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Abstract: Due to the frequent occurrence of extreme weather in recent years, accurate runoff prediction
is crucial for the rational planning and management of water resources. Addressing the high
uncertainty and multiple influencing factors in runoff prediction, this paper proposes a runoff
prediction method driven by multi-source data. Based on multivariate observed data of runoff, water
level, temperature, and precipitation, a Time2Vec-TCN-Transformer model is proposed for runoff
prediction research and compared with LSTM, TCN, and TCN-Transformer models. The results
show that the Time2Vec-TCN-Transformer model outperforms other models in metrics including
MAE, RRMSE, MAPE, and NSE, demonstrating higher prediction accuracy and reliability. By
effectively combining Time2Vec, TCN, and Transformer, the proposed model improves the MAPE for
forecasting 1–4 days in the future by approximately 7% compared to the traditional LSTM model and
4% compared to the standalone TCN model, while maintaining NSE consistently between 0.9 and 1.
This model can better capture the periodicity, long-term scale information, and relationships among
multiple variables of runoff data, providing reliable predictive support for flood forecasting and
water resources management.

Keywords: multi-source data; runoff prediction; Time2Vec; TCN; Transformer

1. Introduction

In recent years, with global warming and the frequent occurrence of extreme weather
events, we are facing an increasing threat from natural disasters such as floods and
droughts [1]. The uncertain meteorological conditions make the prediction of future
scenarios more complex [2]. Therefore, improving the quality of runoff prediction, consid-
ering issues at different scales, and integrating different features will help to adapt better to
today’s climate change. This will enable timely adjustments to water resource management
and disaster prevention measures, contributing to economic and social development, water
resource management, environmental protection, and the safety of people’s lives [3].

Runoff prediction models are mainly divided into two categories [4]: process-driven
models and data-driven models. Process-driven runoff prediction models are based
on physical formation processes, with practical physical significance, describing vari-
ous processes in hydrological systems through mathematical methods. For example,
Manguerra et al. [5] used the SWAT model to address important parameterization issues in
watershed hydrological runoff prediction modeling, successfully predicting stream runoff
in Indiana with abundant subsurface drainage. Data-driven runoff prediction models [6],
on the other hand, mainly rely on statistical and machine learning techniques, learning
patterns from historical observational data without the need for predefined physical laws.
For instance, Carlson et al. [7] used an autoregressive moving average (ARMA) model to
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analyze the annual runoff time series of rivers such as the Saint Lawrence, Missouri, Neva,
and Niger, successfully predicting the runoff of the Missouri River one year in advance. In
recent years, with the continuous development of artificial intelligence technology, deep
learning has been applied to the prediction field and has achieved significant results [8].
The main characteristic of deep learning models is their ability to automatically learn fea-
ture representations of data and model complex relationships through multi-layer neural
network structures. For example, Li et al. [9] tested the Long Short-Term Memory (LSTM)
network model in a watershed in Houston, Texas, using 10 years of precipitation and river
flow data from 153 rain gauges. They designed numerical experiments to evaluate the
performance of the established model in predicting river flow. Xuan-Hien Le et al. [10] used
Gated Recurrent Unit (GRU) networks to predict water levels at downstream locations
1–4 time steps ahead in the Anshou irrigation culvert of the Ro River in Vietnam. The
study results indicate that when the target forecasting station is significantly affected by
tides, the GRU model demonstrates good performance with only a small amount of data.
Additionally, Amanambu et al. [11] used Transformer for predicting hydrological data
in the Apalachicola River in Florida, showing that Transformer can accurately predict
hydrological droughts in the Apalachicola River, aiding in water resource planning and
drought mitigation in the region.

Additionally, single models are often limited in capturing nonlinear features, which
may result in issues such as low accuracy and poor stability. In contrast, hybrid models
demonstrate outstanding performance in terms of prediction accuracy and stability. For
example, Huiqi Deng et al. [12] combined CNN and LSTM to study their applicability in
runoff simulation and the impact of input parameters on model prediction performance.
The study showed that the CNN-LSTM model outperformed the LSTM model in predict-
ing daily runoff, significantly improving prediction accuracy. Guangchao Qiao et al. [13]
constructed a PSO-SVR long-term prediction model, using Particle Swarm Optimization
(PSO) algorithm to determine the penalty coefficient, insensitive coefficient, and gamma
parameter of the Support Vector Regression (SVR) Gaussian radial basis kernel function.
Experimental results demonstrated that compared to multiple regression analysis, the
PSO-SVR model exhibited higher prediction accuracy, stronger stability, and greater credi-
bility. Wenchuan Wang et al. [14] proposed a hybrid prediction model VF-EMD-SSA-ELM,
which combines Time-Varying Filtering (TVF) Empirical Mode Decomposition (EMD),
Salp Swarm Algorithm (SSA), and Extreme Learning Machine (ELM), applied to monthly
runoff forecasting at Manwan Hydropower Station, Hongjiadu Hydropower Station, and
Yingluoxia Hydrological Station. The experiments demonstrate that the prediction accuracy
of this model is significantly superior to that of individual models.

With the increase in data volume and diversification of data types, integrating multi-
source data with deep learning algorithms has become one of the key research methods
in the field of runoff prediction [15]. At the same time, constructing hybrid models as an
effective approach to improving prediction accuracy is widely applied. Faced with time
series prediction problems, early solutions typically used recurrent neural networks [16],
but traditional recurrent neural networks suffer from problems such as vanishing gra-
dients and exploding gradients, as well as difficulties in capturing long-term temporal
dependencies. Moreover, traditional GRU [17], LSTM [18], and various recurrent neural
networks are structurally similar to Markov decision processes [19], making it difficult to
learn global temporal information. In multivariate problems, traditional time series models
also struggle to capture the relationships between multiple variables and learn the feature
information of each variable. As convolutional neural networks are increasingly applied to
sequence problems [20], they provide more insights into multivariate time series prediction
tasks. With the development of artificial intelligence, Generative Artificial Intelligence
(Gen-AI) also provides new benchmarks for predictive practices [21]. Meanwhile, employ-
ing statistical tests such as Diebold–Mariano (DM) [22], Kolmogorov–Smirnov (KS) [23],
etc., assists in effectively assessing the accuracy and stability of models, further enhancing
the accuracy and efficiency of predictive tasks.
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Against this background, this study proposes a data-driven multivariate runoff pre-
diction model based on Time2Vec-TCN-Transformer, which predicts and evaluates daily
runoff. Experiments show that the Time2Vec-TCN-Transformer model significantly im-
proves prediction accuracy and reliability compared to traditional and single models.

2. Related Work
2.1. Time2Vec

Time2Vec, as a method of temporal encoding, employs a functional encoding calcu-
lation approach to obtain the relative positions of time series. It retrieves corresponding
vectors by indexing the position numbers through a matrix and then trains them [24].

Time2Vec has a periodic characteristic, where the periodic pattern primarily accounts
for seasonal variations in runoff prediction, while the non-periodic pattern captures extreme
natural events or anomalous situations. Time2Vec is capable of simultaneously handling
both periodic and non-periodic patterns, thereby comprehensively representing the features
of time series data, enabling the model to make more accurate predictions and analyses.
Moreover, Time2Vec exhibits stability, implying that the model maintains good performance
across different time ranges and is not prone to failure or performance degradation due
to changes in time scale. This stability enables Time2Vec to demonstrate good generality
and applicability when dealing with data of different time spans. Additionally, compared
to other encoding methods, Time2Vec is more easily embeddable into different types of
models. Its formula expression is as follows:

t2v(τ)[i] =
{

ωiτ + φi, i f i = 0
F (ωiτ + φi), i f 1 ≤ i ≤ k

(1)

In the equation, the time vector is denoted by τ, and its embedded time vector rep-
resentation is t2v(τ), with a size of k + 1; ω is the frequency parameter used to introduce
periodic components; φ is the phase offset used to adjust the initial phase of time encoding;
and F is an activation function for the period.

2.2. TCN

TCNs (Temporal Convolutional Networks) are a specialized type of convolutional
neural network. It is an improved version based on convolutional neural networks, in-
troducing dilated convolutions and residual modules for time series processing while
adhering to causality constraints [25]. TCNs feature gradient stability and higher efficiency.
Additionally, they avoids the risk of data leakage by not introducing future information.

2.2.1. Causal Convolution

Causal convolution is one of the key components in the TCN (Temporal Convolutional
Network) model, designed to simulate the sequential characteristics of time series data. In
tasks such as time series prediction, it is typically undesirable for the model to use future
information to predict current outputs, as this can lead to information leakage and model
instability. Causal convolution ensures that each output time step depends only on past
time steps of the input sequence and not on future time steps. When the causal convolution
kernel slides, it only moves forward, avoiding the acquisition of future information. In
other words, yt is determined by x0, x1, . . ., xt, rather than using future inputs, xt + 1,
xt + 2, . . . [26]. Additionally, the first TCN layer is a one-dimensional fully convolutional
network, where each intermediate layer has the same size as the input layer and uses
zero-padding of the same size to obtain subsequent layers of the same size [27]. This
characteristic enables causal convolution to simulate the temporal order of sequence data,
preventing information leakage and the utilization of future information, making it better
suited for tasks such as time series prediction.
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2.2.2. Dilated Convolution

Dilated convolution is an important technique used in the TCN (Temporal Convo-
lutional Network) model to capture long-term dependencies. In traditional convolution
operations, the receptive field of the convolution kernel is usually limited by the kernel size,
resulting in the model only capturing short-term time dependencies. Dilated convolution
is a convolution operation that increases the receptive field by introducing holes in the con-
volution kernel. This ensures that the receptive field of the convolution kernel is expanded
while maintaining the same input and output sizes, thereby capturing larger-scale temporal
sequence information [28]. The principle behind dilated convolution is to increase the
receptive field of convolution layers by introducing blank spaces based on dilation factors
in the convolution network, enabling the network to capture long-term dependencies in
sequences and improve the model’s generalization capability. The specific formula for
dilated convolution is as follows:

F(Xt) = (X∗
d F)(Xt) =

K

∑
k=1

fk · X(t−d)(K−k) (2)

In the equation, Xt is the value of the input time series at time step t, ∗ is the dilation
convolution operation, fk is the kth weight of the convolution kernel, K is the size of the
filter, d is the dilation factor, and the receptive field is denoted as F = (K − 1)d + 1.

2.2.3. Residual Connection

Residual connection is a method of transmitting information by adding the input to
the output [29]. The residual connection in the TCN consists of a one-dimensional fully
convolutional network and residual blocks. It connects the input data with the output
of the previous layer to train the model and avoid the vanishing gradient problem. The
model adds the input sequence to the sequence output of the convolutional layer. Unlike
traditional ResNet models that directly add the input sequence to the output sequence of
the residual block, which may fail to learn all useful information from residual blocks, TCN
adds an additional 1 × 1 convolution to ensure the input and output sequences have the
same size. If the dimensions of the input and output do not match, this convolutional layer
adjusts the input to return to the original number of channels. If the dimensions match, the
input is directly passed as the residual for backward propagation. Finally, the residual is
added to the output to obtain the final output.

2.3. Transformer

Transformer is a deep learning model architecture proposed by Vaswani et al. in
2017 [30] and widely used in NLP (natural language processing) tasks. The core of Trans-
former is the Self-Attention mechanism, which eliminates the sequential dependency
problem in traditional recurrent neural networks and convolutional neural networks by
introducing attention mechanism. This enables Transformer to process different positional
information in input sequences in parallel, playing an excellent role in various NLP tasks.
In recent years, Transformer has also been applied in the field of time series prediction.

The Transformer model consists of multiple encoder layers and decoder layers. How-
ever, in time series prediction, the decoder part can be omitted. On the one hand, this can
reduce computational costs, and on the other hand, it can reduce the risk of overfitting [31].
Transformer includes the following components:

1. Embedding Layer: Similar to the embedding layer in NLP, each time step in the time
series data is encoded through the embedding layer to transform it into a vector
representation. These vector representations contain information about the time step
as well as other relevant features.

2. Positional Encoding: Since Transformer lacks built-in capabilities to handle temporal
information, positional encoding is added to inform the model about the relative
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position of each time step. This can be achieved by adding positional encoding vectors
to the embedding vectors. The specific formula is as follows:

PE(pos, 2i) = sin(
pos

10000
2i

dmodel

) (3)

PE(pos, 2i + 1) = cos(
pos

10000
2i

dmodel

) (4)

In the equation, pos denotes the position information.
3. Self-Attention Mechanism: Self-attention mechanism aids the model in capturing

dependencies between different time steps in a sequence. It allows the model to
selectively attend to other time steps for each time step to determine their importance
to the current time step. This enables the model to capture long-term dependencies
in the time series. Self-attention mechanism is a type of attention mechanism that
reduces reliance on external information and is better at capturing internal correlations
within data or features. Compared to traditional recurrent neural networks, it exhibits
superior parallel computing capabilities.
This module has three input vectors—query vector Q, key vector K, and value vector
V—all of which are computed from input vectors. By computing the dot product
of a single query vector and all key vectors, dividing it by

√
dk, and then applying

a so f tmax function to obtain corresponding weights, the model weights the value
vectors. The specific formula is as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (5)

In the equation, dk represents the dimensionality of the query vector Q and the key
vector K.

4. Residual Connection: This allows the network to focus only on the current differences,
preventing the problem of vanishing gradients caused by deepening network layers.

5. Feedforward Neural Network: It is a two-layer fully connected layer that further
processes the output of the self-attention mechanism.

6. Output Layer: The output of the encoder layer is fed into a fully connected output
layer to generate predictions for the time series. Meanwhile, the dimensionality of the
output layer matches the dimensionality of the time series.

2.4. Time2Vec-TCN-Transformer Prediction Model

Due to the influence of multiple factors on runoff changes, this paper adopts a
multivariate input single-variable output mode for design. Combining the mechanisms
of Time2Vec, TCN, and Transformer, a Time2Vec-TCN-Transformer model is proposed.
Figure 1 shows the structure of the Time2Vec-TCN-Transformer model. The model reads
the data using a sliding window approach, with a stride of 7 and a batch size of 128. MSE
(Mean Squared Error) is used as the loss function, Adam is used as the optimizer, and the
learning rate is set to 0.001. The specific workflow is as follows:

1. First, select four feature variables including daily runoff, water level, temperature,
and precipitation as input data, with daily runoff as the output data. Then, perform
normalization to uniformly adjust the original data to the interval [0, 1], to accelerate
the convergence speed of the model and improve the prediction accuracy.

2. After preprocessing, Time2Vec is used as the positional embedding. The data are
mapped from the original 4-dimensional feature space to a 64-dimensional hidden
space using Time2Vec, which introduces periodic features of time using sinusoidal
functions. Then, the data are mapped back to the original dimensionality through
linear transformation and fed into the TCN layer. Time2Vec is employed to address
the lack of a learnable encoding mechanism in Transformer.
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3. In the TCN layer, multiple convolutional layers are utilized to extract features from
the input time series data. Dilated convolution is employed to capture longer-term
temporal dependencies. Weight normalization and ReLU activation functions are used
as residual connections between layers. The output is then fed into the Transformer
layer. Specifically, a hidden layer with units [1,4,16,64] is defined. The convolutional
kernel size is set to 1 × 3, and the dilation factors are 1, 2, 4, and 8, respectively.

4. In the Transformer layer, positional embedding and the data processed through
the TCN layer are further processed through an attention mechanism to introduce
correlation information between different time steps and different feature variables.
The output is then passed through residual connections and layer normalization
before being fed into a feedforward network. Since only a single variable, runoff
volume, needs to be output, no decoder parallel computation is used. Instead, a
single feedforward neural network is employed to map the data to one dimension for
output.

5. Finally, after training is completed, the predicted results are inverse-normalized to
more accurately assess the gap between the predicted values and the actual values.
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3. Experiment and Results
3.1. Data Description

The Huayuankou area in the Yellow River Basin marks the beginning of the “hanging
river above the ground” in the lower reaches of the Yellow River. Due to its unique
geographical location, it is often heavily affected by flood disasters. The hydrological station
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at Huayuankou is located 4696 km from the source of the river and 768 km from its mouth,
controlling a drainage area of 730,000 km2, which accounts for 92% of the total drainage
area of the Yellow River Basin. Therefore, data from the Huayuankou hydrological station
have always been crucial for flood control, water resource management, and development
in the Yellow River Basin [32]. In recent years, extreme weather events have become
more frequent, and disasters such as the “7·20 super flood” have become increasingly
unpredictable [33]. Therefore, this study aims to provide more data-driven support for
runoff prediction in order to address these challenges.

We know that runoff changes are influenced by various factors, among which the
trends in factors such as rainfall, water level, and temperature are similar to those of
runoff changes [34]. Therefore, this study selected the observed data of runoff, water level,
temperature, and precipitation from the Huayuankou hydrological station in the Yellow
River Basin and the meteorological station in Zhengzhou City from 1 January, 2010, to 1
December, 2020, totaling 3988 × 4 days, as the research objects (the data presented in this
study are available on request from the corresponding author). These data were divided
into 60% for the training set and 40% for the testing set. MAE, RMSE, MAPE, and NSE
were used as evaluation criteria for the model, and the performance of the Time2Vec-TCN-
Transformer model was compared with LSTM, TCN, and TCN-Transformer models. The
hyperparameter settings for LSTM, TCN, and TCN-Transformer are the same as those for
the Time2Vec-TCN-Transformer model. Figure 2 shows the division of runoff data into
training and testing sets.
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3.2. Performance Evaluation

This study adopted MAE (Mean Absolute Error), RRMSE (Relative Root Mean Square
Error), MAPE (Mean Absolute Percentage Error), and NSE (Nash–Sutcliffe Efficiency) as
evaluation criteria for the model. When MAE, RMSE, and MAPE are smaller, the model’s
predictions are more accurate. When NSE is closer to 1, it indicates better prediction
performance, while when NSE is closer to 0, it indicates lower reliability of the model.
Additionally, since the differences in prediction errors between different models may not
be significant, this study not only used the values of MAE, RRMSE, MAPE, and NSE
to evaluate model performance, but also employed the Diebold–Mariano (DM) test for
statistical significance testing. The formulas are as follows:

MAE =
1
n

n

∑
t=1

∣∣∣yt − y
′
t

∣∣∣ (6)

MAPE =
100%

n

n

∑
t=1

|yt − y
′
t

yt
| (7)
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RRMSE =

√
1
n ∑n

i=1(yi − ŷi)
2

1
n ∑n

i=1 yi
(8)

NSE = 1 − ∑n
i=1 (yi −

ˆ
yi)

2

∑n
i=1 (yi −

−
y i)

2 (9)

where n represents the length of the runoff sequence, yi denotes the true runoff values, ŷi
represents the model predictions, and y stands for the mean of the predictions.

3.3. Results and Analysis

The paper utilizes continuous observations spanning 7 days as input for the model
and forecasts future observations spanning 1 to 4 days as output for training, followed by
predictions on the test set. Figure 3 presents a comparison of the runoff prediction results
of the Time2Vec-TCN-Transformer model with LSTM, TCN, and TCN-Transformer models
for the next 4 days (where blue, orange, green, red, and purple represent the predicted
values of LSTM, TCN, TCN-Transformer, and the true values of the sequence, respectively).
Among them, LSTM has a larger overall error compared to other models, while TCN,
although its prediction error is smaller than LSTM’s, has a larger error in predicting peak
flow than other models. However, the Time2Vec-TCN-Transformer model, through the
mechanism of Transformer, better learns the overall trend in feature changes, thereby
improving the nonlinear fitting ability of TCN. The results indicate that the Time2Vec-TCN-
Transformer model has a better fitting effect compared to the other three models, with higher
prediction accuracy.
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Figure 4 presents bar charts showing the MAE, RRMSE, MAPE, and NSE for the
predictions of the four models, indicating that the Time2Vec-TCN-Transformer model
exhibits higher reliability compared to the other three models.
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Figure 5 shows the real-time NSE results of the four models for predicting runoff
volume for the next 4 days. It can be observed that the curve trend in the Time2Vec-TCN-
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Figure 6 depicts the box plots of relative errors for the predictions of runoff for the next
4 days by the four models (where the dashed line represents the mean of the errors and the
solid line represents the median of the errors). It can be observed that the Time2Vec-TCN-
Transformer model has smaller error intervals, lower means, and lower medians compared
to the other three models when predicting for the next 1–4 days.
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Table 1 presents the DM statistics comparing the Time2Vec-TCN-Transformer model
with the other three models. The DM statistic indicates the difference in prediction error
sequences between two models. A larger DM value signifies a greater difference between
the two models, while a DM value less than 0 indicates that the Time2Vec-TCN-Transformer
model outperforms the compared model. When the significance level is less than 5%, the
null hypothesis is rejected, suggesting that the two models perform differently, implying
a significant difference. Conversely, a p-value greater than 5% does not reject the null
hypothesis. The results show that, in the test set, the DM test results reject the null
hypothesis at a 1% significance level for all comparisons. This indicates that the Time2Vec-
TCN-Transformer model has a significant difference compared to the other three models,
with superior prediction accuracy and stability.
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Table 1. The results of the DM test.

Model Comparison Next Day Next 2 Days Next 3 Days Next 4 Days

Time2Vec-TCN-Transformer: LSTM −16.277 *** −12.187 *** −8.857 *** −6.911 ***

Time2Vec-TCN-Transformer: TCN −11.015 *** −7.103 *** −4.922 *** −3.848 ***

Time2Vec-TCN-Transformer: TCN-Transformer −8.743 *** −4.525 *** −3.541 *** −2.522 ***

Note: *** indicates a 1% significance level.

The results from Figures 3–6 and Table 2 collectively demonstrate that the Time2Vec-
TCN-Transformer model outperforms the traditional LSTM model and the standalone TCN
model in predicting future 1–4-day MAPE, with improvements of approximately 7% and
4%, respectively. When predicting the runoff volume for the next day, the MAE increases
by 72% and 52.9%, while the RRMSE increases by 69.9% and 50% compared to LSTM and
TCN models, respectively. When predicting the runoff volume for the next 2 days, the MAE
increases by 58.8% and 38.2%, and the RRMSE increases by 55.8% and 35.3% compared
to LSTM and TCN models, respectively. When predicting the runoff volume for the next
3 days, the MAE increases by 47% and 29.4%, and the RRMSE increases by 41% and
24.4% compared to LSTM and TCN models, respectively. When predicting the runoff
volume for the next 4 days, the MAE increases by 39% and 19%, and the RRMSE increases
by 32.6% and 5.3% compared to LSTM and TCN models, respectively. This suggests that the
Time2Vec-TCN-Transformer model achieves good performance in short-term prediction.
While the improvement decreases slightly in the prediction for days 2–4 in the future, it
still remains within an acceptable range, further validating the predictive capability of
the model. In addition, NSE performs better at different times compared to the other
three models, and NSE remains between 0.9 and 1. This indicates that the Time2Vec-TCN-
Transformer model has smaller errors and higher credibility in runoff prediction.

Table 2. Error evaluation metrics for the four models.

Time Model MAE RRMSE MAPE NSE

Next day

LSTM 141.726 0.194 11.724 0.941

TCN 84.451 0.118 7.847 0.978

TCN-Transformer 68.544 0.089 7.556 0.988

Time2Vec-TCN-Transformer 39.825 0.059 3.610 0.995

Next 2 days

LSTM 170.587 0.243 13.033 0.908

TCN 113.791 0.166 9.531 0.953

TCN-Transformer 95.834 0.147 8.741 0.966

Time2Vec-TCN-Transformer 70.293 0.108 5.678 0.982

Next 3 days

LSTM 197.799 0.292 14.464 0.868

TCN 148.350 0.227 11.399 0.919

TCN-Transformer 134.716 0.212 11.367 0.930

Time2Vec-TCN-Transformer 104.758 0.172 8.133 0.954

Next 4 days

LSTM 226.870 0.340 16.144 0.820

TCN 182.477 0.287 13.054 0.872

TCN-Transformer 165.778 0.263 13.303 0.893

Time2Vec-TCN-Transformer 138.303 0.229 10.590 0.918
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4. Conclusions

This study considers runoff prediction not solely influenced by a single factor, thus
introducing multiple relevant variables for experimental research and proposing a runoff
prediction model based on Time2Vec-TCN-Transformer. This model enhances the cyclical
acquisition ability of runoff data through Time2Vec to overcome the lack of learnable
encoding mechanisms in Transformer. It captures long-term scale information of time
series through TCN and obtains mutual relationship information among multiple variables
through Transformer. By effectively integrating them, it enhances the predictive ability for
single models and single runoff information. Compared to single models, the Time2Vec-
TCN-Transformer model excels in accuracy, reliability, and learning from time and multi-
variable information.

Since this study only utilized runoff, water level, temperature, and precipitation as
learning information for the model, while actual runoff variation may be influenced by
more factors, further research is needed to address the impact of different factors on runoff
and to continue improving the model performance.

Author Contributions: Conceptualization, Y.L.; methodology, Y.W.; software, Y.W.; validation, Y.W.
and S.W.; formal analysis, Y.W.; investigation, Z.R.; resources, X.L.; data curation, Y.L.;
writing—original draft preparation, Y.L.; writing—review and editing, Y.L.; visualization, X.W.;
supervision, Y.L.; project administration, S.W., X.W. and Z.R.; funding acquisition, Y.L and X.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The Education Department of Henan Province grant number
24A520021 And The APC was funded by The Education Department of Henan Province.

Data Availability Statement: The data that support the findings of this study can be accessed upon
reasonable request from the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Jabbari, A.; Bae, D.-H. Application of Artificial Neural Networks for Accuracy Enhancements of Real-Time Flood Forecasting in

the Imjin Basin. Water 2018, 10, 1626. [CrossRef]
2. de la Fuente, A.; Meruane, V.; Meruane, C. Hydrological Early Warning System Based on a Deep Learning Runoff Model Coupled

with a Meteorological Forecast. Water 2019, 11, 1808. [CrossRef]
3. Silvestro, F.; Gabellani, S.; Rudari, R.; Delogu, F.; Laiolo, P.; Boni, G. Uncertainty reduction and parameter estimation of a

distributed hydrological model with ground and remote-sensing data. Hydrol. Earth Syst. Sci. 2015, 19, 1727–1751. [CrossRef]
4. Yang, Q.; Zhang, H.; Wang, G.; Luo, S.; Chen, D.; Peng, W.; Shao, J. Dynamic runoff simulation in a changing environment: A

data stream approach. Environ. Model. Softw. 2019, 112, 157–165. [CrossRef]
5. Manguerra, H.; Engel, B. HYDROLOGIC PARAMETERIZATION OF WATERSHEDS FOR RUNOFF PREDICTION USING SWAT

1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 1149–1162. [CrossRef]
6. Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L. Machine learning and the

physical sciences. Rev. Mod. Phys. 2019, 91, 045002. [CrossRef]
7. Salas, J.D.; Tabios III, G.Q.; Bartolini, P. Approaches to multivariate modeling of water resources time series 1. JAWRA J. Am.

Water Resour. Assoc. 1985, 21, 683–708. [CrossRef]
8. Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 2016,

187, 27–48. [CrossRef]
9. Li, W.; Kiaghadi, A.; Dawson, C. High temporal resolution rainfall–runoff modeling using long-short-term-memory (LSTM)

networks. Neural Comput. Appl. 2021, 33, 1261–1278. [CrossRef]
10. Le, X.-H.; Ho, H.V.; Lee, G. Application of gated recurrent unit (GRU) network for forecasting river water levels affected by

tides. In Proceedings of the APAC 2019: The 10th International Conference on Asian and Pacific Coasts, Hanoi, Vietnam, 25–28
September 2019; pp. 673–680.

11. Amanambu, A.C.; Mossa, J.; Chen, Y.-H. Hydrological drought forecasting using a deep transformer model. Water 2022, 14, 3611.
[CrossRef]

12. Deng, H.; Chen, W.; Huang, G. Deep insight into daily runoff forecasting based on a CNN-LSTM model. Nat. Hazards 2022, 113,
1675–1696. [CrossRef]

https://doi.org/10.3390/w10111626
https://doi.org/10.3390/w11091808
https://doi.org/10.5194/hess-19-1727-2015
https://doi.org/10.1016/j.envsoft.2018.11.007
https://doi.org/10.1111/j.1752-1688.1998.tb04161.x
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1111/j.1752-1688.1985.tb05383.x
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.1007/s00521-020-05010-6
https://doi.org/10.3390/w14223611
https://doi.org/10.1007/s11069-022-05363-2


Electronics 2024, 13, 2681 13 of 13

13. Qiao, G.; Yang, M.; Zeng, X. Monthly-scale runoff forecast model based on PSO-SVR. J. Phys. Conf. Ser. 2022, 2189, 012016.
[CrossRef]

14. Wang, W.-C.; Cheng, Q.; Chau, K.-W.; Hu, H.; Zang, H.-F.; Xu, D.-M. An enhanced monthly runoff time series prediction
using extreme learning machine optimized by salp swarm algorithm based on time varying filtering based empirical mode
decomposition. J. Hydrol. 2023, 620, 129460. [CrossRef]

15. Jiang, Y.; Li, C.; Sun, L.; Guo, D.; Zhang, Y.; Wang, W. A deep learning algorithm for multi-source data fusion to predict water
quality of urban sewer networks. J. Clean. Prod. 2021, 318, 128533. [CrossRef]

16. Zhang, J.W.; Chen, X.H.; Khan, A.; Zhang, Y.K.; Kuang, X.X.; Liang, X.Y.; Taccari, M.L.; Nuttall, J. Daily runoff forecasting by deep
recursive neural network. J. Hydrol. 2021, 596, 126067. [CrossRef]

17. Gao, S.; Huang, Y.F.; Zhang, S.; Han, J.C.; Wang, G.Q.; Zhang, M.X.; Lin, Q.S. Short-term runoff prediction with GRU and LSTM
networks without requiring time step optimization during sample generation. J. Hydrol. 2020, 589, 125188. [CrossRef]

18. Xu, Y.; Hu, C.; Wu, Q.; Jian, S.; Li, Z.; Chen, Y.; Zhang, G.; Zhang, Z.; Wang, S. Research on particle swarm optimization in LSTM
neural networks for rainfall-runoff simulation. J. Hydrol. 2022, 608, 127553. [CrossRef]

19. Rust, J. Structural estimation of Markov decision processes. Handb. Econom. 1994, 4, 3081–3143.
20. Song, C.M. Data construction methodology for convolution neural network based daily runoff prediction and assessment of its

applicability. J. Hydrol. 2022, 605, 127324. [CrossRef]
21. Hassani, H.; Silva, E.S. Predictions from Generative Artificial Intelligence Models: Towards a New Benchmark in Forecasting

Practice. Information 2024, 15, 291. [CrossRef]
22. Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144. [CrossRef]
23. Hassani, H.; Silva, E.S. A Kolmogorov-Smirnov based test for comparing the predictive accuracy of two sets of forecasts.

Econometrics 2015, 3, 590–609. [CrossRef]
24. Kazemi, S.M.; Goel, R.; Eghbali, S.; Ramanan, J.; Sahota, J.; Thakur, S.; Wu, S.; Smyth, C.; Poupart, P.; Brubaker, M. Time2vec:

Learning a vector representation of time. arXiv 2019, arXiv:1907.05321.
25. Hewage, P.; Behera, A.; Trovati, M.; Pereira, E.; Ghahremani, M.; Palmieri, F.; Liu, Y. Temporal convolutional neural (TCN)

network for an effective weather forecasting using time-series data from the local weather station. Soft Comput. 2020, 24,
16453–16482. [CrossRef]

26. Gan, Z.; Li, C.; Zhou, J.; Tang, G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electr.
Power Syst. Res. 2021, 191, 106865. [CrossRef]

27. Xu, Y.; Hu, C.; Wu, Q.; Li, Z.; Jian, S.; Chen, Y. Application of temporal convolutional network for flood forecasting. Hydrol. Res.
2021, 52, 1455–1468. [CrossRef]

28. Lin, K.; Chen, H.; Zhou, Y.; Sheng, S.; Luo, Y.; Guo, S.; Xu, C.-Y. Exploring a similarity search-based data-driven framework for
multi-step-ahead flood forecasting. Sci. Total Environ. 2023, 891, 164494. [CrossRef]

29. Zhu, R.; Liao, W.; Wang, Y. Short-term prediction for wind power based on temporal convolutional network. Energy Rep. 2020, 6,
424–429. [CrossRef]

30. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 30. [CrossRef]

31. Castangia, M.; Grajales, L.M.M.; Aliberti, A.; Rossi, C.; Macii, A.; Macii, E.; Patti, E. Transformer neural networks for interpretable
flood forecasting. Environ. Model. Softw. 2023, 160, 105581. [CrossRef]

32. Xu, Z.X.; Li, J.Y.; Liu, C. Long-term trend analysis for major climate variables in the Yellow River basin. Hydrol. Process. Int. J.
2007, 21, 1935–1948. [CrossRef]

33. Hao, S.; Wang, W.; Ma, Q.; Li, C.; Wen, L.; Tian, J.; Liu, C. Model-based mechanism analysis of “7.20” flash flood disaster in
Wangzongdian River basin. Water 2023, 15, 304. [CrossRef]

34. Wang, G.; Zhang, J.; Li, X.; Bao, Z.; Liu, Y.; Liu, C.; He, R.; Luo, J. Investigating causes of changes in runoff using hydrological
simulation approach. Appl. Water Sci. 2017, 7, 2245–2253. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1088/1742-6596/2189/1/012016
https://doi.org/10.1016/j.jhydrol.2023.129460
https://doi.org/10.1016/j.jclepro.2021.128533
https://doi.org/10.1016/j.jhydrol.2021.126067
https://doi.org/10.1016/j.jhydrol.2020.125188
https://doi.org/10.1016/j.jhydrol.2022.127553
https://doi.org/10.1016/j.jhydrol.2021.127324
https://doi.org/10.3390/info15060291
https://doi.org/10.1198/073500102753410444
https://doi.org/10.3390/econometrics3030590
https://doi.org/10.1007/s00500-020-04954-0
https://doi.org/10.1016/j.epsr.2020.106865
https://doi.org/10.2166/nh.2021.021
https://doi.org/10.1016/j.scitotenv.2023.164494
https://doi.org/10.1016/j.egyr.2020.11.219
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1016/j.envsoft.2022.105581
https://doi.org/10.1002/hyp.6405
https://doi.org/10.3390/w15020304
https://doi.org/10.1007/s13201-016-0396-1

	Introduction 
	Related Work 
	Time2Vec 
	TCN 
	Causal Convolution 
	Dilated Convolution 
	Residual Connection 

	Transformer 
	Time2Vec-TCN-Transformer Prediction Model 

	Experiment and Results 
	Data Description 
	Performance Evaluation 
	Results and Analysis 

	Conclusions 
	References

