αc
r ×1×1×c are the learnable weight matrices of GWC

and PWC, k × k is the size of convolution kernel and g is the group size in the experiment
(g = r = 2). At the same time, only PWC is used to acquire the feature maps F2 ∈ Rc×h×w

with shallow hidden details in the lower-branch features Flow as a supplement to the
upper-branch feature mapping, which can be represented as

F2 = MP2 Flow ∪ Flow (2)

where MP2 ∈ R
(1−α)c

r ×1×1×(1− 1−α
r )c is also a weight matrix of PWC, and ∪ means concatenation.

Finally, the aim of the fusing part is to obtain the global spatial information through
the global average pooling operation to obtain Sm ∈ Rc×1×1. The process is as follows:

Sm = Pooling(Fm) =
1

H × W

H

∑
i=1

W

∑
j=1

Fc(i, j), m = 1, 2 (3)

Then, the upper-branch and lower-branch global channel-weight descriptors are
superimposed together, and a channel-weight soft attention operation is designed to create
the important feature vectors β1 and β2 as follows:

β1 =
es1

es1 + es2
, β2 =

es2

es1 + es2
, β1 + β2 = 1 (4)

Under the guidance of these two vectors, the upper-branch feature maps and the lower-
branch feature maps are combined in a channel-wise manner to obtain output features
F′ ∈ Rc×h×w with reduced redundancy in the channel dimension, and the procedure is
as follows:

F′ = β1F1 + β2F2 (5)

From the above-detailed process, it can be seen that after integrating the channel
reconstruction unit (CRU) into the channel-reconstruction block (RCB), we can not only
reduce the redundant calculation of feature extraction blocks in the channel dimension of
feature mapping, but also promote the learning of representative features in the feature
extraction process. This is an indispensable way to efficiently acquire important features.
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3.3. View Interaction Block

The view interaction block is composed of an inter-view unit (InterU), a global-view
feature, an intra-view unit (IntraU) and a multi-view aggregation block (MAB), which is
an improvement of intra–inter-view feature interaction [34]. Specifically, we can reduce
the redundant calculation of feature mapping in the spatial dimension after integrating
a spatial reconstruction unit (SRU) into InterU and IntraU in the view interaction block,
so as to promote the efficient use of complementary information between all views in the
interaction process. Furthermore, our MAB uses a smaller number of 3D convolutions to
efficiently model the correlation between all SAIs to further achieve SSR. The architecture
of InterU is shown in Figure 3a and the architecture of IntraU is shown in Figure 3b; the
former uses the hierarchical feature Fl

i obtained by the lower branch to update the global
inter-view feature Fg, and the latter uses the global inter-view feature Fg obtained by the
upper branch to update the hierarchical feature Fl

i .
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Figure 3. The architecture of two important components in the view interaction block: (a) InterU and
(b) IntraU.

The SRU in the structure is constructed by using a separate-reconstruct method to
reduce spatial redundancy, as depicted in Figure 4. Firstly, the aim of the separating part is
to subdivide the feature maps with a large amount of information and the feature maps
with a small amount of information corresponding to the spatial content in the input
feature X ∈ Rc×h×w, and it first uses group normalization to standardize X, which can be
portrayed as follows:

X0 = GN(X) = γ
X − µ√
σ2 + ε

+ β (6)

where σ and µ are the standard and mean deviation in X; γ and β are trainable affine
transformations; and ε is a small positive constant. Each normalized correlation weight
Wγ ∈ Rc is determined to represent the importance of each feature map, which can be
obtained from the following formula:

Wγ = {wi} =
γi

∑c
j=1 γj

, i, j = 1, 2, . . . , c (7)
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Then, Wγ is mapped to 0~1 through the sigmoid function, and the threshold is set for
gating. The weight exceeding the threshold is reset to 1 to obtain the information weight
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W1; otherwise it is set to 0, and the non-information weight W2 is obtained. The entire
process of obtaining W can be depicted as

W = Gate(Sigmoid(Wγ(GN(X)))) (8)

Finally, W1 and W2 are multiplied by the input features X to create weighted features
Xw

1 with a large amount of information and weighted features Xw
2 with a small amount

of information.
The aim of the reconstructing part is to first cross-add the informative features Xw

1 and
the less informative features Xw

2 , fully combine the two pieces of information with different
weights, and then connect them to obtain the output features X′ ∈ Rc×h×w with reduced
redundancy in the spatial dimension. The specific process is as follows:

Xw
1 = W1 ⊗ X,

Xw
2 = W2 ⊗ X,

Xw
11 ⊕ Xw

22 = Xw1,
Xw

12 ⊕ Xw
21 = Xw2,

Xw1 ∪ Xw2 = X′.

(9)

where ⊕ is element-wise summation, ⊗ is element-wise multiplication and ∪ is concatenation.
In addition, the multi-view aggregation block (MAB) in the view interaction block is

based on 3D convolution to model the correlation between all SAIs, as shown in Figure 1.
In the MAB, the hierarchical features Fl

i ∈ RC×H×W(i = 1, 2, . . . , A2) obtained by the
lower branch are firstly stacked along the angular dimension to obtain the feature F̃l ∈
RC×H×W×A2

, which is processed by three 3 × 3 × 3 convolutions. Then, the features
obtained by the combination of three parallel branches are connected. The features are
fused by using a 3× 3× 3 convolution with a dilation rate of (1, 1, 1). A 1× 1× 1 convolution
is used to process the fused features, which are added to the input features to obtain the
output hierarchical features. The activation function PReLU in the MAB is an improvement
of LReLU with a leaky factor of 0.02.

3.4. Reconstruction Block

As shown in Figure 1, the reconstruction block includes a feature fusion block (FFB)
and an upsampling block. Firstly, the FFB is composed of four cascaded residual dense
blocks (RDBs), and each RDB is composed of 6 convolutional layers and 6 activation func-
tions. Our FFB can fuse shallow features and deep features generated by view interaction
blocks to obtain high reconstruction accuracy. In each RDB, the input features are per-
formed by a 3 × 3 convolution; then, the following dense connected layers are processed
by 1 × 1 convolutions. The output Fi of the i-th (2 ≤ i ≤ 5) convolution of each RDB can be
portrayed as

Fi = σl

(
Ci

([
F1, . . . , Fi−1

]))
(10)

where σl means the activation function LReLU, Ci represents the i-th convolution and [·]
denotes concatenation. Then, the features are fused by the last 1 × 1 convolution, and the
local residual connection is eventually designed. In the RDB, the numbers of filters are 4C,
C, C, C, C, and 4C from left to right. The fused features are then fed to the upsampling
block, which consists of a 1 × 1 convolution, a 3 × 3 convolution and a PixelShuffle layer
between them. The LR feature maps can be converted into HR feature maps through the
upsampling block. Finally, the features generated by the upsampling block are added to
the initial features to achieve global residual learning to an HR LF.

3.5. Loss Function

The loss function used in our training process is the absolute value loss function
(L1). The loss function of a batch of training pairs

{
IHR
k , IGT

k
}n

k=1 containing n output HR
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LF images of the SR network and their corresponding ground-truth (GT) LF images is
calculated as follows:

L1 =
1
n

n

∑
k=1

∥∥∥IHR
k − IGT

k

∥∥∥
1

(11)

4. Experiments
4.1. Datasets and Implementation Details

The five public datasets used in this paper are EPFL [35], HCInew [36], HCIold [37],
INRIA [38] and STFGantry [39]. The last one is a large-disparity LF dataset. Table 1 shows
the particulars of the scene categories, which include the number of training scenes and
test scenes for each dataset. The angular resolution of all input LF images is 5 × 5 and the
spatial resolution is 32 × 32. Only SSR is applied, with upscaling factors of 2 and 4. The
peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) of the Y
channel of the images are calculated as experimental evaluation indicators.

Table 1. Particulars of five datasets used in our experiments.

Datasets Training # Testing # Scene

EPFL [35] 70 10 Real-world
HCInew [36] 20 4 Synthetic
HCIold [37] 10 2 Synthetic
INRIA [38] 35 5 Real-world

STFGantry [39] 9 2 Real-world

Our LF-IGIM was implemented in PyTorch and trained with an NVIDIA GeForce
RTX 3050 Laptop GPU. We used Adam optiimizer to optimize our network. Our training
data were augmented by randomly flipping and rotating the images by 90◦. During the
training process, the following parameters remain unchanged for both the 2×SR network
and the 4×SR network: the batch size was set to 4, the number of channels C was set to 32
and the initial learning rate was set to 2 × 10−4, which was decreased by multiplying by a
coefficient of 0.5 for every 15 epochs. The total number of training epochs was set to 50.

4.2. Comparison with State-of-the-Art Methods

Our LF-IGIM network proposed in this paper was compared with 8 other LF SSR meth-
ods, namely LFBM5D [7], GB [8], resLF [12], LF-ATO [11], LF-InterNet [14], LF-DFnet [15],
DPT [26] and LF-IINet [34]. Among them, LFBM5D [7] and GB [8] are optimization-based
LF SSR methods, and the last six methods are learning-based LF SSR methods. The method
proposed in this paper is also a learning-based LF SSR method. For a fair comparison, all
of these methods were performed by using the same training scenes.

4.2.1. Quantitative Results

The results of the proposed LF-IGIM were quantitatively compared with the other
eight approaches mentioned above, and the PSNR/SSIM values (between the reconstructed
and GT images) obtained from the test scenes are shown in Tables 2 and 3. Specifically,
Table 2 shows the PSNR [dB]/SSIM scores compared with the other eight SOTA methods
for 2×SR. Table 3 shows the PSNR [dB]/SSIM scores compared with the other eight SOTA
methods for 4×SR. The best scores are highlighted in bold, and the second best scores are
underlined. If the above methods involve a method that does not disclose the complete
code, the numerical results in the paper are directly cited. It is worth mentioning that the
PSNR/SSIM values obtained on each test dataset here were calculated first for each pair
of SAIs for each scene, and then, we calculated the average PSNR/SSIM values for all
SAIs. However, the averages in the table refer to the average scores for all test scenes in the
five datasets.
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Table 2. PSNR [dB]/SSIM scores compared with the other 8 SOTA methods for 2×SR.

Method EPFL HCInew HCIold INRIA STFgantry Average

Bicubic 29.50/0.9350 31.69/0.9335 37.46/0.9776 31.10/0.9563 30.82/0.9473 32.11/0.9499
LFBM5D [7] 31.15/0.9545 33.72/0.9548 39.62/0.9854 32.85/0.9659 33.55/0.9718 34.18/0.9665

GB [8] 31.22/0.9591 35.25/0.9692 40.21/0.9879 32.76/0.9724 35.44/0.9835 34.98/0.9744
resLF [12] 32.75/0.9672 36.07/0.9715 42.61/0.9922 34.57/0.9784 36.89/0.9873 36.58/0.9793

LF-ATO [11] 34.22/0.9752 37.13/0.9761 44.03/0.9940 36.16/0.9841 39.20/0.9922 38.15/0.9843
LF-InterNet [14] 34.14/0.9761 37.28/0.9769 44.45/0.9945 35.80/0.9846 38.72/0.9916 38.08/0.9847

LF-DFnet [15] 34.44/0.9766 37.44/0.9786 44.23/0.9943 36.36/0.9841 39.61/0.9935 38.42/0.9854
DPT [26] 34.48/0.9759 37.35/0.9770 44.31/0.9943 36.40/0.9843 39.52/0.9928 38.41/0.9849

LF-IINet [34] 34.68/0.9771 37.74/0.9789 44.84/0.9948 36.57/0.9853 39.86/0.9935 38.74/0.9859
LF-IGIM (Ours) 34.85/0.9777 38.02/0.9799 44.86/0.9949 36.82/0.9857 40.42/0.9942 38.99/0.9865

The best results are highlighted in bold and the second best results are underlined.

Table 3. PSNR [dB]/SSIM scores compared with other 8 SOTA methods for 4×SR.

Method EPFL HCInew HCIold INRIA STFgantry Average

Bicubic 25.14/0.8311 27.61/0.8507 32.42/0.9335 26.82/0.8860 25.93/0.8431 27.58/0.8689
LFBM5D [7] 26.61/0.8689 29.13/0.8823 34.23/0.9510 28.49/0.9137 28.30/0.9002 29.35/0.9032

GB [8] 26.02/0.8628 28.92/0.8842 33.74/0.9497 27.73/0.9085 28.11/0.9014 28.90/0.9013
resLF [12] 27.46/0.8507 29.92/0.9011 36.12/0.9651 29.64/0.9339 28.99/0.9214 30.43/0.9144

LF-ATO [11] 28.64/0.9130 30.97/0.9150 37.06/0.9703 30.79/0.9490 30.79/0.9448 31.65/0.9384
LF-InterNet [14] 28.67/0.9143 30.98/0.9165 37.11/0.9715 30.64/0.9486 30.53/0.9426 31.59/0.9387

LF-DFnet [15] 28.77/0.9165 31.23/0.9196 37.32/0.9718 30.83/0.9503 31.15/0.9494 31.86/0.9415
DPT [26] 28.93/0.9167 31.19/0.9186 37.39/0.9720 30.96/0.9502 31.14/0.9487 31.92/0.9412

LF-IINet [34] 29.11/0.9194 31.36/0.9211 37.62/0.9737 31.08/0.9516 31.21/0.9495 32.08/0.9431
LF-IGIM (Ours) 29.12/0.9208 31.50/0.9231 37.70/0.9739 31.15/0.9524 31.43/0.9520 32.18/0.9444

The best results are highlighted in bold and the second best results are underlined.

In Table 2, we can see that our LF-IGIM obtains the best scores on each test dataset.
Compared with the two traditional SSR methods (LFBM5D and GB), our LF-IGIM obtains
much higher scores because of the robust representation capability of deep CNNs. The
PSNR value obtained by our LF-IGIM on the large-disparity dataset (STFgantry) is 0.56 dB
higher than that of the second-ranked LF-IINet. The average PSNR and SSIM values are
0.25 dB higher and 0.006 higher than LF-IINet.

In Table 3, we can see that our LF-IGIM achieves the best scores on each dataset as
well. Compared with the two traditional SSR methods (LFBM5D and GB), our LF-IGIM
achieves 2.83 dB and 3.28 dB gains on average for 4×SR. Compared with the second-
ranked LF-IINet, the SSIM value obtained by our LF-IGIM on the small-disparity dataset
(HCInew) is increased by 0.0020. In addition, compared with LF-IINet, the average PSNR
value obtained by our method is increased by 0.10 dB, and the average SSIM value is also
increased by 0.0013. This indicates that our LF-IGIM fully utilizes the complementary
information between all SAIs.

4.2.2. Qualitative Results

The results of our LF-IGIM were qualitatively compared with the eight methods
mentioned above. The 2×SR visualization results obtained by our LF-IGIM and the other
eight methods on the test scene Lego Knights in the large-disparity dataset (STFGantry) are
shown in Figure 5a, and the 2×SR visualization results obtained on the test scene herbs in
the small-disparity dataset (HCInew) are shown in Figure 5b. The enlarged patches are
highlighted by using red box and blue box, and the green arrow is utilized to highlight the
comparision. In Figure 5a, the result obtained by our method is clearer and closer to the
GT than the other methods in the small circles in the red box. The result obtained by our
method is also clearer in the blue box than the other methods. The reliability of our LF-IGIM
on large-disparity datasets is demonstrated. In Figure 5b, the textures we obtain in both
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boxes are sharper and closer to the GT. Our LF-IGIM presents better fine-grained details.
The 4×SR visualization results obtained by our method and the other eight methods on
the test scenes origami and bicycle in HCInew are shown in Figures 6a and 6b, respectively.
In Figure 6a, our method obtains a yellow grid in the red box that is clearer and closer
to the ground-truth than other methods. In Figure 6b, the results of our method on the
second-row books are closer to GT than the others, especially the outline of the gray book in
the red box. The outline of greenery in the lower left corner of the blue box is significantly
closer to the GT than the other methods. The reliability of our LF-IGIM on small-disparity
datasets is demonstrated.
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We also provide the 4×SR results of the EPIs (highlighted in the green box) for
qualitative comparison, as shown in Figure 7. The EPIs were constructed by concatenating
the same line from all LF SAIs along the height dimension. The line structure in the EPIs
shows the parallax structure of the reconstructed LF. For the two scenes, it is obvious that
the EPI result of Bicubic is very blurry. This means that the method cannot maintain LF
parallax consistency. Our LF-IGIM obtains the most fine-grained lines in the EPIs, which
proves the effectiveness of the parallax structure reservation performed by our network.
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4.2.3. Parameters and FLOPs

We provide the number of parameters and floating point operations (#Params and
FLOPs) of different networks, and the FLOPs were measured with an input LF image size
of 5 × 5 × 32 × 32. The specific results are shown in Tables 4 and 5.

Table 4. Specific results of #Params, FLOPs and average PSNR [dB]/SSIM scores for 2×SR.

Method #Params. FLOPs Ave. PSNR [dB]/SSIM

resLF [12] 6.35 M 37.06 G 36.58/0.9793
LF-ATO [11] 1.51 M 597.66 G 38.15/0.9843

LF-InterNet [14] 4.80 M 47.46 G 38.08/0.9847
LF-DFnet [15] 3.94 M 57.22 G 38.42/0.9854

DPT [26] 3.73 M 57.44 G 38.41/0.9849
LF-IINet [34] 4.84 M 56.16 G 38.74/0.9859

LF-IGIM (ours) 5.85 M 65.91 G 38.99/0.9865
The best average PSNR [dB]/SSIM scores are highlighted in bold.
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Table 5. Specific results of #Params, FLOPs and average PSNR [dB]/SSIM scores for 4×SR.

Method #Params. #FLOPs Aver. PSNR [dB]/SSIM

resLF [12] 6.79 M 39.70 G 30.43/0.9144
LF-ATO [11] 1.66 M 686.99 G 31.65/0.9384

LF-InterNet [14] 5.23 M 50.10 G 31.59/0.9387
LF-DFnet [15] 3.99 M 57.31 G 31.86/0.9415

DPT [26] 3.78 M 58.64 G 31.92/0.9412
LF-IINet [34] 4.89 M 57.42 G 32.08/0.9431

LF-IGIM (ours) 5.90 M 67.25 G 32.18/0.9444
The best average PSNR [dB]/SSIM scores are highlighted in bold.

In Table 4, it is obvious that the FLOP of our LF-IGIM is apparently lower than that of
LF-ATO. This is because LF-ATO exploits all SAIs to obtain one HR SAI, which needs a
high FLOP to obtain all HR SAIs in an end-to-end manner. Compared with LF-InterNet,
the #Param and FLOP of our LF-IGIM increase by 1.05 M and 18.45 G, respectively, while
the average PSNR and average SSIM values increase by 0.91 dB and 0.0018, respectively.
Compared with the second-best LF-IINet, the number of parameters of our LF-IGIM is only
increased by 1.01 M, and the number of FLOPs is only increased by 9.75 G, but the average
PSNR value and average SSIM value are increased by 0.25 dB and 0.0006, respectively.
Because we used an FFB cascaded by RDBs to efficiently fuse the hierarchical features to
keep the consistency of the LF parallax structure, from our ablation experiment, it can be
seen that after reducing the number of RDBs, the number of parameters of the network
is significantly reduced by 1.15 M. This is because the RDB is densely connected, and the
number of parameters is large. In Table 5, compared with LF-ATO, although the number
of parameters of our LF-IGIM increases by 4.24 M, the number of FLOPs decreases by
619.74 G, and the average PSNR value and average SSIM value increase by 0.53 dB and
0.0060, respectively. Compared with LF-InterNet, the numbers of parameters and FLOPs
of our LF-IGIM increase by 0.67 M and 17.15 G, respectively, while the average PSNR
value and average SSIM value increase by 0.59 dB and 0.0057, respectively. In summary,
our LF-IGIM achieves state-of-the-art SR performance with reasonable model size and
computational cost.

4.3. Ablation Study and Discussion

The proposed LF-IGIM was compared with three adjusted network structures to
verify the effectiveness of the proposed RCB, SRU and RDB. The quantitative results of
the ablation study are shown in Table 6, and the best results are highlighted in bold. It
is important to note that the study of the ablation experiment was performed with the
amplification factor set to 4. The five datasets used were consistent with the previously
described datasets, and the parameters remained unchanged. The three adjusted network
structures were as follows: (1) LF-IGIM w/o RCB: the network was obtained by directly
removing the RCB in the FEB; (2) LF-IGIM w/o SRU: the network was obtained by directly
removing the SRU in InterU and IntraU; (3) LF-IGIM w/o RDB: the network was based on
the change in the number of RDBs in the FFB from four to one.

Table 6. The PSNR [dB]/SSIM values of the ablation study for 4×SR.

Network #Params EPFL HCInew HCIold INRIA STFgantry Average

LF-IGIM w/o RCB 5.82 M 28.93/0.9194 31.39/0.9216 37.59/0.9735 30.96/0.9517 31.40/0.9514 32.05/0.9435
LF-IGIM w/o SRU 5.24 M 29.09/0.9201 31.46/0.9222 37.65/0.9736 31.04/0.9521 31.40/0.9514 32.13/0.9439
LF-IGIM w/o RDB 4.75 M 28.85/0.9164 31.17/0.9188 37.29/0.9718 30.81/0.9495 30.86/0.9461 31.80/0.9405

LF-IGIM 5.90 M 29.12/0.9208 31.50/0.9231 37.70/0.9739 31.15/0.9524 31.43/0.9520 32.18/0.9444

The best results are highlighted in bold.

Firstly, Table 6 shows that the number of parameters is reduced by only 0.08 M when
the RCB is removed from the LF-IGIM. However, the PSNR values obtained on both EPFL
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and INRIA are reduced by 0.19 dB, and the final average PSNR value is also reduced
by 0.13 dB. Moreover, the SSIM value obtained by LF-IGIM w/o RCB on HCInew is also
reduced by 0.0015 and the final average SSIM value is also reduced by 0.0009 compared
to the full LF-IGIM model. Therefore, the proposed RCB not only has a small number of
parameters, but also successfully reduces the channel redundancy in the feature extraction
process, effectively extracts useful information and improves SR performance. Secondly,
Table 6 shows that the number of parameters is reduced by only 0.66 M when the SRU is
removed from the LF-IGIM. However, the PSNR value obtained on the dataset INRIA is
reduced by 0.11 dB, and the final average PSNR value is also reduced by 0.05 dB. Moreover,
the SSIM value obtained by the LF-IGIM w/o SRU on the dataset HCInew is also reduced
by 0.0009 and the final average SSIM value is also reduced by 0.0005 compared to the full
LF-IGIM model. It can be seen that the SRU not only has a small number of parameters,
but also successfully reduces the spatial redundancy in the process of feature enhancement,
and effectively learns the complementary information between all views, which improves
the SR performance. Finally, Table 6 shows that the number of parameters is also reduced
by 1.15 M when the number of RDBs is reduced from four to one. The PSNR value obtained
on the dataset STFgantry is reduced by 0.57 dB, and the final average PSNR value is
also reduced by 0.38 dB. Moreover, compared with the full LF-IGIM model, the SSIM
value obtained by LF-IGIM w/o RDB on STFgantry is also reduced by 0.0059, and the final
average SSIM value is also reduced by 0.0039. It can be seen that although the number of
parameters of the RDB is not small, the hierarchical features are efficiently fused during the
reconstruction process, and the SR performance is successfully improved.

From the results of the ablation experiment, it can be seen that when we directly
remove the RCB from LF-IGIM, the average PSNR value is 0.03 dB lower than that obtained
by IINet, but the average SSIM value is 0.0004 higher than it. When we delete the SRU in
LF-IGIM, the average PSNR/SSIM value is 0.05 dB/0.0008 higher than that of IINet. But
at the same time, we have a 0.35 M higher number of parameters than IINet. In addition,
after reducing the number of RDBs, the number of parameters obtained is 0.14M fewer
than that of IINet, but the average PSNR/SSIM is also reduced by 0.28 dB/0.0026. Because
of the dense connection of our FFB, the number of parameters is large. These are the
limitations of our approach. Overall, the submodules we introduced in LF-IGIM improve
LF SRR’s performance.

In addition, a visualization of the ablation study on the test scene Tarot Card S in the
dataset Stanford_Gantry is shown in Figure 8. We can see from the visualization results
obtained by removing the SRU, RCB and RDB from LF-IGIM that the lines and letters
are blurred.
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5. Conclusions

In this paper, we introduce a new method for LF SSR that combines view interaction
and hierarchical feature fusion. The core idea of this method is to efficiently utilize the
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complementary information between all SAIs by reducing the redundancy of LF features
while preserving LF parallax structure by effectively fusing shallow and deep features.
Specifically, the RCB and view interaction blocks proposed in this paper effectively solve
the problem of the utilization of correlation between all views, and the hierarchical feature
fusion solves the problem of LF parallax structure consistency. A comparison of this
method with other existing SOTA methods on the same datasets shows that the LF-IGIM
proposed in this paper achieves excellent performance in both quantitative and qualitative
results under reasonable parameters and FLOPs. The modules in our LF-IGIM were
rigorously validated using PSNR and SSIM obtained in ablation experiments. In addition,
the quantitative results of experiments on both synthetic and real-world datasets indicate
that our LF-IGIM has good robustness in all scenarios.

In the experimental results, it can be seen that our network needs to be improved in
terms of the number of parameters. We also take into account the other limitations of the
proposed LF-IGIM, which can only achieve significant results in terms of SSR. Therefore, on
the one hand, we will explore modules that implement SSR with fewer parameters in the
future. On the other hand, we will learn about Transformer and improve the network by
incorporating a novel attention mechanism, so that the network can be effectively applied
to SASR. This will allow it to be extended to more relevant tasks.
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