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Abstract: With the large scale and high proportion of distributed generation connected to the power
grid, the distributed economic dispatch system has attracted more attention because of its significant
advantages. However, the distributed economic dispatch system faces more serious information
security issues due to the variation of communication topology. Therefore, the purpose of this paper
is to review the information security issues that may occur in the distributed economic dispatch
system and the defense measures. By summarizing the existing literature on information security
issues and defense measures, it can be found that the current research focuses on the cyber-side
defense for information security, and lacks consideration of the cyber-physical coupling characteristics.
Additionally, the separate cyber-side defense measures still have a defense blind spot and cannot
respond in a timely manner to the physical-side actions caused by information security issues. Finally,
the establishment of the information security issues model and the construction of the integrated
security defense system are discussed from the perspective of the power cyber-physical system. This
research will be helpful in the construction of the security defense system for information issues in
distributed economic dispatch systems.

Keywords: power cyber-physical system; distributed economic dispatch; information security;
external cyber-attack; internal malicious behavior

1. Introduction

The new generation power system takes wind, solar, and other new energies as
mainstays while fossil fuels will serve as supplements, and the proportion of new energy
sources is gradually increasing. Meanwhile, smart meters, distributed generation inverters,
and other intelligent terminals will be widely integrated into the new generation power
system. These characteristics contribute to promoting the cleanliness, flexibility, digitization,
and intelligence of the power system [1]. A large number of geographically dispersed
distributed generations (DGs), such as photovoltaic, wind power and energy storage,
access the power system [2]. Therefore, it is crucial to design an efficient economic dispatch
strategy. Under the premise of satisfying the system power quality and safe operation, the
active power among each DG is rationally distributed to minimize the economic cost of
system operation.

Depending on the structure, the economic dispatch system can be divided into the
centralized model and the distributed model. The centralized economic dispatch system has
advantages such as simplicity and efficient operation. When the number of DGs is larger, the
centralized economic dispatch system has poor reliability and robustness, high construction
and maintenance costs, heavy computational burden on the dispatch center, and the
inability to meet the “plug-and-play” needs for DGs. Therefore, the requirements of stable
control and optimized operation of the system can no longer be met [3,4]. Compared with
the centralized economic dispatch system, the distributed economic dispatch system has the
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characteristics of decentralization, higher reliability and scalability, smaller communication
burden, and greater robustness and privacy. The DGs in the distributed economic dispatch
system can make decisions independently, perform necessary information interaction with
others through the communication network, and cooperate with each other to complete
the economic dispatch task. In the distributed economic dispatch system, the topology of
the communication network changes from the star shape in the centralized mode to an
arbitrary connected graph. Intelligent agents cooperate with each other to complete the
tasks of information collection, processing, computation, and decision [5,6].

Although the distributed economic dispatch system has many of the advantages
described above, the large scale and complexity of the system make it imperative to consider
security issues. Currently there are two new types of security issues in the distributed
economic dispatch system, namely cyber-attacks conducted by attackers external to the
system and malicious behaviors initiated by internal members of the system. First of all,
the local communication network topology of the distributed economic dispatch system is
no longer a single star topology, and its variation provides wider space conditions for the
implementation of cyber-attacks from the external environment [7,8]. At the same time, the
solution of distributed economic dispatch problems usually needs to be completed through
an iterative process, which provides wider time conditions for attackers to implement
cyber-attacks. Once one or more nodes in the system suffer from cyber-attacks, the false
information will quickly spread to all nodes, preventing the distributed economic dispatch
system from running in the optimal state, and even causing system instability. In addition,
the prerequisite for the successful implementation of distributed economic dispatch is that
each participant is “honest” and trusts and cooperates with each other. However, each
individual involved in the power system economic dispatch has independent control and
decision-making power in the distributed mode. Therefore, a small number of individuals
may carry out malicious behaviors to gain more economic benefits, which destroys the
optimal operating state of the system and damages the overall economic benefits of the
system [9].

If there is no security protection mechanism in the system, it may fail to achieve
the goal of economic dispatch, result in data loss and heavy economic losses, and even
cause system instability due to cyber-attacks or malicious behaviors. Therefore, based on
collecting and summarizing the existing literature and research, this paper comprehensively
reviews information security issues in distributed economic dispatch. It covers the types,
hazards, and preventive measures of information security issues, and suggests areas for
future research. The work of this paper will provide some guidance for the subsequent
design of the distributed integrated security and economic dispatch strategy of the new
generation power system.

The structure of this paper is as follows: In Section 2, two typical information security
issues, namely external cyber-attacks and internal malicious behavior, are introduced and
qualitatively evaluated. Furthermore, the countermeasures of external cyber-attacks and
internal malicious behaviors are summarized in Sections 3 and 4, respectively. Finally,
based on the current research situation, the model building of information issues and the
security defense system are discussed in Section 5.

2. Information Security Issues in Distributed Economic Dispatch Systems

The three elements of power system information security objectives are confidentiality,
integrity, and availability, or “CIA” for short [10]. From the perspective of breaking or vio-
lating the three elements of security, the information security issues of economic dispatch
in the new generation power system will arise from both internal and external sources of
the system [11]. Figure 1 shows the information security issues of the distributed economic
dispatch system. Data acquisition equipment, mainly using phasor measurement units
(PMUs), collects voltage and current data from the power distribution network and DGs,
calculates active and reactive power, and uploads the data to communication networks.
Based on the uploaded power and other data information, the designed distributed eco-
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nomic dispatch strategy calculates output commands for DGs and adjusts their output
through control equipment. Similar to existing cyber-physical systems (CPSs), the external
information security concerns mainly arise from a series of attacks targeting communication
networks and PMUs. Furthermore, the internal information security issues are specific to
distributed economic dispatch systems and are caused by the malicious behavior of selfish
nodes within the system.
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2.1. External Cyber-Attacks

External network attacks mainly target physical equipment and communication net-
works. As a crucial piece of data acquisition equipment, PMU data directly impact the
operational effectiveness of system monitoring, early warning, protection, and dispatch
control. Cyber-attacks causing abnormal PMU data include false data injection (FDI) attack
and time synchronization (TS) attack [12]. According to the different means of attack
on communication networks, the attacks can be divided into information attacks and
communication attacks. Information attacks are usually implemented on the cyber side
to manipulate the transmitted information, and for FDI attack and replay attack [13,14].
Communication attacks usually target communication links or channels to disrupt commu-
nication to affect system information interaction, and the denial of service (DoS) attack is
the most important type of communication attack.

2.1.1. TS Attack

PMUs digitize voltage and current sampled signals from voltage transformers and
current transformers using analog-to-digital converters [15,16]. These signals are processed
by phasor computation modules and synchronized with GPS to generate phasor measure-
ment data with timestamps. PMUs synchronize time using civilian GPS, which does not
require authentication, making them vulnerable to a GPS spoofing attack, also known as a
TS attack. The attacker first emits interference signals to disrupt GPS receivers, preventing
them from receiving accurate GPS information. They then spoof incorrect GPS signals
to the receivers, altering the time signal of PMUs and introducing errors in phase angle
measurements. Synchronized measurement data under TS attack can be represented as
follows [12]:

zTS
t = ej∆θt zt (1)

∆θt = 2π f ∆tatt (2)

where zt is the normal phasor measurement data at time t for the PMU; zTS
t is the phasor

measurement data for the PMU at time t under TS attack; ∆θt represents the phase shift
caused by the TS attack at time t for the PMU; ∆tatt represents the time deviation caused by
the TS attack at time t for the PMU; f is the frequency of the power system.
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The phase shift caused by a TS attack directly alters measurements such as active
power, which affects the decisions in distributed economic dispatch and increases the
operating costs of the power system. Furthermore, measurement data under TS attack
may affect system state estimation and dispatch controls, potentially leading to cascading
failures or widespread blackout incidents. TS attack can compromise data integrity without
physical network access, and current GPS receivers have difficulty detecting false GPS
signals [17–19].

2.1.2. DoS Attack

In a DoS attack, the attacker sends a large number of invalid messages to the neigh-
boring nodes to block the communication link and disrupt the normal transmission of
information in the communication network. The effect of a DoS attack on a communication
network is equivalent to the loss of data packets, which results in the failure of information
transmission between nodes. The communication link with data packet loss can be consid-
ered as disconnected, so the topology of a communication network subjected to DoS attack
is changed from a fixed topology to a time-varying one [20,21]. Due to the randomness of
DoS attack, the attack may occur at any communication time and on any communication
link. The communication topology of the system after a DoS attack will have two types, as
shown in Figure 2 [22].
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In Figure 2a, the attacker concentrates resources to block all the communication
links of a node so that it cannot communicate normally with its neighboring nodes. The
node is isolated in the communication network, and the system communication network
topology becomes an unconnected graph. In Figure 2b, the attacker performs information
blocking only on one or more communication links of a node. However, the node still
maintains communication with some of its neighbors and the system communication
network topology remains connected.

2.1.3. FDI Attack

In an FDI attack, the attacker injects predetermined false data into PMU measurement
data [23] or communication data in communication networks [24], thereby compromising
data integrity and authenticity. The system makes dispatch decisions based on PMU
measurement data and communication data. Therefore, the false data directly affect the
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dispatch or state estimation of the system, leading to deviations from the economically
optimal state. This will result in increased operational costs or economic losses and may
even lead to serious power incidents.

A stealthy attack is a common well-coordinated and designed malicious FDI attack [25],
whose attack signals can bypass protection mechanisms such as bad data detection without
triggering alarms. Furthermore, it will usually cause the system to operate in a non-optimal
state, resulting in economic losses. Stealthy attacks can be categorized into offline and
online forms [26]. The former injects false data into the consensus formation process of
distributed algorithms, which usually does not destroy the convergence of the algorithms.
However, it will lead to the imbalance of supply and demand power and the decrease
in the consensus efficiency of distributed algorithms, and will also cause the distributed
system to deviate from the optimal operating point. The latter injects false data into the
cost parameters of power generation, which can increase the operating cost of the power
system while maintaining the balance of supply and demand power.

2.1.4. Replay Attack

A replay attack compromises data integrity by maliciously intercepting and then
retransmitting data [27]. In a replay attack, the attacker first intercepts and records the
normal transmission data and then selects some of the normal data to transmit to the
neighbor nodes in the form of data duplication or data delay [28]. A replay attack allows
the attacker to obtain the system data so as to grasp the system operation status, which
destroys the closure of the system. In addition, a replay attack will cause some nodes to
receive incorrect information, which will degrade the system performance and even cause
a loss of stability.

2.2. Internal Malicious Behaviors

The internal information security issues of distributed economic dispatch systems
arise from the malicious behaviors of some nodes participating in economic dispatch to gain
more economic benefits, and can be categorized into deception behavior and fraud behavior.

2.2.1. Deception Behavior

Deception behavior is similar to external deception attack, but performed by selfish
nodes within the system. Depending on the scale, the deception behavior can be performed
by a single individual [29] or by multiple cooperating individuals [30]. In single individual
deception, a single selfish node injects random data to interfere with the distributed
algorithm. The node sends misleading messages to the neighbor nodes to influence the
consensus process of the distributed system, and affects the operation of the system to
converge to the desired target value of the selfish node. Therefore, single individual
deception destroys the optimal economic operation of the system and benefits the selfish
node. In multi-individual cooperative deception, multiple selfish nodes cooperate to launch
deception behaviors to their neighboring nodes, dragging all the common nodes to the
operating state of the selfish nodes, causing greater economic losses in the system.

2.2.2. Fraud Behavior

Fraud behavior is the behavior of selfish nodes that participate in distributed algo-
rithms by falsely modifying their information to gain benefits. Depending on the modifica-
tion of the selfish node’s information, the fraud behavior can be classified into constraint
fraud behavior [31] and cost fraud behavior [32]. In constraint fraud behavior, selfish nodes
use false constraints when their neighbor nodes participate in the distributed algorithm,
and the rest of the nodes optimize their objective function by considering their original
constraints. The selfish nodes use false constraints to make the system to run in their own
profitable operating state by reducing their own cost function. Cost fraud behavior is a
false modification of the true cost function by the selfish nodes, resulting in a coordination
process that is more favorable to their self-interest.



Electronics 2024, 13, 2680 6 of 21

Overall, internal malicious behaviors are implemented by internal selfish nodes
to improve their own economic interests. Therefore, the behaviors only decrease the
overall economic efficiency of the system and generally do not affect other aspects of
system performance.

2.3. Impact Assessment of Information Security Issues

Based on the above analysis, Table 1 synthesizes the characteristics of various types of
information security issues in distributed economic dispatch systems.

Table 1. Characteristics of the information security issues.

Information Security Issues Type Means Purpose

External cyber-attack

TS attack Tampering with data timestamps Destroying information integrity
DoS attack Communication interruption Disrupting communication availability
FDI attack Injecting false data Destroying information integrity

Replay attack Tampering with real-time data Destroying information integrity

Internal malicious behavior
Deception behavior Injecting false data Undermining system economy

Fraud behavior Tampering with one’s
own information Undermining system economy

This paper qualitatively evaluates the impact of external attacks using six indicators:
communication availability, information integrity, data confidentiality, system economy, de-
structiveness, and stealthiness of the attack, as shown in Figure 3. A TS attack is extremely
stealthy and destroys data integrity by spoofing incorrect GPS signals to the GPS receivers
in PMUs and tampering with timestamps. A DoS attack affects the information communi-
cation by disrupting the communication channel, causing certain damage and economic
loss to the system. An FDI attack in deception attacks has a high degree of stealthiness
and destructiveness by intercepting the communication information and injecting false
information, causing the system to operate in non-optimal conditions, and resulting in
economic loss to the system. A replay attack in deception attacks also has a high degree
of stealth and attacks in real time through the means of communication data duplication
or delay, resulting in the degradation of the system performance and a certain amount of
economic loss.
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Internal malicious behaviors, which are dishonest behaviors performed by internal
malicious nodes in order to improve their own economic interests, only reduce the overall
economic benefit of the system and do not cause any other impact.
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3. Countermeasures for External Cyber-Attack

In this paper, the strategies to respond to external cyber-attacks on the system are
categorized into pre-attack prevention, detection during the attack, and suppression during
the attack, which can be analyzed according to the different defense stages [33].

3.1. Pre-Attack Prevention

Some of the more researched pre-attack prevention methods include communication
authentication, data encryption, and secure communication mechanisms based on emerging
technologies, as shown in Figure 4.
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Communication authentication: Communication authentication verifies the identity of
the communicating parties and confirms whether the communication information is com-
plete or modified. At present, digital signature technology [34,35], digital certificates [36],
and anonymous authentication technology [37] are widely used, which can effectively pre-
vent many types of attacks. In addition, communication authentication based on the hash
tree has also been promoted and applied. Ref. [38] proposes an authentication scheme based
on the Merkle hash tree, which has low operational cost and computational complexity, and
can effectively defend against FDI attack and replay attack. Ref. [39] proposed a trusted
sensing foundation based on hash message authentication, encrypting measurement data
in PMUs to effectively prevent attackers from conducting an FDI attack.

Data encryption: In order to ensure the integrity and confidentiality of data, informa-
tion is usually encrypted by specific means before it is transmitted. Currently, there are two
main types of encryption algorithms: symmetric encryption algorithms and asymmetric
encryption algorithms. The former is single key encryption, which means that the same
key is used for both the encryption process and the decryption process. The commonly
used symmetric encryption algorithms are the data encryption standard (DES) [40], the
triple data encryption standard (3DES) [41], the advanced encryption standard (AES) [42],
and cryptography algorithms SM1 and SM4 formulated by China’s National Commercial
Cryptography Management Office. The asymmetric encryption algorithms are public key
encryptions, where the public key and secret key exist in pairs; the public key is pub-
licly released and the secret key is held by the user. Asymmetric encryption algorithms
include elliptic curve cryptography (ECC) [43,44], Rivest–Shamir–Adleman (RSA) [45],
the Paillier cryptosystem [46], and cryptography algorithms SM2 and SM9 formulated by
China’s National Commercial Cryptography Management Office. In addition, in order
to improve the speed of communication encryption and decryption while ensuring the
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security of communication information, researchers have started to try to combine mul-
tiple encryption algorithms to improve the performance, such as ECC-AES encryption
algorithms [47], improved DES-RSA hybrid encryption algorithms [48], and AES-RSA
hybrid [49] encryption algorithms.

Secure communication mechanisms based on new technologies: In addition to com-
munication authentication and data encryption, two traditional means to prevent external
attacks, new information security technologies represented by trusted computing technol-
ogy [50] and blockchain technology [51], are also gradually applied to prevent information
attacks in power systems. Based on trusted computing technology, the trusted communi-
cation channel is established between communication nodes to achieve trusted identity
authentication of the communication nodes, which can ensure the integrity and trustwor-
thiness of communication data and prevent tampering by cyber-attackers [52]. Blockchain
technology has the characteristics of decentralization, data security and trustworthiness,
non-tampering, and programmability, which can provide reliable technical support for
power system communication [53].

3.2. Detection during Attack

According to the different operation mechanisms, the more researched and applied at-
tack detection methods mainly include signature-based detection, anomaly-based detection,
and hybrid detection [54,55], as shown in Figure 5.
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3.2.1. Signature-Based Detection

This type of detection is mainly applied to known or previously experienced attack
methods and attack types. It is usually necessary to first build a database of attack be-
havior signatures, and then compare the real-time data with the signature database to
detect attacks. Currently, the main attack detection methods based on this mechanism are
the following:

State transition analysis [56,57]: This method is based on a state transition diagram,
where each attack behavior is defined by its initial state, attack state, and the conditions
for transition between states. These state transitions are represented in a state transition
diagram and integrated into the detection model, where the state transition conditions are
the signatures of different attacks.
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Expert system [58]: The conclusions are drawn from known attacks based on the expert
experience and translated into fixed rules or conditions. When any one of the conditions is
met, an attack is proven to have occurred and the type of the attack is identified.

Petri nets [59,60]: Petri nets are used to represent the initial state, attack state, and
state transition features under attack behaviors, and are integrated into the model to judge
the occurrence of the attack behavior based on whether the state transition conditions are
satisfied or not.

Conditional probability [61]: For each attack behavior, a corresponding sequence of
events is established, and then the probability of the attack occurring is inferred according
to Bayes theorem.

Blacklist and whitelist [62,63]: By creating a blacklist based on known attack behaviors,
any attack behavior that exists in the blacklist will be detected. Conversely, by creating
a whitelist based on legitimate behaviors, the detection information is verified and any
behavior that does not exist in the whitelist will trigger the alarm.

A signature-based detection mechanism can effectively detect known attacks with
high detection accuracy and low error rates. However, the disadvantage is that it cannot
detect the attack types that are not in the signature database, and this type of detection
mechanism tends to fail when the attacker slightly changes the attack signatures. Therefore,
this detection mechanism needs to periodically update the signature database.

3.2.2. Anomaly-Based Detection

Anomaly-based detection is based on the normal state of the constructed system. When
the real-time operational data deviate significantly from the normal state or exceed the
predefined threshold, the system is considered to have abnormal behavior, indicating that it
is suffering from an attack. Anomaly-based detection methods are mainly divided into two
categories: statistical-based methods and artificial intelligence-based (AI-based) methods.

The core idea of statistical-based methods is to use statistical methods to build a
statistically generative model. In the model, data with probability values below a threshold
are considered anomalous, indicating that a cyber-attack has occurred. This class of
method can be further categorized into two subclasses: parametric and nonparametric
detection methods [64]. Parametric detection methods assume a basic distribution model
of the data and estimate the parameters of the distribution model based on empirical
data. Representative methods of parametric detection include the Gaussian mixture model
(GMM) [65] and the regression model [66]. Nonparametric detection methods do not rely
on any distribution model, and the main methods include the Markov model [67,68] and
kernel density estimation (KDE) [69]. Ref. [70] proposed a modified state estimator based
on Kalman filtering and designed a chi-square-based detection method to detect FDI attacks
on PMUs by integrating attacked estimation information with undamaged measurement
information. Statistical-based detection mechanisms are easy to implement and have a fast
detection speed after the model is constructed. However, the detection accuracy is highly
dependent on empirical data and model assumptions, and insufficient empirical data are
likely to lead to erroneous detection results.

AI-based detection methods extract the abnormal state when the attacks occur through
machine learning, and distinguish the normal state from the abnormal state caused by the
attacks through classification or clustering algorithms. AI-based detection methods can be
further categorized into two subclasses: supervised learning and unsupervised learning.

Unsupervised learning utilizes unlabeled data to obtain unknown feature relation-
ships between data through model training, and can be categorized into the dimensionality
reduction model, clustering model, and neural network model according to the different
learning methods. Principal component analysis (PCA) can reduce the dimensionality of
high-dimensional data, remove noise and unimportant features, and effectively separate
normal and abnormal data without losing important information, so it is often used for data
processing before machine learning training [71]. However, PCA is a linear dimensionality
reduction and cannot realize nonlinear dimensionality reduction. The neighborhood pre-
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serving embedding (NPE) algorithm not only achieves linear and nonlinear dimensionality
reduction, but also has better detection results than PCA [72]. Compared with the dimen-
sionality reduction model, the K-means clustering method [73] reduces the computational
complexity, is easy to implement, and has better performance in attack detection. With
the development of the smart grid, the amount of power system data will be explosive
and characterized by a nonlinear structure, data imbalance, and missing data. Therefore,
it will be difficult for traditional methods to improve the detection ability. As a result,
unsupervised neural network models such as sparse autoencoders (SAEs) [74], genera-
tive adversarial networks (GANs) [75], deep belief networks (DBNs) [76], and stacked
autoencoders (SAs) [77] are gradually being applied to solve these issues.

Supervised learning detection methods use labeled data to train the model and obtain
the optimal relationship model among the known features in the data, and usually pro-
vide better detection performance compared to unsupervised learning detection methods.
Usually, supervised learning can be categorized into classification and regression models,
and neural network models. Among the classification and regression models, logistic
regression (LR), the K-nearest neighbor (KNN) algorithm, naive Bayes (NB), decision tree
(DT), support vector machine (SVM), and random forest (RF) are widely used [78–82].
Ref. [83] utilized a support vector regressor (SVR) to extract an affine relationship within
PMUs, for verifying FDI attack on PUM measurement data and identifying injected false
data. In general, detection methods based on DT have the highest accuracy and correct-
ness. The KNN algorithm and SVM show high accuracy in small-sample data but have
high computational complexity. LR is simple to compute and easy to implement, and is
effective for binary classification problems. NB has low data quality requirements and
is insensitive to missing data. RF has a high level of resistance to overfitting. With the
increasing requirements for computational power and the development of neural network
models, researchers have gradually applied neural network models such as the recurrent
neural network (RNN) [84], convolutional neural network (CNN) [85], long short-term
memory (LSTM) neural network [86], multi-layer perceptron (MLP) [87,88], and vector
neural network (VNN) [12] to detect attacks on PMUs and communication networks. Com-
pared with traditional machine classification and regression detection algorithms, neural
network-based detection models have powerful nonlinear feature extraction capabilities
and better detection and identification results.

Overall, artificial intelligence-based detection methods are able to adjust the model in
time according to the changes in data information and have high detection accuracy, but
they incur a high cost by consuming a large amount of resources, and may not be able to
provide accurate detection results when there are insufficient sample data.

3.2.3. Hybrid Detection

Hybrid detection methods combine two or more of the above detection strategies.
By combining multiple detection mechanisms, the accuracy of attack detection can be
improved. When signature-based strategies are used in conjunction with anomaly-based
techniques, the hybrid system can detect intruders attempting to modify attack signatures
stored in the model database [89]. To improve the system performance, several fusion
methods and techniques are sometimes adopted to integrate detection models. Ref. [73]
significantly reduces the time complexity and improves the detection accuracy by combin-
ing K-means clustering and SVM. Ref. [90] uses PAC for data dimensionality reduction
and then detects attacks through a hybrid RF-SVM classification model. Ref. [91] used
a hybrid CNN-LSTM attack detection model with particle swarm optimization to detect
anomalous data in PMUs and determine the type of attack, combining the advantages of
both neural network models. Ref. [92] proposed a transformer-bidirectional long short-term
memory (BLSTM) attack detection model to detect phase shifts in PMU measurement data
caused by TS attack. Ref. [93] proposed a model and dual data-driven TA attack detection
mechanism, which included two model threshold-based detection methods and detection
using an autoencoder neural network (AENN) and RF, and demonstrated good detection
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performance against TS attack. Combining different approaches can make the detection
system more robust, but the detection results are not always optimal. In fact, developing
hybrid detection systems from different approaches that can interoperate effectively is a
challenging task.

3.2.4. Comparison of Detection Methods

A comparison of the three methods, signature-based detection, anomaly-based de-
tection, and hybrid detection, is shown in the Table 2. The false positive rate represents
the probability that the detection model will consider normal data as attack data; the false
negative rate represents the probability that the detection model will consider attack data
as normal data.

Table 2. Performance comparison of classification detection methods.

Metrics Signature-Based Detection Anomaly-Based Detection Hybrid Detection

Complexity Low Medium High
Detection Accuracy High Medium High
False Positive Rate Very low High Low

False Negative Rate Medium High Low
False Alarm Rate Low High Medium

Implementation Cost Low Medium High

3.3. Suppression during Attack

Currently, there are several methods to mitigate the impact of cyber-attacks:
Attack vector removal: Attack vector removal refers to removing the attack-injected

portion of the attacked measure values and restoring the measure data to its original state
to mitigate the impact of data integrity attacks [33]. Ref. [94] used a matrix decomposition
technique to decompose the communication information matrix into a low-rank measure
value matrix and a sparse attack matrix, and the actual measure matrix is obtained after
removing the attack matrix. In addition, some neural network algorithms have been
applied to recover communication data during attacks. CNN [95], GAN [96], and the
denoising autoencoder (DAE) [97] can eliminate the biases caused by attacks and recover
the communication values affected by FDI attack.

Designing compensators. Designing compensators is a common and straightforward
method used to mitigate DoS attack by compensating for lost data to protect the communi-
cation channel [98]. Ref. [99] established model-free predictive compensation to predictively
compensate for the problem of communication data loss caused by DoS attack by obtaining
the supply–demand imbalance power. Ref. [100] designed a CNN-LSTM hybrid deep
neural network compensator, which can effectively solve the problem of data loss due to
DoS attack.

4. Countermeasures for Internal Malicious Behavior

Currently, research on power system information security issues mainly focuses on
external network attacks, while research on selfish nodes implementing malicious behaviors
in distributed economic dispatch scenarios is relatively rare. Countermeasures for internal
malicious behaviors usually include detection and prevention.

4.1. Detection of Internal Malicious Behavior

According to the different mechanisms, the current malicious behavior detection
methods mainly include two categories: trust management and AI-based.

In the trust management detection mechanism, the nodes in the system repeatedly
interact with each other and get information to evaluate the reputation of the nodes. The
nodes then distinguish between normal nodes and malicious nodes and ensure that only
trusted nodes can participate in network communication [101]. With the widespread
application of blockchain technology, many researchers have also combined the blockchain
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with trust management. Reputation values are stored in the blockchain, which ensures the
invariance, decentralization, and availability of data [102,103].

AI-based detection mechanisms: In the field of network information intrusion de-
tection, neural network models have been very popular for identifying and classifying
anomalous behavior. Ref. [104] proposed three online detection and localization strategies
for malicious nodes based on neural network models with a temporal difference, spatial
difference, and frequency difference, which showed significant detection and localiza-
tion performance. Based on the CNN technique, Refs. [29,105] implement the detection
and localization of internal malicious nodes in a gossip-based distributed projected
gradient algorithm.

4.2. Prevention for Internal Malicious Behavior

The currently recognized effective means of preventing and controlling malicious be-
havior by selfish nodes is the application of resilient distributed algorithms. The algorithms
isolate selfish nodes in the communication network or ignore their communication data,
while normal nodes maintain communication with each other and continue to execute
the distributed algorithms. Ref. [106] proposes a resilient distributed algorithm based on
trusted nodes, which achieves consensus among normal and trusted nodes after excluding
selfish nodes. This idea of completely removing malicious information was then further
extended to a family of algorithms known as mean subsequence reduced (MSR) algo-
rithms [107]. The idea of this class of method is that a normal node ranks the information
values received from all its neighbors in order of magnitude. The normal nodes then
remove the F largest and F smallest values (F represents the estimated upper bound of
nodes performing malicious behavior), and use only the remaining information to update
their own state.

The method is likely to discard some normal information, resulting in slower system
convergence. To overcome this problem, the weighted MSR (W-MSR) [108] algorithm and
event-based MSR (E-MSR) [109] algorithm have been successively proposed. The former
calculates the weighted average of the filtered valid information, and the latter achieves
resilient consensus by reducing the frequency of information exchange between nodes
through event-triggered mechanisms. Both algorithms can effectively reduce the impact
of the malicious behavior of the selfish nodes on the convergence speed of the distributed
algorithm and the economy of the system.

5. Prospects for Information Security Measure Methods in Distributed Economic
Dispatch Systems

The current research on information security lacks consideration of the cyber-physical
coupling characteristics, and single cyber-side defense measures still have a defense blind
spot and cannot promptly respond to the physical-side actions. Therefore, cyber-physical
coupling needs to be considered in subsequent research. Combined with previous analysis,
this section discusses two aspects: information security issues models and the integrated
security defense system.

5.1. Information Security Issues Model

The basis for solving the internal and external information security issues in distributed
economic dispatch systems is to construct the dynamics model of the system in distributed
control mode, and further integrate the external cyber-attack model and internal malicious
behavior model from the perspective of the power CPS.

5.1.1. New Generation Power System CPS Model

The new generation power system CPS combines power information technology
with the power physical system, where the power flow and information flow coexist and
influence each other. The continuous dynamic behavior of the power system is coupled
with the discrete dynamic behavior of the information system to improve the control and
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operation performance of the power system. However, because of the high level of cyber-
physical coupling, the information security issues may lead to cascading failure reaction of
the power system, thus affecting the safe and stable operation of the system. Therefore, the
construction of a CPS model adapted to the new generation power system is the basis and
premise of the prevention and control of information security issues.

At present, the research on the construction of the power CPS model mainly focuses
on traditional centralized control systems, and lacks research on the power system under
distributed control. Constructing a new generation power system CPS model is crucial
for preventing and controlling information security problems in power systems under
distributed control. This involves considering changes in real-time physical and commu-
nication topology, the mutual conversion of power and information flows, as well as the
cyber-physical interaction process.

In this paper, the active distribution network model [110] is combined with a dis-
tributed economic dispatch strategy [111] to propose a preliminary distributed economic
dispatch model system that considers the cyber-physical coupling. The model is formulated
as follows: [ .

λ
.
xDG

]
=

[
Cλ Aλ

CDG ADG

][
λ

xDG

]
+

[
Bλ

BDG

]
udq (3)

where Aλ = (−LB1APSi + Fi)M; Bλ = −LB1APSu + Fu; Cλ = LB2; LB1 = diag{0, L + D}.
xDG is the state variable of the DG control model; λ is the incremental cost of power
generation by the DG; udq denotes the dq-axis component of the grid-connected voltage of
the DG; ADG and BDG are constant matrices related to the parameters of the DG control
model; CDG is related to the parameters of the DG control model and to the power-cost
function of the DG; M is a constant transformation matrix; L and D are the Laplacian
matrix and degree matrix of communication topology of the nodes except the leader node,
respectively; LB2 is the degree matrix of the communication topology of the leader node
with other nodes; Ap is related to the power-cost function of the DG; Si, Su, Si, and Fu are
related to the active power emitted by the DG.

The most important communication data in the distributed economic dispatch system
are the incremental cost of generation of each DG, the change in which affects the control
of the DGs in the system. The following analysis preliminarily examines the impact of
information security issues on the system in conjunction with the distributed economic
dispatch model shown in Equation (3). The DoS attack blocks the communication link and
prevents normal communication, resulting in a change in the communication topology. The
parameters of the matrices L, D, and LB2 in the model that are related to the communication
topology are affected. The FDI attack and replay attack cause the active power of DGs
to deviate from the economic optimum by tampering with the incremental cost λ of the
communication transmission. Therefore, the matrices Aλ and Bλ are changed by the FDI
attack and replay attack. Similarly, the deception behavior tampers with the incremental
cost λ of the communication transmission, so that Aλ and Bλ are changed by deception be-
havior. Fraud behavior involves a spurious modification of the cost function, which affects
CDG and Ap in the model. Further research is needed to understand the impact of external
cyber-attacks and internal malicious behaviors on the stability and convergence of the
distributed economic dispatch system. This can be achieved by establishing mathematical
models and integrating them with the distributed economic dispatch model.

5.1.2. External Cyber-Attack Model

The current research of cyber-attack models usually separates the information system
from the physical system. Therefore, the complete attack and response process of the
cyber-attack is divided into two phases: information invasion of the information system,
and impact analysis and control of the physical system. This leads to the corresponding
defense measures only for a single information or physical level. The cyber-attack based
on the new generation power system CPS has new characteristics. It contributes to the
construction of the cyber-physical hybrid model of the cyber-attack that considers the cyber-
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physical coupling and clearly studies the relationship between the information attack and
the physical response. In addition, the subjective behaviors of the attackers will significantly
increase the randomness of cyber-attacks, making cyber-attacks more difficult to detect
and their effect more difficult to control. Therefore, by introducing the knowledge of game
theory, such as offensive and defensive games, human intention is considered as a factor in
the modeling of cyber-attacks.

5.1.3. Internal Malicious Behaviors Model

Internal malicious behaviors with extremely stealth are difficult to manage and defend
in the distributed economic dispatch system. The behaviors hide malicious data in a large
amount of normal data in order to seek benefits and destroy the economic operation of the
system. Processing historical data and extracting the characteristics of malicious behaviors
implied in the data, and using the portrait method to portray the malicious behavior
pattern, can improve the accuracy of judging the malicious behaviors of the internal
members in the distributed economic dispatch system. Similarly, the implementation of
malicious behavior is accompanied by human intention and psychological fluctuations. The
behavioral performance and psychological state of the implementer of malicious behaviors
can be inferred from game theory and a psychological perspective. The possibility of the
occurrence and development of malicious behavior can be judged.

5.2. Integrated Security Defense System

The current defense measures for information security issues mainly focus on cyber-
side detection and suppression. In the future, it will be necessary to design corresponding
defense measures based on the information security issues model from the perspective of
the new generation power system CPS. Additionally, constructing the distributed economic
dispatch information security issues defense system is crucial.

5.2.1. Secure Measurement Technology Based on PMU

The GPS timing and communication methods of PMUs have information security risks,
and their measurement and communication data are vulnerable to TS attack and FDI attack,
respectively. The measurement data provided by PMUs serve as a critical foundation
for power system state estimation, situational awareness, and dispatch control. Any
anomalies in the data caused by attacks can lead to erroneous system decisions, ultimately
threatening the security and stability of the power system. To ensure reliable support for
economic dispatch in the power system, it is imperative to establish secure measurement
technology based on PMUs. Firstly, at the active defense level, the system should be made
more resistant to attacks by improving physical devices. This includes developing secure
cryptographic chips to encrypt the communication of measurement data and enhancing the
anti-interference capability of GPS signal receivers. Secondly, the detection and recovery
from attacks are paramount, constituting a critical step in mitigating PMU information
security risks. A deep analysis needs to be conducted of the time synchronization deviation
characteristics and specific effects on phasor measurement and communication caused
by the TS attack and FDI attack. Based on these attack characteristics, it should fully
utilize PMU measurement data to develop local detection and recovery methods based on
temporal features, and integrate system topology and parameter information to establish
regional detection and recovery methods based on data spatio-temporal correlations.

5.2.2. Defense Technology Support Base on Blockchain

The rapid development of information security technology, represented by trusted
computing technology and blockchain technology, provides a new solution to address the
information security of the distributed economic dispatch system. In particular, blockchain
technology is well suited to the characteristics of the new generation power system, as
shown below. The decentralized characteristics of the blockchain correspond to the dis-
tribution characteristics of power sources and loads in the new power system. The new
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power system in the future will be dominated by DGs such as wind power and photo-
voltaic power. Blockchain technology ensures data integrity through encryption algorithms,
which provides a degree of prevention against cyber-attacks. Each block is timestamped
and arranged chronologically in a chain structure to ensure data traceability, which can
prevent the malicious behaviors of selfish nodes that intentionally transmit false infor-
mation. Node information transmission adopts consensus algorithms, such as the PoW
algorithm, for attack detection and security strategy decisions to resist external cyber-
attacks. The blockchain provides a script code system and supports the application and
development of various scenarios, and smart contracts can be written according to the
actual application requirements.

Therefore, combining the specific application of the distributed economic dispatch
of the new generation power system, key blockchain technologies can be integrated into
various aspects of information security defense by taking it as a unified underlying technol-
ogy platform. This includes the following five aspects: the construction of a node identity
registration and authentication system, the construction of a communication data encryp-
tion and verification system, the design of a node punishment and incentive mechanism,
the compilation of a distributed economic dispatch smart contract, and the research into
new defense methods based on consensus mechanisms. These defensive means of realiz-
ing information security protection against external cyber-attacks and internal malicious
behavior are the next research direction to focus on.

5.2.3. Cyber-Physical Cooperative Defense System

Due to the deep cyber-physical coupling of the power CPS, the information security
issues on the cyber side and the stable operation status on the physical side are closely
related and mutually interacting. Separate security defense measures on the cyber side
cannot respond to failures or damages on the physical side, while real-time measurement
information on the physical side affects communication and decision-making on the cyber
side. Defense measures based on the cyber side are relatively mature. However, there are
also shortcomings such as high real-time information requirements, inability to simultane-
ously achieve high accuracy and low leakage rates in detection, and suppression measures
only targeting specific information security issues.

The cyber-physical cooperative defense in power systems can include attack detection
and identification, security risk assessment of the power CPS, security strategy decision-
making, and consensus. However, the following issues also need to be considered: (1) Data
heterogeneity and balance. In the power CPS, there is a coexistence of continuous physical
data and discrete information data, with significant differences in real-time and temporal
characteristics. Additionally, most of the data represent normal power system operations,
and there is a lack of relevant data for information security issues and defense. (2) Rational
utilization of information and physical resources. The physical side possesses defense
resources such as manpower, technology, and equipment. By optimizing the allocation of
physical defense resources and coordinating with cyber-side security defense technologies,
the defense effectiveness can be maximized.

Therefore, the construction of a cyber-physical cooperative defense system for the
power system is worthy of attention in the future. This needs to make full use of the
characteristics of interdependence and support between information and physics in the
power system and coordinate the allocation of defense resources.

6. Conclusions

This paper provides a thorough review of the information security problems of the
distributed economic dispatch system and its protective measures. Four kinds of external
network attacks and two kinds of internal malicious behaviors are introduced. This paper
emphatically summarizes the three-phase defense measures of prevention, detection, and
suppression for external network attacks, and the detection and prevention measures
for internal malicious behaviors. Most of the existing studies have failed to analyze the
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impact of information security issues on DGs and power systems, and the designed defense
measures only focus on the information layer without considering the cyber-physical
coupling of the power system. Therefore, future research on information security issues of
the distributed economic dispatch system can be mainly approached from the following two
directions. Firstly, it is necessary to consider the characteristics of cyber-physical coupling to
establish an information security issues model and analyze the impact on the performance
of the distributed economic dispatch system. The second aspect is to design the security
defense system. This includes the development of secure measurement technology based
on PMUs and cyber-physical collaborative defense strategies integrating new information
security technologies such as the blockchain. This article aims to review the current research
status of information security issues and provide guidance for future studies.
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Abbreviations
The following abbreviations are used in this manuscript:

DGs Distributed generations
PMUs Phasor measurement units
CPS Cyber-physical systems
TS Time synchronization
DoS Denial of service
FDI False data injection
DES Data encryption standard
3DES Triple data encryption standard
AES Advanced encryption standard
ECC Elliptic curve cryptography
RSA Rivest–Shamir–Adleman
GMM Gaussian mixture model
KDE Kernel density estimation
PCA Principal component analysis
NPE Neighborhood preserving embedding
SAE Sparse autoencoder
GAN Generative adversarial network
SA Stacked autoencoder
DBN Deep belief network
LR Logistic regression
KNN K-nearest neighbor
NB Naive Bayes
DT Decision tree
SVM Support vector machine
RF Random forest
SVR Support vector regressor
RNN Recurrent neural network
CNN Convolutional neural network
LSTM Long short-term memory
MLP Multi-layer perceptron
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VNN Vector neural network
BLSTM Bidirectional long short-term memory
AENN Autoencoder neural network
DAE Denoising autoencoder
MSR Mean subsequence reduced
W-MSR Weighted mean subsequence reduced
E-MSR Event-based mean subsequence reduced
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