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Abstract: This paper presents an alternative method to solve the control problem of an uncertain
nonlinear system in strict-feedback form with a time delay. Instead of using Lyapunov–Krasovskii
functionals, ordinary Lyapunov functionals are used to design the controllers. In order to address the
completely unknown uncertainties of the system, including the unmodeled dynamics, time-delay
nonlinearities, and external disturbances, command filters are applied to reconstruct the estimations
of such uncertainties, and the negative feedback of these estimations can be used to reduce the
influence of such uncertainties on the system. With the help of the backstepping technique and the
Lyapunov stability criterion, it is proved that the system output tracks the target signal with a small
error, and contrastive simulation results verify our method’s effectiveness.
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1. Introduction

During the past decades, the backstepping technique has become a very popular
design method in the nonlinear system control domain, and it has been extensively used in
various nonlinear systems, especially strict-feedback systems; see [1–4] and the references
therein. In the classical backstepping design procedure, the time derivatives of the tuning
functions (or the virtual control functions) are needed to construct the final controller,
which results in tremendous complexity in the control design. In order to overcome this
disadvantage in backstepping, command-filtered backstepping [5] has emerged, and it
uses command filters to estimate the time derivatives of the virtual control functions and
avoids analytic computations. Therefore, the computational burden is greatly reduced
in command-filtered backstepping. Subsequently, many command-filtered-backstepping-
based control methods have been proposed for different types of nonlinear systems. To
list a few, in [6], the authors combined a command-filtered technique and adaptive control
and achieved a command-filtered adaptive backstepping control scheme for nonlinear
systems in generalized-parameter strict-feedback form. The authors of [7] presented
an immersion- and invariance-based command-filtered adaptive backstepping control
method for vehicles with vertical take-off and landing. In [8], the authors investigated
the consensus control problems of fixed-topology-based multi-agent systems by using
a command-filtered backstepping technique and neural networks. In [9], the authors
presented a novel command-filtered backstepping approach by using finite-time stability
and backstepping with novel virtual control functions and improved error compensators,
which further developed the advantages of command-filtered backstepping. From the
above-mentioned results, we can conclude that regardless of if one is using a dynamic
surface technique without an error compensator or a command-filtered approach with
an error compensator, the main function of the command filter is to estimate the time

Electronics 2024, 13, 2694. https://doi.org/10.3390/electronics13142694 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13142694
https://doi.org/10.3390/electronics13142694
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13142694
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13142694?type=check_update&version=1


Electronics 2024, 13, 2694 2 of 16

derivative of virtual control functions, and thus, the problem of the explosion of terms
is avoided.

In recent years, many command-filter-based control methods have been proposed.
For example, a new set of backstepping control algorithms with low complexity were
presented in [10] for a class of strict-feedback systems by using command filters with
time-varying gains and compensators based on “softening” sign functions. In [11], the
authors studied a gain-varying backstepping strategy for a class of systems with external
disturbances in which novel gain-varying functions were used to improve the systems’
anti-disturbance capabilities, and command filters with a gain-varying error compensation
mechanism were applied to avoid the differential explosion problem. A neural-network-
based command-filtered adaptive tracking control scheme was designed in [12] for a
class of input-constrained nonlinear systems in the discrete-time domain by introduc-
ing a command-filtering technique with a filtering error compensation mechanism and
radial-basis-function-based neural networks. The adaptive fixed-time control problem for
nonlinear systems in a strict-feedback form was addressed in [13] via fixed-time control
and a finite-time command filter; the system output could track the target signal from
any initial conditions and in a finite time, and the convergence time had no connection
with the system’s initial conditions. A modified command-filter-based backstepping track-
ing control scheme was proposed in [14] for a class of uncertain nonlinear systems with
input saturation by using a fuzzy logic system, convex optimization method, adaptive
control technique, and Lasalle invariant principle. Moreover, a novel piecewise continu-
ous function was designed to solve the input saturation problem. The scaled consensus
adaptive tracking control problem for a class of input-delayed multiagent systems with
external disturbances and unknown mixed control gains was solved in [15] by using a
neural-network-based state observer, a command-filtering technique with a filtering error
compensation mechanism, the Lyapunov–Krasovskii functionals, and an approach based
on the Nussbaum gain function. In [16], the authors handled the asymptotic tracking
control of full-state constrained uncertain systems in nonstrict-feedback form by design-
ing a command-filtered technology with a boundary estimation method and a significant
nonlinear transformed function, and the tracking error asymptotically converged to zero
with all the other variables being bounded and constrained in predefined asymmetric sets
under the proposed control method. A command-filtered finite-time robust backstepping
approach was proposed in [17] for a class of flexible-joint robots with only position feedback
by applying disturbance observers (they were used to estimate the velocity information
and the mismatched or matched disturbances), a finite-time backstepping controller, and
command filters. A command-filter-based practical finite-time backstepping technique
was proposed in [18] for nonlinear systems with external disturbances, unknown control
direction coefficients, and unmodeled dynamics by using novel command filters with
practical finite-time convergence (they were used to construct the approximations of the
system uncertainties), as well as a virtual control direction method (which solved the
control problem resulting from unknown control direction coefficients).

Time delay, as a common phenomenon in engineering, environmental sciences, eco-
nomics, etc, has long been attributed much importance in the fields of control science,
environmental science, and economic regulation and control. The effect of a time delay
on a system is very significant, since it may degrade the system’s control performance or,
even worse, make the system unstable. Time delay is an important factor in mathematical
economic models, and the study of dynamic economic systems with time delays is one of
the frontier topics in the field of differential dynamics. Some economic phenomena cannot
be described purely by ordinary differential equations because they are not as regular
as mathematical expressions and often show a kind of time-lag phenomenon. Therefore,
using time delay and perturbation can allow real economic systems to be described more
effectively. For example, in nonlinear econometric models, the time delay not only affects
the time and degree of the effectiveness of monetary policy but also determines whether
the impact of monetary policy on macroeconomic operations is favorable to a large extent.
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If a monetary policy adopted to curb the development of an economic phenomenon can
take effect in a relatively short period of time, then that monetary policy is beneficial to
the operation of the macroeconomy. However, if a monetary policy takes a long time to
take effect, the operation of the national economy is affected by other factors during this
period, and the situation is completely different from that when the monetary policy is
formulated, then that monetary policy may have an adverse impact on the operation of the
macroeconomy. A well-known method to overcome the influence of time delay on a system
is the Lyapunov–Krasovskii functional approach. For example, the authors of [19] solved
the globally uniform asymptotic stabilization problem for nonlinear systems in feedback
form with an input time delay based on the Lyapunov–Krasovskii functional. In [20,21],
the authors used adaptive fuzzy control and the Lyapunov–Krasovskii approach to solve
the control problem of time-delayed nonlinear systems. In [22,23], the authors considered
the tracking control problem for two different time-delayed nonlinear systems by using
an adaptive neural network control method and the Lyapunov–Krasovskii approach. The
global asymptotic stabilization problem was studied by the authors in [24] for a class of
stochastic nonlinear varying-time-delay systems under weaker conditions on nonlinear
functions based on the stochastic time-delayed system stability criterion, the Lyapunov–
Krasovskii functional, and global asymptotic stability in probability. The problem of
delay-dependent H∞ memory filtering for continuous-time semi-Markovian jump linear
systems with a time-varying delay was investigated in [25] by using a semi-Markovian
Lyapunov–Krasovskii formulation of the scaled small-gain problem combined with a pro-
jection lemma, an approximation technique, and linear matrix inequalities. An adaptive
dynamic-surface fuzzy control method was presented in [26] for a class of state-constrained
nonstrict-feedback time-delayed systems with external disturbances and unknown control
directions based on the Nussbaum gain technique, the Lyapunov–Krasovskii functional, the
adaptive fuzzy backstepping method, and a dynamic-surface technique. The asymptotic
stabilization control problem was studied by the authors of [27] for an actuator-saturated
nonlinear system with time-delayed states by designing an event-triggered switched control
strategy and linear matrix inequalities based on the delay-dependent Lyapunov–Krasovskii
functional, and the proposed control method could reduce the burden of networks’ data
transmission while ensuring the stability of the closed-loop system with actuator saturation.
The output-feedback control problem for a class of nonlinear time-delayed systems with
unmeasured system states was considered by the authors of [28], and novel control-gain-
based Lyapunov–Krasovkii functionals were designed in a controller without a time delay.
The adaptive fixed-time disturbance rejection control problem was investigated in [29]
for a class of time-delayed nonlinear systems subject to event-triggered and quantized
input signals by using a disturbance observer, the event-triggered backstepping technique
with fuzzy logic systems, and the Lyapunov–Krasovskii functional method. In [30], the
fixed-time tracking control problem was studied for high-order stochastic time-delayed
nonlinear systems, and an improved Lyapunov–Krasovskii function ws designed, which
not only compensated for the time-delay term but also solved the difficulties caused by the
high-order term. It can be concluded from the aforementioned results that the Lyapunov–
Krasovskii approach is indeed a good method for dealing with systems with a time delay,
but in most Lyapunov–Krasovskii-functional-based methods, the time-delay nonlinearities
are assumed to be less than or equal to some known functions, which greatly limits the
application of this method.

In this paper, we consider the control problem for a class of strict-feedback uncertain
nonlinear systems with multiple time-varying time delays in which unmodeled dynamics,
external disturbances, and unknown time-delay nonlinearities are all taken into account.
Without using Lyapunov–Krasovskii functionals and universal approximators, such as
fuzzy logic systems or neural networks (NNs), we present a new and simple control
scheme for such a complex control system on account of ordinary Lyapunov functionals, a
backstepping technique, and command filters. In our approach, the command filters are
used to obtain the estimations of the time derivatives of some system signals; then, these
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estimations can be applied to reconstruct the approximations of the system uncertainties,
including the unmodeled system dynamics, external disturbances, and unknown time-
delay nonlinearities. In the end, the negative feedback of such approximations can be
used to reduce the influence of uncertainties. This paper’s contributions are the following:
(i) command filters are primarily designed to handle unmodeled system dynamics, external
disturbances, and unknown time-delay nonlinearities; (ii) the structure of our controller is
simpler than that of an adaptive fuzzy controller or adaptive NN controller.

The rest of our work is organized as follows. The problem formulation and preliminar-
ies are given in Section 2, and the design procedure for the improved command-filter-based
backstepping controller is presented in Section 3. A stability analysis of the closed-loop
system is described in Section 4. Section 5 shows the simulation results, and followed by
Section 6, which concludes this paper.

2. Problem Formulation and Preliminaries

Let us consider a system with a time delay and disturbances,

ẋi = gi(x̄i)xi+1 + fi(x̄i) + φi(x̄τi ) + di(t),

i = 1, 2, · · · , n − 1,

ẋn = gn(x̄n)u + fn(x̄n) + φn(x̄τn) + dn(t),

y = x1, (1)

where x̄i = [x1, x2, · · · , xi]
T ∈ Di, and Di ⊂ Ri, u ∈ R, and y ∈ R are the system state,

control input, and system output, respectively. For i = 1, 2, · · · , n, fi : Ri → R represents
the unmodeled dynamics, φi(x̄i,τi ) : Di → R denotes the time-delay nonlinearity, gi : Di →
R (gi(·) ̸= 0) is the control direction function, and di : R+ → R denotes the external
disturbance. For i = 1, 2, · · · , n, x̄τi = [x1(t − τ1(t)), x2(t − τ2(t)), · · · , xi(t − τi(t))]T , and
τi(t) is an unknown time-varying time delay of a system state.

Assumption 1. yd(t) and ẏd(t) are continuous and bounded.

Assumption 2. Functions gi, fi, and φi are smooth functions.

Assumption 3. The unknown time delays are bounded by an unknown constant, i.e., 0 ≤ τi(t) ≤ τ̄.

For a known signal ϕ(t), the following command filter is adopted to estimate ϕ̇(t) by
using ˙̂ϕ(t):

˙̂ϕ(t) = −ω f [ϕ̂(t)− ϕ(t)], (2)

where ω f is a positive constant.

3. Improved Command-Filter-Based Backstepping Controller Design

The design procedure for our improved command-filter-based backstepping controller
for nonlinear systems (1) is demonstrated step by step in this section.

Step 1. Let z1 = x1 − yd and z2 = x2 − α1; considering the Lyapunov function candidate
V1 = 0.5z2

1, then, the time derivative of V1 can be given by

V̇1 = z1ż1

= z1(g1x2 + f1 + φ1 + d1 − ẏd)

= z1(g1α1 + f1 + φ1 + d1 − ẏd) + g1z1z2. (3)

Here, it is easy to find that an ideal virtual control function should be α1 = (−k1z1 −
f1 − φ1 − d1 + ẏd)/g1 provided functions f1, φ1, and d1 are all known. However, in the
studied system, functions fi, φi, and di are unknown; thus, the ideal virtual control function
cannot be implemented.
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In order to design α1, some frequently used methods are worth mentioning here. (1) In
order to deal with the time-delay nonlinearity φ1, most existing results use the Lyapunov–
Krasovskii functional approach with some known inequalities on φ1; see [19–23] and
the references therein. (2) To handle the unknown system nonlinearities and external
disturbances, many works impose some known inequality or equality constraints on f1 and
d1, such as in [31,32]; some other results use a universal approximator such as a fuzzy logic
system [33] or neural networks [34], to obtain the estimations of f1 and d1. Inequality or
equality constraints cannot be used here, since such constraints of f1 and φ1 are not allowed
in our studied system. As for universal-approximator-based methods, the controllers are
too complicated to be implemented because at least n universal approximators are needed
for an n-dimensional uncertain system. In this article, we will show a new and simple way
to deal with the unknown functions f1, φ1, and d1 without using the Lyapunov–Krasovskii
functionals, universal approximators, or some known inequality or equality constraints.

Consider the time derivative of z1,

ż1 = g1x2 + f1 + φ1 + d1 − ẏd. (4)

It is true that
f1 + φ1 + d1 − ẏd = ż1 − g1x2, (5)

which means that the unknown system nonlinearity ( f1 + φ1 + d1 − ẏd) can be replaced by
using (ż1 − g1x2). The command filter concept in Section 2 will be applied to obtain the
estimation of ż1, and such a command filter (command filter 1) is defined as follows:

˙̂z1 = −ω1(ẑ1 − z1), (6)

where ω1 > 0, ẑ1(0) = z1(0). The error between ż1 and ˙̂z1 is defined by

ϵ1 = ż1 − ˙̂z1. (7)

Using (5) and (7), we have

f1 + φ1 + d1 − ẏd = ˙̂z1 − g1x2 + ϵ1, (8)

Equation (8) indicates that the unknown system nonlinearity ( f1 + φ1 + d1 − ẏd) is
approximated by ( ˙̂z1 − g1x2) with error ϵ1. Combining (3) with (8), one has

V̇1 = z1(g1α1 + f1 + φ1 + d1 − ẏd) + g1z1z2

= z1(g1α1 + ˙̂z1 − g1x2 + ϵ1) + g1z1z2. (9)

Then, one can design the virtual control function α1 as

α1 = − 1
g1

(k1z1 + ˙̂z1 − g1x2), (10)

where k1 > 0.
Substituting (10) into (9), one has

V̇1 = −k1z2
1 + z1ϵ1 + g1z1z2. (11)

Step 2. Let z3 = x3 − α2 and V2 = V1 + 0.5z2
2; then, one has

V̇2 = z2ż2 + V̇1

= z2(g2x3 + f2 + φ2 + d2 − α̇1) + V̇1

= z2(g2α2 + f2 + φ2 + d2 − α̇1) + g2z2z3 + V̇1. (12)
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Note that in the original command-filter-based backstepping, the command filter is
used to estimate α̇1 such that the calculation of the analytic expression of α̇1 can be avoided.
However, this still cannot address the uncertainties f2, φ2, and d2, since they are unknown.
Considering the time derivative of z2, one has

ż2 = g2x3 + f2 + φ2 + d2 − α̇1, (13)

and f2 + φ2 + d2 − α̇1 can be obtained with the following equation provided that ż2 is
known and available.

f2 + φ2 + d2 − α̇1 = ż2 − g2x3. (14)

Since the precise value of ż2 cannot be obtained, we use (15) to obtain the estimation
of ż2 as follows:

˙̂z2 = −ω2(ẑ2 − z2), (15)

where ω2 > 0, ẑ2(0) = z2(0). The error between ż2 and ˙̂z2 can be defined by

ϵ2 = ż2 − ˙̂z2. (16)

Substituting (16) into (14), one has

f2 + φ2 + d2 − α̇1 = ˙̂z2 − g2x3 + ϵ2, (17)

Equation (17) means that the uncertainty ( f2 + φ2 + d2 − α̇1) can be approximated by
( ˙̂z2 − g2x3) with error ϵ2.

It follows from (11), (12), and (17) that

V̇2 =z2(g2α2 + ˙̂z2 − g2x3 + ϵ2 + g1z1)

+ g2z2z3 − k1z2
1 + z1ϵ1. (18)

The virtual control function α2 can be defined by

α2 = − 1
g2

(k2z2 + ˙̂z2 − g2x3 + g1z1), (19)

where k2 > 0.
Substituting (19) into (18), one has

V̇2 = −k1z2
1 − k2z2

2 + z1ϵ1 + z2ϵ2 + g2z2z3. (20)

Step i (i = 3, 4, · · · , n − 1). Let zi+1 = xi+1 − αi and Vi = Vi−1 + 0.5z2
i ; then, V̇i is

obtained by

V̇i =
i−1

∑
j=1

(−k jz2
j + zjϵj) + gi−1zi−1zi

+ zi(giαi + fi + φi + di − α̇i−1) + gizizi+1. (21)

Using a similar procedure to that in (13)–(16) in Step 2, we have

fi + φi + di − α̇i−1 = ˙̂zi − gixi+1 + ϵi, (22)

where ˙̂zi stands for the ith command-filter output, which is given below:

˙̂zi = −ωi(ẑi − zi), (23)

where ωi > 0, ẑi(0) = zi(0), and ϵi denotes the error between ż2 and ˙̂z2, i.e., ϵi = żi − ˙̂zi.
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Using (21) and (22),

αi = − 1
gi
(kizi + ˙̂zi − gixi+1 + gi−1zi−1), (24)

where ki > 0.
Substituting (24) into (21), one has

V̇i =
i

∑
j=1

(−k jz2
j + zjϵj) + gizizi+1. (25)

Step n. Let Vn = Vn−1 + 0.5z2
n.

V̇n =
n−1

∑
j=1

(−k jz2
j + zjϵj) + gn−1zn−1zn

+ zn(gnu + fn + φn + dn − α̇n−1). (26)

According to the method shown in the steps completed above, one has

˙̂zn = −ωn(ẑn − zn), (27)

where ωn > 0, ẑn(0) = zn(0). The estimation error is defined by

ϵn = żn − ˙̂zn. (28)

Then, one has
fn + φn + dn − α̇n−1 = ˙̂zn − gnu + ϵn. (29)

Here, a different approach is applied to design the controller u. Let xn+1 := u and
ẋn+1 := u̇ with xn+1(0) = u(0) = 0; the following equations hold:

ẋn = gn(x)xn+1 + fn(x) + φn + dn(t), (30)

ẋn+1 = u̇, xn+1(0) = u(0) = 0. (31)

Let zn+1 = xn+1 − αn, with αn being the nth virtual control function. According to
(26), one has

V̇n =
n−1

∑
j=1

(−k jz2
j + zjϵj) + gn−1zn−1zn

+ zn(gnαn + fn + φn + dn − α̇n−1) + gnznzn+1. (32)

Moreover, the unknown nonlinearity fn + φn + dn − α̇n−1 can be rewritten as

fn + φn + dn − α̇n−1 = ˙̂zn − gnxn+1 + ϵn. (33)

Substituting (33) into (32), one has

V̇n =
n−1

∑
j=1

(−k jz2
j + zjϵj) + gn−1zn−1zn

+ zn(gnαn + ˙̂zn − gnxn+1 + ϵn) + gnznzn+1. (34)

We design αn as

αn = − 1
gn

(knzn + ˙̂zn − gnxn+1 + gn−1zn−1), (35)
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where kn > 0.
Substituting (35) into (34), one has

V̇n =
n

∑
j=1

(−k jz2
j + zjϵj) + gnznzn+1. (36)

Step (n + 1). Choosing the Lyapunov function candidate Vn+1 = Vn + 0.5z2
n+1, V̇n+1

is given by

V̇n+1 =
n

∑
j=1

(−k jz2
j + zjϵj) + gnznzn+1 + zn+1(u̇ − α̇n). (37)

The estimation of α̇n can be obtained by using

˙̂αn = −ωn+1(α̂n − αn), (38)

where ωn+1 > 0, α̂n(0) = αn(0). The estimation error is defined by

ϵn+1 = α̇n − ˙̂αn. (39)

Then, u̇ is designed as

u̇ = −kn+1zn+1 + ˙̂αn − gnzn, (40)

and thus, the real controller is

u = xn+1

=
∫ t

0
u̇(τ)dτ

=
∫ t

0
−kn+1zn+1 + ˙̂αn − gnzndτ. (41)

Substituting (40) into (37), one has

V̇n+1 =
n+1

∑
j=1

(−k jz2
j + zjϵj), (42)

which ends the controller design procedure.

4. Stability Analysis

Our main results are summarized by the following two theorems. The first theorem is
given to show the boundedness of the filter errors ϵ1, · · · , ϵn+1, and the second one proves
the convergence of the system tracking error.

Theorem 1. Consider plant (1) with controller (41), command filters (6), (15), (23), (27), and
(38), and Assumptions 1–3. For x(t) = [x1, x2, · · · , xn+1]

T ∈ Ωx (Ωx denotes a compact set), the
command-filter approximation errors ϵ1, · · · , ϵn+1 are bounded, i.e., |ϵi| ≤ ϵ̄i, i = 1, 2, · · · , n + 1
with
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ϵ̄i =

{[(
− ωi

[
ẑi(0)− zi(0)

]
− żi(0)

)2

−
4ζ4

i M2
i

4ωiζ
2
i − 1

]
e
−
(

2ωi− 1
2ζ2

i

)
t
+

4ζ4
i M2

i
4ωiζ

2
i − 1

} 1
2

, (43)

i =1, 2, · · · , n,

ϵ̄n+1 =

{[(
− ωn+1

[
α̂n(0)− αn(0)

]
− α̇n(0)

)2

−
4ζ4

n+1M2
n+1

4ωn+1ζ2
n+1 − 1

]
e
−
(

2ωn+1− 1
2ζ2

n+1

)
t

+
4ζ4

n+1M2
n+1

4ωn+1ζ2
n+1 − 1

} 1
2

, (44)

where ζi > 0, ωi > 1
4ζ2

i
, i = 1, 2, · · · , n + 1, and for i = 1, 2, · · · , n, Mi = maxx∈Ωx |z̈i|,

Mn+1 = maxx∈Ωx |α̈n|.

Proof. Let ˙̃zi = ˙̂zi − żi, and choosing Vzi = 0.5( ˙̃zi)
2, we have

V̇zi (t) = −ωi( ˙̃zi)
2 − ˙̃zi z̈i

≤ −
(

ωi −
1

4η2
i

)
( ˙̃zi)

2 + η2(z̈i)
2

≤ −aiVzi (t) + bi, (45)

where ηi > 0, ωi >
1

4η2
i

, ai = 2ωi − 1
2η2

i
, bi = η2

i M2
i , and Mi = maxx∈Ωx |z̈i|. Furthermore, it

can be found that

Vzi (t) ≤
(

Vzi (0)−
bi
ai

)
e−ait +

bi
ai

, (46)

which means that

| ˙̂zi(t)− żi(t)| ≤
{[(

− ωi
[
ẑi(0)− zi(0)

]
− żi(0)

)2

− 2bi
ai

]
e−a1t +

2bi
ai

} 1
2

=

{[(
− ωi

[
ẑi(0)− zi(0)

]
− żi(0)

)2

−
4ζ4

i M2
i

4ωiζ
2
i − 1

]
e
−
(

2ωi− 1
2ζ2

i

)
t
+

4ζ4
i M2

i
4ωiζ

2
i − 1

} 1
2

. (47)
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Moreover, by using a similar procedure to that in (45)–(47), one can get

| ˙̂αn(t)− α̇n(t)| ≤
{[(

− ωn+1
[
α̂n(0)− αn(0)

]
− α̇n(0)

)2

−
4ζ4

n+1M2
n+1

4ωn+1ζ2
n+1 − 1

]
e
−
(

2ωn+1− 1
2ζ2

n+1

)
t

+
4ζ4

n+1M2
n+1

4ωn+1ζ2
n+1 − 1

} 1
2

, (48)

where ηn+1 > 0, ωn+1 > 1
4η2

n+1
, Mn+1 = maxx∈Ωx |α̈n|. The proof of Theorem 1 is com-

plete.

Theorem 2. The system tracking error converges to a neighborhood of the origin as t → ∞.

Proof. Substituting the results of Theorem 1 into (42), one has

V̇n+1 =
n+1

∑
i=1

(−kiz2
i + ziϵi)

≤
n+1

∑
i=1

[−(ki −
1

4η2
i
)z2

i + η2
i ϵ2

i ]

≤− aVn + b, (49)

where ηi > 0, ki > 1/4η2
i , a = min1≤i≤n+1{2(ki − 1/4η2

i )}, and b = ∑n+1
i=1 η2

i ϵ̄2
i . Thus,

Vn+1(t) ≤ (Vn+1(0)−
b
a
)e−at +

b
a

, t ≥ 0. (50)

Then, one has

|y − yd| ≤

√
2b̄
a

as t → ∞, (51)

and b̄ is

b̄ =
n+1

∑
i=1

4η2
i ζ4

i M2
i

4ωiζ
2
i − 1

. (52)

The proof of Theorem 2 is complete.

Remark 1. In our improved command-filter-based backstepping method, the filter errors are not
further addressed or compensated, which may affect the control precision. In the traditional command-
filtered backstepping (CFB) technique, an error compensation mechanism is designed such that
the control performance can be further improved, which motivates us to carry out future work on
introducing the error compensation mechanism of CFB into our improved command-filter-based
backstepping method.

Remark 2. From (51) and (52), one can find that if ki and ωi are assigned large values, then a will
be large and b̄ will be small. Thus, the upper bound of the tracking error y − yd will be small. In
practice, to reduce the tracking error, one can choose larger values of ki and ωi. On the other hand,
if ki and ωi are too large, the controller input will be very large at system startup. This is not good
for a control system, since it can generate a large system overshoot. Therefore, for a real system, the
parameter-setting procedure is unavoidable.
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Remark 3. In the proposed command-filter-based backstepping control method, n + 1 command
filters are introduced to deal with the unknown system terms, and the only parameters that need to
be designed are ki and ωi, which means that, in total, 2n + 2 parameters need to be set. In adaptive
NN backstepping control schemes, such as that in [35], n neural networks are designed, which
results in [∑n

i=1(li + 1)Ni + 5]n (Ni denotes the number of NN nodes of the ith NN, and li stands
for the number of the ith NN input) parameters that need to be assigned. Since NNs contain too
many design parameters, the number of parameters in the adaptive NN backstepping controller is
much greater than that in the proposed command-filter-based backstepping controller.

5. Simulation Results

Let us consider the following two-dimensional uncertain nonlinear system with a time
delay and external disturbances:

ẋ1 = g1x2 + f1(x1) + φ1(x̄τ1) + d1(t),

ẋ2 = g2u + f2(x1, x2) + φ2(x̄τ2) + d2(t),

y = x1, (53)

where g1 = 1.5 + sin x1, g2 = 1.2, and the functions φ1(x̄τ1) f2(x1, x2), φ2(x̄τ2), d1(t), and
d2(t) are completely unknown. The initial conditions of system (53) are x(0) = [0.5,−0.5]T .
In the simulation, we set

f1 = 0.5x1,

f2 = 0.15x1x2 + 0.2x1 sin(x2),

φ1 = 0.3x1(t − τ1),

φ2 = 0.2x1(t − τ1) sin(0.1x2(t − τ2)),

d1 = 0.25 sin 0.75t, d2 = 0.2 cos 0.5t,

τ1 = 0.5 sin t + 1, τ2 = 0.25 cos t + 1.5.

According to our proposed improved command-filter-based backstepping technique,
the final controller and virtual controllers of system (53) can be designed as follows:

u = x3 =
∫ t

0
u̇(τ)dτ,

u̇ = −k3z3 + ˙̂α2 − g2z2

α2 = − 1
g2

(k2z2 + ˙̂z2 − g2x3 + g1z1),

α1 = − 1
g1

(k1z1 + ˙̂z1 − g1x2),

where z1 = x1 − yd, z2 = x2 − α1, z3 = x3 − α2, ẋ3 = u̇, ˙̂zi = −ωi[ẑi − zi], i = 1, 2,
˙̂α2 = −ω3(α̂2 − α2). Our controller parameters are k1 = 8, k2 = 8, k3 = 8, ω1 = 500,
ω2 = 500, and ω3 = 25.

According to [35], the adaptive NN backstepping (ANNB) controller, its virtual con-
troller, and the adaptive laws are given by

u =
θ2

2η2
2

PT
2 (Z2)P2(Z2)e2 − k2e2 −

1
2l2

2
e2,

α1 =
θ1

2η2
1

PT
1 (Z1)P1(Z1)e1 − k1e1 −

1
2l2

1
e1,

θ̇i =
γi

2η2
i

PT
i (Zi)Pi(Zi)e2

i − σiθi, i = 1, 2,
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where e1 = x1 − yd and e2 = x2 − α1 for i = 1, 2, ηi, ki, li > 0 are design parameters,
Zi = [e1, · · · , ei, θ1, · · · , θi]

T , and Pi is the basis function vector. The ANNB controller pa-
rameters are k1 = 8, k2 = 8, η1 = η2 = 1, σ1 = 5.5, and σ2 = 0.5. Neural network ΦT

1 P1 has
7 nodes with centers at [−1, 1]× [−1, 1], with the widths being 2. Neural network ΦT

2 P2 has
14 nodes with centers at [−1, 1] × [−1, 1] × [−1, 1] × [−1, 1], and the widths are 4. The
initial conditions of θ1 and θ2 are θ1(0) = θ2(0) = [0, 0]T .

The sinusoidal signal (yd = sin t) tracking control response of system (53) is ob-
tained by using our proposed improved command-filter-based backstepping controller
and the ANNB controller from [35]. The simulation results are shown in Figures 1–7.
Figures 1 and 2 illustrate the tracking performance and tracking error when using the two
control methods.

0 5 10 15 20

−1

−0.5

0

0.5

1

Time(sec)

 

 
yd
y
yannb

Figure 1. Sinusoidal signal tracking response of system (53). y represents the system output of our
proposed controller, and yannb denotes the system output of the ANNB controller from [35].

0 5 10 15 20
−0.4

−0.2

0

0.2

0.4

0.6

Time(sec)

 

 
y − yd
yannb − yd

Figure 2. Responses of the tracking errors. y − yd represents the tracking error with our proposed
controller, and yannb − yd denotes the tracking error with the ANNB controller from [35].

0 5 10 15 20
−2

−1

0

1

2

Time(sec)

 

 
f1 + ϕ1 − ẏd
˙̂z1 − g1x2

Figure 3. Reconstruction of the system uncertainties by using our method.
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0 5 10 15 20
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−1

0

1

2

Time(sec)

 

 
f1 + ϕ1 − ẏd
ΦT

1 P1

Figure 4. NN approximation in [35].
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0

5

10
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f2 + ϕ2 − α̇1
˙̂z2 − g2x3

Figure 5. Reconstruction of the system uncertainties by using our method.
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Figure 6. NN approximation in [35].
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Figure 7. Responses of control inputs. u represents our controller, while uannb denotes the ANNB
controller from [35].
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The reconstruction of the system uncertainties and the NN approximations of the
two methods are shown in Figures 3–6, and the controller inputs of both methods are
illustrated in Figure 7. In Figure 2, one can see that the tracking error with our controller is
small. The reason is that NNs with σ-modification can only roughly approximate unknown
functions, and thus, the function approximation errors are very large, which eventually
renders bad tracking performance of the system. However, in our method, the unknown
nonlinearities are reconstructed by using the estimation of żi, i.e., ˙̂zi. Therefore, the function
approximation error can be very small provided that the command filter can obtain ˙̂zi with
a small error. To this end, one can design large values of ωi, and by using (47) and (52), it is
not difficult to find that the function approximation error and the tracking error can both
be reduced. On the other hand, from Figures 3–6, it can be concluded that the unknown
system nonlinearities, including the time-delay nonlinearities, are well reconstructed by
using our command-filter-based backstepping control method.

6. Conclusions

An improved command-filter-based backstepping control strategy is proposed for a
class of uncertain nonlinear systems in strict-feedback form with a time delay. Instead of
adopting Lyapunov–Krasovskii functionals and universal approximators, the proposed
approach only uses command filters and a backstepping technique, and the control problem
of the studied system is, thus, solved. A new and simple control strategy for strict-feedback
time-delayed nonlinear systems is presented based on ordinary Lyapunov functionals, a
backstepping technique, and command filters. Command filters are used to estimate the
time derivatives of some system signals; then, such estimations can be applied to recon-
struct the approximations of such uncertainties, including unmodeled dynamics, external
disturbances, and unknown time-delay nonlinearities. In the end, the negative feedback of
such approximations can reduce the influence of uncertainties on the system. Compared
with some results, such as those of adaptive neural network control, our designed controller
has a simpler structure and fewer parameters. Next, we will improve this control method
and apply it in more complex systems of environmental science and economic regulation
and control.
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