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Abstract: This study introduces a novel methodology integrating computer vision, visual servo
control, and the Kalman Filter to precisely estimate object locations for a 3-RRR planar type parallel
manipulator. Through kinematic analysis and the development of a vision system using color
indicators, the research enhances the ability of the manipulator to track object trajectories, especially
in cases of occlusion. Employing Eye-to-Hand visual servo control, the research further refines the
visual orientation of the sensor for optimal end effector and object identification. The incorporation of
the Kalman Filter as a robust estimator for occluded objects underscores the predictive accuracy of the
system. Results demonstrate the effectiveness of the methodology in trajectory generation and object
tracking, with potential implications for improving robotic manipulators in dynamic environments.
This comprehensive approach not only advances the fields of kinematic control and visual servoing
but also opens new avenues for future research in complex spatial manipulations.

Keywords: visual servoing; Kalman filter; parallel manipulator 3-RRR

1. Introduction

In industries, the use of serial manipulators has increased significantly. Many of these
systems lack vision capabilities, and their trajectories are typically programmed point-to-
point, which means that the elements to be manipulated must have precise positions in the
work area, as seen on assembly lines [1]. The application of this system enhances the ability
to predict elements while they are in motion and, in some cases, when they are occluded by
operational elements such as manipulators, which can establish a configuration that limits
the field of vision and presents problems when detecting or manipulating the object in its
work area. When implementing prediction systems, it is established that they should be
able to predict the direction of movement of the object [2]. Consequently, the camera can
calculate and identify the position and orientation of the object through its vision system
and provide feedback to the manipulator. In the field of computer vision, the cameras
accompanying the manipulator can establish two configurations. The first is mentioned as
Eye-in-Hand, whose configuration allows the determination of the camera’s location on
the end effector. Thus, the robot can move with the camera and track the object [3,4].

The second configuration is Eye-to-Hand, which permits the establishment of a camera
location in the robot’s workspace. Consequently, the field of view is much broader, enabling
observation of both the final actuator of the manipulator and the object.
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Currently, vision systems are being developed for the detection of static or moving
objects, which are integrated with manipulators [5]. These vision systems can be located
at the end effector or outside the work area to obtain a specific vision. When the object is
static, the manipulator and its camera can detect it and estimate its position, which is fed
back to the kinematics of the manipulator for manipulation. However, if the object moves
and is occluded by some element, the system would not be able to estimate its position,
rendering it useless. To solve this, there are techniques such as Kalman filters or machine
learning techniques, such as neural networks, which allow the estimation of the position of
the moving object. To predict the position of the object, it is necessary to rely on its initial
parameters, such as position and speed. In this project, the Kalman filter is applied, which
can predict the trajectory of the object and estimate its final position.

Nowadays, there is an important trend towards the study of closed kinematic chain
manipulators, which connect their links to a mobile platform. Each chain contributes to the
mobility of the platform, controlling its position and orientation. These manipulators are of
great interest in the scientific community due to their complex kinematics and coordinated
control compared to serial ones. Additionally, closed kinematic chain manipulators are
more rigid and have a higher payload capacity. They are widely applied in flight and motion
simulators, medical rehabilitation, and the assembly of high-speed elements. Therefore,
in this work, visual servo control techniques and the Kalman filter are applied for the
estimation of moving objects in a 3-RRR closed kinematic chain planar manipulator.

In the realm of visual servo control, two approaches are distinguished: Position-based
visual servo control (PBVS) [6] and image-based visual servo control (IBVS) [7]. The PBVS
approach [8] necessitates visual characteristics of the element, which are obtained through
computer vision algorithms, camera calibration, and understanding the geometry of the
object to determine its pose with respect to the camera. The robot moves in accordance
with the object’s pose, and control is executed within the workspace.

In IBVS, the pose of the object is not estimated; instead, the relative pose relies solely
on the image feature values. In other words, it is defined as a method encompassing all
methodologies based on the analysis of features or the relative orientation of the object
using a 3D sensor to guide the manipulator. The basic form of visual servo control involves
the robot in planar movement orthogonal to the optical axes of the camera, which can
be utilized for tracking or planar movement. However, tasks such as grasping and piece
matching require control related to the distance and orientation of the object [3].

Visual servo control has been implemented in serial manipulators, but it has also
begun to be integrated into parallel manipulators. Rosenzveig [9] facilitates the calculation
of the final element’s location through a process called “hidden robot”, allowing a tangible
visualization of the correspondence between the observed and Cartesian space. This
method offers the advantage of using different mounts and unique configurations of the
real robot, serving as a potent tool for simplifying mapping. The concept of a hidden robot
is generalized for any type of parallel manipulator controlled by a visual servo control
system to observe the direction of the manipulator’s arms. Hesar et al. [10] applied a
vision-based control architecture for a two-degree-of-freedom spherical parallel robot.

This system integrates a digital camera into the terminal element to monitor a moving
object, specifically a sphere, utilizing the Eye-in-Hand approach. Luo et al. [11] suggest an
advancement in the field of object tracking and manipulation on a conveyor by employing a
hybrid system combining Eye-in-Hand and Eye-to-Hand methodologies for parallel manip-
ulators. This innovative hybrid system enables the parallel manipulator to simultaneously
track and search for multiple objects. Trujano et al. [12] introduced an image-based visual
servo control system for overactuated planar-type parallel manipulators equipped with
revolute joints. The system aims to steer the terminal element’s motion toward a prede-
termined image, employing a Proportional–Derivative (PD) control scheme to calculate
torques at the manipulator’s active joints. Briot et al. [13] propose a hidden robot technique
designed to assess and enhance the control capabilities of robots within their operational
areas, specifically applied to Steward and Adept parallel manipulators. Dallej et al. [14]
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discussed a vision-based control approach for cable-operated parallel robots, suggesting a
three-dimensional visual control strategy where the end effector is measured indirectly for
regulation purposes. This technique is demonstrated and validated on a cable-operated
parallel robot prototype. Bellakehal et al. [15] examined the kinematic positioning of paral-
lel manipulators through the prism of force and control, emphasizing the utilization of a
vision system for external positioning in force-control applications. Traslosheros et al. [16]
proposed a novel strategy for applying visual servo control to perform dynamic tasks on
a tennis robot platform, which fundamentally is a parallel manipulator equipped with a
visual acquisition and processing system. This strategy focuses on the development of a
controller for object tracking and adapting to reference changes. Luo et al. [17] detail an
image-based visual servo control system for a spherical parallel bionic mechanism aimed
at minimizing tracking errors through a real-time tracking algorithm that leverages image
perception algorithms based on discrete prime transformation, thus mimicking the human
eye’s search function. McInroy and Qi [18] investigate the control challenges associated
with the Eye-in-Hand configuration for parallel manipulators, where the visual sensor is
mounted on the robot’s platform. The objective is to align the platform such that image
features align with specific target points. Zhang et al. [19] introduced an algorithm to
correct errors in a 6-DOF parallel manipulator using stereo vision.

Emphasis was placed solely on the Eye-to-Hand visual servo control technique. This
method allows for strategic placement of the visual sensor within the workspace to accu-
rately identify the end effector and its target, facilitating the camera calibration process.
Camera calibration involves mapping the camera’s model to a spatial coordinate system.
This process associates a known set of spatial points with their corresponding points on
the image plane. Current state-of-the-art techniques, including Bouget’s calibration [20],
necessitate multiple images of a chessboard to deduce the camera’s intrinsic parameters by
analyzing the chessboard’s relative pose in each image, achieved through homogeneous
transformations. Contemporary calibration methods, such as the Tsai [21] and Zhang [22,23]
methods, aim to determine camera parameters and correct radial and tangential distortions,
with the latter being widely adopted due to its effectiveness.

The Zhang method [23], renowned for its application breadth, starts with a linear
approximation followed by iterative refinement based on a maximum likelihood criterion.
Calibration is conducted on a plane of points, typically a chess pattern, requiring at least
three images of the pattern in different orientations for accuracy. However, fewer images
may suffice if specific intrinsic parameters are predefined. For example, if the orthogonality
of the image plane is presumed, only two images would be necessary. The parameters are
derived implicitly, resulting in a matrix dependent on the intrinsic parameters, including
two coefficients to model radial distortion [22–24].

In camera calibration, two methodologies were considered: Zhang and Tsai [21–23].
Zhang’s methodology was selected as it solely involves calculating the extrinsic and intrin-
sic parameters of the camera and only requires applying a checkerboard pattern, making
it more adaptable for capturing multiple views. Conversely, Tsai’s methodology was not
pursued, as it necessitates custom design.

Upon configuring the visual sensor calibration, an algorithm is implemented to detect
the target. One commonly used computer vision algorithm for detection is color-based. The
RGB image captured is decomposed into three two-dimensional layers, from which one is
selected for detection. A binarization process is then applied to each layer, generating a
black-and-white image. Black pixels, with a binary value of zero, denote areas of minimal
interest, while white pixels, with a binary value of one, indicate areas where the object
analysis occurs. Additionally, procedures for calculating centroid, perimeter, and area, or
other parameters, are established for the objective, as applied in this work.

Other computer vision techniques are employed to identify points of interest or
correspondences in images and perform matching between two or more views. The
literature offers a variety of detectors and descriptors facilitating the calculation of these
invariants [25–28]. One widely used methodology is SURF (Speeded-up Robust Features).
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This high-performance algorithm identifies points of interest in an image by transforming
it into a coordinate image using a multi-resolution technique. Typically, this algorithm
creates a replica of the original image in a Gaussian or Laplacian pyramid shape, resulting
in images of the same size but with reduced bandwidth. This process, known as scaled
space filtering [29,30], ensures that the points of interest remain invariant to scaling. While
the SURF algorithm is based on the Hessian matrix, it employs basic approximations such
as a DoG (Difference of Gaussians) Gaussian detector. This analysis of comprehensive
images reduces computational time and is referred to as a “FAST–Hessian” detector. In
contrast, the SURF descriptor relies on the Wavelet–Haar distribution to respond with
points of interest in the neighborhoods of the points. This methodology will be utilized for
video stabilization.

In the manipulator’s work area, when a target becomes occluded, the vision system
is unable to calculate or determine the object’s orientation. However, the direction of the
object’s movement can be predicted by employing a Kalman filter. This filter uses statistical
data and error measurements to estimate the target’s direction based on variance, providing
a robust solution for tracking in conditions where direct visual confirmation is impeded.

Currently, there are works such as Huynh and Kuo [31], which emphasize trajectory
control with optimal recursive path planning and vision-based pose estimation. Although
they focus on trajectory and pose control, they do not address the prediction of occluded
objects. Similarly, Rybak et al. [32] improve trajectory optimization but without integrating
vision systems for object detection and tracking, thus not providing position predictions
for occluded objects. Gao et al. [33] focus on avoiding singularities in the orientation of
the mobile platform, concentrating on kinematics without including vision-based position
estimation of occluded objects using the Kalman filter. Hou et al. [34] conduct a detailed
analysis of clearance wear effects, addressing mechanical and dynamic problems but not
the integration of vision systems for object tracking and prediction.

In many industrial applications, the use of manipulators for object handling is
widespread. However, these systems often face challenges when objects are occluded
or when the manipulator operates in dynamic environments. This research addresses the
problem of accurately tracking and estimating the position of a moving object, particularly
when it becomes occluded, within the workspace of a 3-RRR planar parallel manipulator.
In this respect, the primary contribution of this paper is the integration of a Kalman filter
with a visual servo control system to enhance the tracking and estimation capabilities
of the manipulator. Specifically, we demonstrate how the Kalman filter can be used to
estimate the position (x, y) of a rigid object moving along a predetermined trajectory, even
when it is temporarily occluded. This estimation is crucial for maintaining continuous
operation and accuracy in dynamic industrial environments. To achieve this, we first
calibrated the visual sensor to ensure accurate position data. Video stabilization was then
performed using homography to correct involuntary movements of the manipulator and
camera which could affect the precision of the visual feedback. The study was conducted
in two stages. In the first stage, we evaluated a programmed circular trajectory within
the MATLAB 2021® environment, comparing the theoretical angular positions generated
by the inverse kinematics model with the actual positions provided by the servomotors.
This helped establish a baseline for the manipulator’s performance without the vision
system. In the second stage, the vision system was activated, and the Kalman filter was
employed. The vision system provided real-time position data of the moving object to
the Kalman filter, which then estimated the object’s position during occlusions based on
the initial parameters and previous trajectory data. The Kalman filter parameters, includ-
ing the process uncertainty matrix (Q), the measurement uncertainty (R), and the initial
state covariance (P), were meticulously calibrated. The process uncertainty matrix Q was
derived from historical trajectory data, representing the expected variance in the object’s
motion. The measurement uncertainty R was calculated from the sensor data, reflecting the
variance in positional measurements. The initial state covariance P was set to represent the
initial uncertainty in the object’s position. By integrating these calibrated parameters, the
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Kalman filter could accurately predict the object’s position even when it was temporarily
out of view, thereby enhancing the robustness and precision of the manipulator’s control
system. The results show that this integrated system significantly improves the manipu-
lator’s ability to track and estimate the position of moving objects, even under occlusion.
This advancement has practical applications in industrial automation, where maintaining
precision and adaptability is essential.

In this context, this work aims to contribute to the analysis of integrating vision sys-
tems in parallel manipulators, emphasizing the importance of improving object detection
and manipulation capabilities. This approach enhances flexibility and precision in indus-
trial automation. The implementation of the Kalman filter for estimating the position of
moving objects, especially when they are occluded, is crucial for maintaining the continu-
ous operation of manipulators in dynamic, unstructured environments. The integration of
visual servo control techniques with the Kalman filter presents a novel combination specifi-
cally applied to closed kinematic chain manipulators, significantly enhancing their ability
to control and track moving objects. This methodology enables the real-time prediction of
the position of occluded objects, thereby improving the robustness and precision of manip-
ulators. Moreover, the proposed method greatly enhances the adaptability of manipulators
to dynamic industrial environments, which is crucial for applications in critical fields such
as medical rehabilitation and high-speed assembly where precision and reliability are
paramount. By integrating advanced vision systems, the method improves object detection
and manipulation capabilities, enhancing flexibility and precision in industrial automation.
Furthermore, this study of parallel manipulators, such as the 3-RRR, and the application of
advanced vision and control techniques, provides a solid foundation for future research and
development in more robust and precise manipulators, with applications spanning various
industries. These contributions could significantly impact the field of manipulator control
and lay the foundation for future innovations in dynamic and unstructured environments.
The novelty of this work lies in the combination of visual servo control techniques and
the Kalman filter specifically in closed kinematic chain manipulators. This combination
provides a new methodology for the control and tracking of moving objects, significantly
enhancing the adaptability of manipulators to dynamic industrial environments. This
approach allows for the real-time prediction of the position of occluded objects, thereby
increasing the robustness and precision of manipulators. Such advancements are crucial
for critical applications, including medical rehabilitation and high-speed assembly.

2. Methodology
2.1. Kinematic Model of the Parallel Manipulator with Three Degrees of Freedom Type 3-RRR

This section presents the kinematic analysis of the 3-RRR manipulator, aiming to
determine the positions of the links and the end effector. Initially, a direct kinematics
analysis was conducted, followed by validation through inverse kinematics analysis. The
kinematic model seeks to elucidate the motion of the links within the robotic structure;
through kinematic analysis, it gains significance by facilitating a comprehensive study of
individual movements at each joint and their integration within the system [35].

In the field of robotics, the kinematics of a manipulator can be described by two
distinct formulations: direct kinematics and inverse kinematics. The concept of kinematics
pertains to the operation that determines the position and orientation of the end effector
of the chain comprising the device. Conversely, inverse kinematics employs methods
to ascertain the values of the generalized coordinates necessary for a kinematic chain to
reach a specified position and orientation [36]. In this study, mathematical models will
be formulated to conduct direct and inverse kinematic analyses of the 3-RRR parallel
manipulator. Figure 1 depicts the 3RRR planar parallel manipulator designed in 3D using
the SOLIDWORKS program.
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Figure 1. 3-RRR Manipulator.

The direct kinematics analysis is based on Figure 2. This analysis requires determining
the angular coordinates of the actuators, θ1, θ2, θ3, knowing the position and orientation of
the terminal element. The 3-RRR planar parallel mechanism is now decomposed into three
chains, to determine the geometric linking equations.
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Knowing the position of the terminal element (xP, yP) and the orientation of the
terminal element, the orientations of the links L1, L2, L3, L4, L5, and L6 are obtained from
the system of Equations (1)–(6), using the Newton–Raphson method.

When performing the path and vector calculations using points A, B, and C as ref-
erences, the following loop equations are obtained. The loop vector analysis for ADG is
as follows:

xP = xA + L 1 cos θ 1 + L 4 cos θ 4 + h cos(θ 7 + π/6) (1)

yP = yA + L 1 sin θ 1 + L 4 sin θ 4 + h sin(θ 7 + π/6) (2)
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Route and vector calculation are established to analyze the loop BEH. Next, the
following kinematic equations are obtained.

xP = xB + L 2 cos θ 2 + L 5 cos θ 5 + h cos(θ 7 + 5π/6) (3)

yP = yB + L 2 sin θ 2 + L 5 sin θ 5 + h sin(θ 7 + 5π/6) (4)

Finally, the route and vector calculation for the chain, CFI, will be carried out.

xP = xC + L3 cos θ3 + L6 cos θ6 + h cos(θ7 + 3π/2) (5)

yP = yC + L 3 sin θ 3 + L 6 sin θ 6 + h sin(θ 7 + 3π/2) (6)

2.2. Inverse Kinematics

This section presents the development of inverse kinematics for the 3-RRR closed
kinematic chain parallel manipulator. The first phase starts with the mobile platform, as
shown in Figure 3.
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Kinematic equations of the mobile platform:

xG = xP − hcos
(

θ7 +
π

6

)
(7)

yG = yP − hsin
(

θ7 +
π

6

)
(8)

xH = xP − hcos
(π

6
+ θ7

)
(9)

yH = yP − hsin
(π

6
+ θ7

)
(10)

xI = xP − hcos θ7 (11)

yI = yP − hsin(θ7) (12)

Then, in the next phase, the three links where the inverse kinematics is applied are
shown (Figure 4).
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The inverse kinematics equations for each of the uncoupled links are shown below.
For the link ADG, the following equations are obtained:

γ1 = acos

(
L2

GA + L2
1 − L2

4
2LGAL1

)
(13)

ψ1,4 = acos

(
L2

4 + L2
1 − L2

4
2L4L1

)
(14)

φ1 = atan
(

yG − yA

xG − xA

)
(15)

θ1 = φ1 + γ1 (16)

θ4 = π − γ1 + φ1 − ψ1,4 (17)

For the chain CFI, the following equations are obtained:

γ3 = acos

(
L2

3 + L2
IC − L2

6
2L3LIC

)
(18)

ψ3,6 = acos

(
L2

3 + L2
6 − L2

IC
2L3L6

)
+ 2π (19)
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φ3 =
3π

2
− atan

(
yI − yC

xI − xC

)
(20)

θ3 = φ3 − γ3 (21)

θ6 = φ3 − γ3 + π−ψ3,6 (22)

Finally, for the chain (BEH), the following equations are obtained:

γ2 = acos

(
L2

HB + L2
2 − L2

5
2L2LHB

)
(23)

ψ2,5 = acos

(
L2

5 + L2
2 − L2

HB
2L5L2

)
(24)

φ2 = atan
(

yH − yB

xH − xB

)
+ π (25)

θ2 = φ2 − γ2 (26)

θ5 = π − γ2 + φ2 − ψ2,5 (27)

The aforementioned shows and visualizes the calculation and development of the
kinematic chains of the manipulator in relation to the formulation of the direct and inverse
kinematics of the 3-RRR planar parallel manipulator.

2.3. Manipulator Dynamics

This section shows the development and calculation to determine the motor torque
required in the actuators. The energy method was applied as shown in Equation (28).

d
dt

Ec = ∑ Potencies = ∑ Tk·ωk + ∑ Fj·vj (28)

When observing the equation, the motor torque is the torque required by each servo-
motor, ωk indicates the angular speed of the link, and the operator (·) indicates the internal
product between the two vectors Fj and vj, which represent the force and speed in the
terminal element.

For the analysis of kinetic energy, it is determined by Equation (29).

Ec = k = kp +
3

∑
i=0

(kmi + kai) (29)

The variable k represents the kinetic energy of the mechanism, kp is the energy of the
moving platform, and (kmi + kai) is the sum of the energy of the cranks and couplers.

Finally, the motor torques of each of the actuators 1, 2, and 3 of the manipulator are
obtained, as observed in the following equations.

T1 = JA1α1 + JG4α4
∂β1
∂θ1

+ m4vG4ω1·aG4 + JG5α5
∂β2
∂θ1

+ m5vG5ω1·aG5+

JG6α6
∂β3
∂θ1

+ m6vG6ω1·aG6 + JG7α7
∂ϕ
∂θ1

+ m7vG7ω1·aG7
(30)

T2 = JB2α2 + JG4α4
∂β1
∂θ2

+ m4vG4ω2·aG4 + JG5α5
∂β2
∂θ2

+ m5vG5ω2·aG5+

JG6α6
∂β3
∂θ2

+ m6vG6ω2·aG6 + JG7α7
∂ϕ
∂θ2

+ m7vG7ω2·aG7
(31)

T3 = JC3α3 + JG4α4
∂β1
∂θ3

+ m4vG4ω3·aG4 + JG5α5
∂β2
∂θ3

+ m5vG5ω1·aG5+

JG6α6
∂β3
∂θ3

+ m6vG6ω3·aG6 + JG7α7
∂ϕ
∂θ3

+ m7vG7ω3·aG7
(32)

The equations presented above use the energy method and kinetic energy to determine
the torque.
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2.4. Camera Calibration

In this section, the calibration procedure for the Logitech C920 camera (manufactured
in Logitech, Taipei, Taiwan) with a resolution of 1980 × 1080 pixels is described. The visual
sensor used for object determination was attached to the upper part of the manipulator,
with a rigid structure adapted to hold the camera, as shown in Figure 5.
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Figure 5. Support structure for the camera.

Figure 6 shows the chessboard used for calibration, with each square measuring 22 mm
by 22 mm. The calibration process was carried out using the Mathworks MATLAB 2021®

software, which processes the pattern image to determine a reference point, indicated by the
yellow box (checkboard origin). The green circles (detected points, totaling 24) represent the
points detected in the calibration pattern; these points are essential for making an estimate
using the Zhang et al. model [19].

Additionally, there are red rear projection points (reprojected points), indicating the
alignment of the detected point with the rear projected point. The quality of the calibration
is determined by this alignment, as rear projection depends on the elimination of projective
distortion. For a correct estimate, 10 to 20 photos should be captured at appropriate
positions and distances from the camera, ensuring that the pattern is not parallel to the
camera plane. For this project, 20 captures were taken to calibrate the camera.

Once calibration is established, an image without projective distortion is obtained, as
evidenced by comparing Figure 7a,b, where the orange area shows the correction applied
to the image, establishing a rearrangement of the pixels when the calibration process
is applied.
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Figure 7. (a) Image without projective distortion. (b) Image correction after calibration.

This calibration was achieved using the MATLAB® application interface. After cal-
ibrating, the camera parameters, such as intrinsic and extrinsic parameters, were saved.
The calibration parameters were then applied to the image to create a distortion-free image
using the “undistortImage” function in MATLAB®. The corrected image was then used to
process vision algorithms for object detection.

2.5. Vision System

This section describes the application of an algorithm developed in MATLAB® for
detecting color and semantic characteristics within objects. One of the most commonly
used algorithms for object detection is based on color. The color detection process begins
with the decomposition of the image into RGB layers. Each layer that constitutes the
image is defined by a two-dimensional function, f (x, y), where (x, y) are the coordinates of
each pixel.

Figure 8 shows the capture of the manipulator from the top, where there are two blue
sections. Firstly, the detection of the blue and red color of the image is established from
the segmentation.
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Figure 8. Image capture of the parallel manipulator.

To proceed with color extraction, the image must be decomposed into several layers.
When capturing each image, it must be decomposed into its RGB layers. The mathematical
formulation for calculating the back projection error was not included, as the MATLAB
2021® Camera Calibration Toolbox (sourced from MathWorks, located in Natick, MA, USA)
handles this calculation automatically. This toolbox provides an easy-to-use interface for
estimating camera parameters, including back projection error, without the need for custom
source code. Using the MATLAB® Image Processing Toolbox, the red layer is extracted
from the image, which has been resized to 640 × 480 pixels. This resolution was chosen
to reduce the computational load required for processing the pixels in the images. Under
this resolution, both the red and blue layers are extracted. Initially, the image is converted
to HSV color space using the MATLAB® function “rgb2hsv”. For red color detection, a
threshold range of 0 to 0.1 is applied. For blue color detection, thresholds between 0.55 and
0.75 are used. Finally, a saturation threshold of 0.4 and a value threshold of 0.2 are applied
to enhance the detection results. Once the adjusted values are in place, the binary masks
for the red and blue colors are developed and then applied to the original images with the
MATLAB® function “bsxfun”. As a result, Figures 9 and 10 are obtained.
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Figure 9. Binary image of the red layer.

Once the colors in the images are segmented, the centroids of the detected elements
are calculated. This is carried out using the “regionprops” function in MATLAB®, which
provides the centroid coordinates for each detected object. The result of this calculation is
shown in Figure 11.
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After determining the detection of the object, the origin, and the end effector, the
homography process for image stabilization is developed.

2.6. Descriptors

In this section, a series of markers were positioned within the manipulator’s workspace,
totaling 20 elements, aiming to establish correspondences and compute a homography for
video stabilization. The application of the SURF algorithm is demonstrated below, where
40 characteristic points are identified across two images, as depicted in Figure 12a,b.



Electronics 2024, 13, 2703 14 of 30

Electronics 2024, 13, x FOR PEER REVIEW 14 of 31 
 

 

After determining the detection of the object, the origin, and the end effector, the 
homography process for image stabilization is developed. 

2.6. Descriptors 
In this section, a series of markers were positioned within the manipulator’s work-

space, totaling 20 elements, aiming to establish correspondences and compute a homog-
raphy for video stabilization. The application of the SURF algorithm is demonstrated be-
low, where 40 characteristic points are identified across two images, as depicted in Figure 
12a,b. 

 
(a) (b) 

Figure 12. (a) Application of the SURF algorithm—Image 1. (b) Application of the SURF algorithm—
Image 2. 

Upon establishing characteristic points in both images, putative correspondences are 
determined, as depicted in Figure 13. 

 
Figure 13. Putative correspondences between image 1 and image 2. The red circular indicators are 
parts that are taken from the left image as characteristics and are linked to the characteristics and 
indicators of the right image, which are then connected by means of the yellow line. 

Figure 12. (a) Application of the SURF algorithm—Image 1. (b) Application of the SURF
algorithm—Image 2.

Upon establishing characteristic points in both images, putative correspondences are
determined, as depicted in Figure 13.
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Figure 13. Putative correspondences between image 1 and image 2. The red circular indicators are
parts that are taken from the left image as characteristics and are linked to the characteristics and
indicators of the right image, which are then connected by means of the yellow line.

When determining correspondences, it is noted that some do not coincide. To address
this issue, it is imperative to establish a method enabling the calculation of appropriate
correspondences in both images. This method, known as RANSAC, serves this purpose.

RANSAC is an iterative method facilitating the calculation of parameters for a mathe-
matical model based on a set of observed data, which may include outliers—data points
significantly distant from the others. These outliers are identified and addressed within the
algorithm. Though generally non-deterministic, RANSAC yields robust results contingent
upon the number of iterations assigned to it [37].

In our study, RANSAC was utilized to estimate homography from corresponding
points obtained through the SURF descriptor. The aim was to determine the minimal
number of points necessary for estimating the model and assess the conformity of these
data with the estimated model. This procedure was implemented using the MATLAB®

program, as depicted in Figure 14.
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Figure 14. Putative correspondences. The red sections (Left Image) and the green sections (Right
Image) indicate the putative correspondences between both images, which are linked by a yellow line.

The method was executed and refined through 5000 iterations, employing an esti-
mation threshold of 0.0001, which specifies the distance for identifying outliers. In total,
18 putative correspondences were derived from 40 characteristic data points extracted from
both images using the SURF descriptor.

2.7. Homography

In this section, homography calculation commenced by initially detecting green mark-
ers within the working section of the manipulator. Each marker corresponds to the manip-
ulator’s reference frame, with their respective positions calculated relative to a CAD model,
as illustrated in Figure 15. These marker positions were measured in centimeters, totaling
19 markers. The process was executed using SOLIDWORKS 2020.
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Figure 15. Location of markers in the work area.

To determine the homography matrix for video stabilization, the first phase involves
calculating fixed points (drawn in CAD and estimated under the reference frame) and
displaced points (points located on the manipulator’s work plane). For the fixed point stage,
a random number of points were created in the work area, drawn and created in CAD using
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the SOLIDWORKS program. Each point was extracted with a total of 19 markers, and their
positions (x, y) were calculated. Similarly, other points were estimated and located in the
work area of the manipulator, determined as displaced points measured under the origin of
the manipulator, as shown in Figure 16. The next step was to detect these points and apply
the MATLAB® “fitgeotrans” function to determine the homography matrix H. After matrix
H is calculated, it is applied to the image using the “imwarp” function to transform the
image for further analysis. It is important to note that the object is not evident in the image
during this process, as only the transformation matrix H is being determined. Therefore,
the area must be cleared of all objects.
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Figure 16. Detection of markers to determine their centroids. The blue circular sections show the
centroids of each green circular element located within the manipulator’s work area, indicating the
coordinates of each element.

The homography process aimed at achieving image stabilization, as the structure
housing the visual sensor lacked sufficient rigidity and could potentially introduce errors
in object localization. The steps to determine homography are as follows:

1. Define the correspondence points from both the fixed image (CAD) and the estimated
points (located manually in the work area of the planar manipulator).

2. Locate the fixed and estimated position data in vectors.
3. Once the coordinates of the correspondences are determined, calculate the homog-

raphy matrix “H” using the MATLAB® “fitgeotrans” function, which depends on
the vectors.

4. Apply the calculated matrix “H” to the image to be transformed using the MATLAB®

“imwarp” function.
5. After transforming the image, proceed with the detection of red (object) and blue

(origin) objects and their centroids from the transformed image using the H matrix.

The homography process was carried out to establish image stabilization, as the
structure holding the visual sensor was not rigid enough, potentially generating errors in
the location of the object.

2.8. Control System

In this section, an open-loop kinematic control system is implemented, as illustrated
in Figure 17. This system takes an image captured by the camera as input. The captured
image is then processed by a computer vision algorithm to extract the features of the target
object. These extracted coordinates are subsequently forwarded to the inverse kinematics
module. In cases where the object becomes occluded, the Kalman algorithm predicts the
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next position by leveraging previous object data, which are then relayed to the inverse
kinematics module.
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2.9. Visual Servo Control

The visual servo control technique is applied in robotics to use visual information for
controlling the robot’s movement. This process integrates image processing and system
control, enabling the robot to accurately and autonomously perform tasks using visual
feedback. Two primary configurations of visual servo control techniques are Eye-in-Hand
and Eye-to-Hand. In the Eye-in-Hand configuration, the camera is mounted directly on
the robot’s end effector. The vision system moves with the robot, providing a dynamic
view of the environment from the perspective of the end effector. In contrast, the Eye-to-
Hand configuration places the camera in an external position to observe the work area,
offering a static panorama of the environment that includes both the robot and the object of
interest. Visual servo control techniques can be described by two mathematical models:
Image-Based Visual Servoing (IBVS) and Position-Based Visual Servoing (PBVS). The IBVS
model relies directly on the coordinates of the points of interest in the image, while the
PBVS model uses the estimated position and orientation of the object in 3D space. Given
the robot’s morphology, the best configuration for the manipulator was determined to be
the Eye-to-Hand visual servo control technique using the PBVS mathematical model.

In this section, Eye-to-Hand configuration was implemented due to the inability
to establish the first configuration, attributed to the manipulator’s morphology and the
considerable disparity in camera placement. This complexity arises from the limited
workspace, making camera attachment challenging. The configuration applied to the
closed kinematic chain parallel manipulator is shown in Figure 18.

In this configuration, the operator ξ represents the homogeneous transformation
matrix that relates the coordinates of points in 3D space with their coordinates in the image.

The parameter C represents the camera, W defines the origin of the robot, obj defines
the object, and E.F defines the end effector. The matrix ξ is shown in Equation (33).

ξ =

[
R3×3 t3×1
01×3 1

]
(33)
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The homogeneous transformation matrix consists of a rotation matrix R3×3, a transla-
tion vector t3×1, a scale vector 01×3 made up of zeros, and a value of 1 in the (4, 4) position
representing the perspective. This matrix ξ describes the robot’s pose and transforms
coordinates from the robot’s coordinate system to the camera’s coordinate system and vice
versa. To determine the orientation and pose of the target and the end effector, Equation (34)
is used:

E.Fξobj = inv(cξE.F)⊕ cξobj (34)

This mathematical equation calculates the orientation between the object, the camera,
and the manipulator concerning the manipulator’s coordinate system. This entire process
was implemented in MATLAB 2021®.

2.10. Kalman Filter

This section outlines the Kalman filter’s implementation based on previous stud-
ies [38–40] to estimate real-time object position and motion. In this study, the Kalman filter
is employed to enhance the accuracy of position estimation for a moving object, particularly
during occlusions. The initial position data (x, y) are obtained from the vision algorithm
when the object is first detected by the camera. To estimate the initial velocity, the difference
between successive position data points is calculated, assuming a time interval (∆t) of 1 s.
The objective is to enable the parallel manipulator, characterized by a closed kinematic
chain and a 3-RRR configuration, to follow the trajectory of the target via its end effector.

The methodology for detection, data acquisition, and processing for position estima-
tion is described in the following items.

1. Capture and acquisition of semantic features for the target:

• Sequential capture of the target using the visual sensor.
• Calculation of the target’s semantic characteristics through computer vision

techniques [40,41].

2. Kalman filter initialization:
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• Establishing the object model, incorporating position and velocity.
• Initialization of the state error covariance and measurement error covariance

matrices with estimated values.
• Implementation of the state transition and observation matrices based on the

object model.

3. State prediction:

• The Kalman filter predicts the object’s current state for each iteration, using the
state model and previous measurements.

• Predictions are based on the previous step’s estimation state and the object
motion model.

4. Measurement update:

• 2D coordinates obtained from the computer vision system are used as measure-
ments to refine the object’s estimate.

• The Kalman filter [42] merges the state prediction with new measurements, weight-
ing each according to their reliability, determined by the covariance matrices.

5. Optimal estimation status:

• Following the measurement update, the Kalman filter yields the optimal current
state estimate of the object, including position and velocity [42].

• This estimation controls the manipulator’s motion for effective object tracking.

6. Iteration and update:

• This process repeats for each new frame captured by the computer vision system,
continuously refining the object’s state estimate for precise and smooth real-time
tracking [38,43].

The main challenge encountered was the occlusion of the moving object caused by
the base located on the end effector. Each time the end effector moved, it occluded the
object. To address this issue, the Kalman filter was proposed as a solution due to its
computational efficiency. The Kalman filter is ideal for this project because it enables real-
time processing with a low computational load, which is crucial for vision and prediction
systems. This filter not only estimates the current state but also predicts future states,
an essential capability when objects are occluded or temporarily out of the field of view.
Additionally, the Kalman filter effectively handles measurement uncertainties and noise
by combining noisy measurements with prior knowledge of the system, resulting in more
accurate and reliable estimates, as demonstrated in Figures 19 and 20.
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It is also a general problem of the paper that the procedures used in various steps
of the algorithm are inadequately described, which does not allow them to be replicated.
Moreover, the authors in most cases do not discuss how they deal with errors and noise.

Although other estimation methodologies were considered, such as particle filters,
extended Kalman filters, neural networks, and machine learning methods, these options
were ultimately discarded. These alternatives require significant data storage and high
computational capacity, which was not feasible for this project. The process carried out to
estimate the future position is detailed below.

2.10.1. System Modeling

In the first phase, the position (x, y) and speed
( .
x,

.
y
)

of the object in constant motion
in 2D space are modeled. The vector Xk is created, as seen in Equation (35):

Xt
k =

[
xk yk

.
xk

.
yk
]

(35)

The equation of the state of the discrete system is described as presented in Equation (36).

Xk+1 = Fxk + Wk (36)

where the parameter F is called the transition matrix. The matrix F is shown in Equation (37),
with a ∆t = 1 s:

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (37)

The term Wk is defined as the noise of the process, which is established as a vector
with a normal distribution with zero mean and covariance Q. The matrix F describes the
next state of the system. That is, it estimates the next state of the system based on the
current state.

The measurement model, zk, for the positions (x, y), is defined in Equation (38):

zk = Hxk + vk (38)
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where the parameter vk is the measurement noise, which is a normally distributed random
vector with zero mean and covariance R. The observation matrix H is defined as:

H =

[
1 0
0 1

0 0
0 0

]
(39)

The observation matrix H describes the relationship between the state of the system
and the observed measurements.

2.10.2. Estimation of Q and R Parameters

The Q matrix describes the uncertainty in the process model. A heuristic approach was
used to analyze the Q matrix based on the expected variability of the process. This approach
utilized historical data of the true state (Truestate) and the estimated state (Estimatestate),
where position and speed data are presented in a vector. The differences were calculated
using the following Equations (40) and (41):

di f f = Truestate − Estimatestate (40)

Q = cov(di f f ) (41)

To determine the R matrix, the covariance of the uncertainties in the measurements of
the visual sensor or camera was calculated. To estimate the parameter R, data were taken
from the positions (x, y) established by the visual sensor M, and then its covariance was
calculated. The process is shown below from Equations (42) and (43).

M =
[
x1 y1 x2 y2 . . .

]
(42)

R = cov(M) (43)

The methodology to calculate the R and Q matrices is based on system measurements
and results. In this case, the R and Q values can also be determined empirically. Two
constant parameters, r and q, can be estimated to define these values. The parameter q
represents the magnitude of the process noise, while r defines the measurement noise.
These constants can be estimated empirically based on the system’s characteristics and per-
formance. If the estimates are too noisy, the parameter q should be decreased. Conversely,
if the response is too slow, q should be increased. For the parameter r, if the Kalman filter’s
measurements are ignored, r should be decreased. However, if the measurements dominate
the process, significantly influencing the estimate, r should be increased.

The process noise covariance matrix Q is estimated using a few movement trajectories,
comparing the theoretical position and torque model with actual measured data. Although
the current estimation shows some discrepancies due to limited samples, increasing the
number of trajectories could improve the accuracy of the Q matrix. The measurement noise
covariance matrix R is based on the position data provided by the camera. Measurement
errors are calculated by comparing the true positions (from a noise-free trajectory simu-
lation) with the measured positions, providing a basis for the R matrix. These calibrated
matrices enable the Kalman filter to optimally estimate the position of the object, even
when measurements are unavailable due to occlusion, thereby ensuring continuous and
accurate tracking.

2.10.3. Initialization of the Kalman Filter

To perform the initialization of the estimated initial state x0|0 =
[
x0, y0,

.
x0,

.
y0
]T, for

the covariance of the initial state P0|0, the noise matrices Q and R are also defined. The ini-
tialization process of the matrices F and H was programmed in MATLAB 2021® as follows.

To perform the initialization of the initial state x =
[
x0, y0,

.
x0,

.
y0
]T, for the covariance

of the initial state P, where the variance of the initial estimates of position σpx and σpy and
velocity σvx and σvy, with initial uncertainties which are estimated from historical data, are



Electronics 2024, 13, 2703 22 of 30

taken, the noise matrices Q and R are also defined. The initialization process of the F and H
matrices was programmed in MATLAB® as follows.

Initial parameters for the Kalman filter:

dt = 0.1;

F = [1 0 dt 0; 0 1 0 dt; 0 0 1 0; 0 0 0 1];

H = [1 0 0 0; 0 1 0 0];

Q = covariance(diff);

R = covariance(M);

P =


σpx

2 0 0 0
0 σpy

2 0 0
0 0 σvx

2 0
0 0 0 σvy

2

;

x =
[
x0, y0,

.
x0,

.
y0
]T

The matrix P is the initial covariance matrix which initializes the variances of the
position and velocity.

2.10.4. Kalman Filter Algorithm

The Kalman filter operates in two main stages: the prediction stage and update stage.
The detailed steps are as follows:

Apriori state prediction:
x̂k|k−1 = Fx̂k−1|k−1 (44)

State error covariance prediction:

Pk|k−1 = FPk−1|k−1FT + Q (45)

Update stage
Kalman gain:

Kk = Pk|k−1HT
(

HPk|k−1HT + R
)−1

(46)

Update the estimated status with the new measurement:

x̂k|k = x̂k|k−1 + Kk

(
zk − Hx̂k|k−1

)
(47)

State error covariance update:

Pk|k = (I − KkH)Pk|k−1 (48)

This algorithm allows for the determination and estimation of the object’s position,
even in the absence of measurements or in the presence of noise. In Equation (47), the
estimated state data under system and measurement noise conditions result in the new
positions (x, y), which are then calculated and fed back to the manipulator for tracking and
detecting the object. It should be noted that there were no known inputs in the system since
only kinematic control was established.

3. Results and Analysis

In the first instance, data were taken from a trajectory based on a circular path, as
shown in Figure 21. The positions (x, y) along this circular trajectory were sent to the
inverse kinematics algorithm, resulting in theoretical angular position data. These values
were then compared with the processed and generated angular position data from the
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servomotors. In this section, both theoretical and real data are observed. The theoretical
data refer to the values established and generated by the dynamic equations of the three
links of the manipulator. The real data, on the other hand, are the responses provided by
the servomotors in terms of angular positions. It is important to note that the vision system
was not activated in this phase. This was carried out to analyze and compare the inverse
kinematics values of the manipulator (angular position data) against the data delivered
by the servomotors. The goal was to demonstrate the correlation of values in terms of
angular positions and validate the accuracy of the responses. To obtain the results, a circular
trajectory was established, as illustrated in Figure 21.
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Figure 21. Circular path.

In the first phase, a circular trajectory was programmed where the positions (x, y)
are sent to the inverse kinematics of the manipulator, resulting in the angular positions.
This information was sent to the three servomotors for validation. Figure 22 shows the
theoretical angular position data delivered by the kinematic chains, where the angles θ1, θ2
and θ3 are analyzed with respect to the data provided by the servomotors. The red line in
Figure 22 represents the theoretical angular positions provided by the inverse kinematics,
while the blue line indicates the actual angular positions provided by the servomotors as
feedback. This comparison helps validate the accuracy of the servomotors in following the
programmed trajectory.
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Figure 22. (a) Angular position of servo 1—theoretical θ1 vs. real. (b) Angular position of servo
2—theoretical θ2 vs. real. (c) Angular position of servo 3—theoretical θ3 vs. real.

The test procedure for obtaining the data presented in Figure 23 involved running the
manipulator along the predefined circular trajectory and recording the torques delivered by
the servomotors at various positions along this path. These figures illustrate the real motor
torques generated by each servomotor during the execution of the circular trajectory. The
data help to understand the behavior and performance of the servomotors under dynamic
conditions, providing insights into the torque demands and verifying the consistency of
the manipulator’s response.

Electronics 2024, 13, x FOR PEER REVIEW 25 of 31 
 

 

 
(c) 

Figure 22. (a) Angular position of servo 1—theoretical 𝜃ଵ vs. real. (b) Angular position of servo 2—
theoretical 𝜃ଶ vs. real. (c) Angular position of servo 3—theoretical 𝜃ଷ vs. real. 

The test procedure for obtaining the data presented in Figure 23 involved running 
the manipulator along the predefined circular trajectory and recording the torques deliv-
ered by the servomotors at various positions along this path. These figures illustrate the 
real motor torques generated by each servomotor during the execution of the circular tra-
jectory. The data help to understand the behavior and performance of the servomotors 
under dynamic conditions, providing insights into the torque demands and verifying the 
consistency of the manipulator’s response. 

Figure 23a–c show the real data of the motor torques delivered by the MX-64T servo-
motors [39]. To describe the torque, a conversion from bytes to motor torque for each ser-
vomotor was established. The differentiation of movement for each motor was also deter-
mined as follows: values above zero indicate counterclockwise rotation, while values be-
low zero indicate clockwise rotation. Each value is graphed discretely, with points repre-
senting each data shot. In these figures, the maximum torques are generated when the 
kinematic chain reaches its maximum extension or is close to a singularity in either the 
clockwise or counterclockwise direction of rotation. These torque values are provided di-
rectly by the servomotors. Figure 23a shows the data for servomotor 1 operating the kin-
ematic chain 𝐴𝐷𝐺തതതതതത. Figure 23b shows the torques delivered by the kinematic chain 𝐵𝐸𝐻തതതതതത, 
and Figure 23c shows the torques delivered by the kinematic chain 𝐶𝐹𝐼തതതതത. These data are 
based on the programmed trajectory that was initially planned. Regarding the differences 
in the indicated maximum torques for servomotor 1, it is important to note that the con-
ditions and constraints during each set of measurements can affect the maximum torque 
values observed.  

  

(a) (b) 

Electronics 2024, 13, x FOR PEER REVIEW 26 of 31 
 

 

 
(c) 

Figure 23. (a) Motor torque—servomotor 1. (b) Motor torque—servomotor 2. (c) Motor torque—
servomotor 3. 

Results of the Vision System Applying the Eye-to-Hand Visual Servo Control Configuration and 
the Kalman Filter 

In this section, we present the results established by the aforementioned methodolo-
gies. In the first instance, as seen in the work area of the manipulator, a circular pattern is 
created, as shown in Figure 24. As mentioned in Section 2.8, the Eye-to-Hand configura-
tion was established, where the camera is positioned at the top of the manipulator, provid-
ing a broader view of the work area, as seen in Figure 24. Within the same work area, a 
red object was established as the element to analyze, detect, and move manually. The end 
effector, initially transparent, was later replaced with a metal base to generate occlusions 
and test the established algorithms. 

 
Figure 24. Object detection. 

In Figure 25, the target is referenced with a green cross, and the estimation of the 
target orientation is marked with a blue cross. Upon detecting the location of the target, 
the vision algorithm determines the position of the element (x, y) and sends it to the in-
verse kinematics algorithm for the end effector to follow the detected object.  

When the target is occluded, a problem initially detected, the Kalman filter estimates 
the orientation of the target with respect to its location and direction. The Kalman filter 
calculates the uncertainty, displayed as a white circle around the target location in Figure 

Figure 23. (a) Motor torque—servomotor 1. (b) Motor torque—servomotor 2. (c) Motor torque—
servomotor 3.

Figure 23a–c show the real data of the motor torques delivered by the MX-64T ser-
vomotors [39]. To describe the torque, a conversion from bytes to motor torque for each
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servomotor was established. The differentiation of movement for each motor was also
determined as follows: values above zero indicate counterclockwise rotation, while val-
ues below zero indicate clockwise rotation. Each value is graphed discretely, with points
representing each data shot. In these figures, the maximum torques are generated when
the kinematic chain reaches its maximum extension or is close to a singularity in either
the clockwise or counterclockwise direction of rotation. These torque values are provided
directly by the servomotors. Figure 23a shows the data for servomotor 1 operating the
kinematic chain ADG. Figure 23b shows the torques delivered by the kinematic chain
BEH, and Figure 23c shows the torques delivered by the kinematic chain CFI. These
data are based on the programmed trajectory that was initially planned. Regarding the
differences in the indicated maximum torques for servomotor 1, it is important to note that
the conditions and constraints during each set of measurements can affect the maximum
torque values observed.

Results of the Vision System Applying the Eye-to-Hand Visual Servo Control Configuration and
the Kalman Filter

In this section, we present the results established by the aforementioned methodologies.
In the first instance, as seen in the work area of the manipulator, a circular pattern is created,
as shown in Figure 24. As mentioned in Section 2.8, the Eye-to-Hand configuration was
established, where the camera is positioned at the top of the manipulator, providing a
broader view of the work area, as seen in Figure 24. Within the same work area, a red object
was established as the element to analyze, detect, and move manually. The end effector,
initially transparent, was later replaced with a metal base to generate occlusions and test
the established algorithms.
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Figure 24. Object detection.

In Figure 25, the target is referenced with a green cross, and the estimation of the
target orientation is marked with a blue cross. Upon detecting the location of the target, the
vision algorithm determines the position of the element (x, y) and sends it to the inverse
kinematics algorithm for the end effector to follow the detected object.
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within the manipulator work area. To validate the system performance, several trajecto-
ries were manually conducted with the vision system and the Kalman filter in operation. 
The gaps observed in Figure 26a,b occurred during periods when the object remained 
static due to manual movement. These static periods resulted in no new data points being 
generated, leading to the gaps visible in the plots. To provide a comprehensive evaluation 
of the system performance, additional data presenting the tracking error in position, ve-
locity, and time should be included. These data will help demonstrate the precision and 

Figure 25. Target occlusion.

When the target is occluded, a problem initially detected, the Kalman filter estimates
the orientation of the target with respect to its location and direction. The Kalman filter
calculates the uncertainty, displayed as a white circle around the target location in Figure 25.
If the target remains occluded, this circle increases over time, representing the increasing
variance and noise in the estimation.

After estimating and detecting the target, the target was moved along the circular
trajectory, and the angular positions were estimated. The angular results were graphed and
visualized in Figure 26a–c, with 156 values obtained at a capture rate of 30 fps as a result of
traveling the circular path.
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Figure 26. (a) Angular position estimation—servomotor 1. (b) Angular position estimation—
servomotor 2. (c) Angular position estimation—servomotor 3.

In this study, the movement of the object was based on the trajectory established
within the manipulator work area. To validate the system performance, several trajectories
were manually conducted with the vision system and the Kalman filter in operation. The
gaps observed in Figure 26a,b occurred during periods when the object remained static due
to manual movement. These static periods resulted in no new data points being generated,
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leading to the gaps visible in the plots. To provide a comprehensive evaluation of the
system performance, additional data presenting the tracking error in position, velocity, and
time should be included. These data will help demonstrate the precision and latency of the
tracking system, offering a clearer picture of its accuracy and responsiveness.

Finally, the torques delivered by the servomotors were recorded when detecting and
estimating the target coordinates, as shown in Figure 27a–c. These data illustrate the
maximum or critical points where the links reach their limits within the work area.
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For future work, it is proposed to calculate and analyze the dynamic equations of
the 3-RRR kinematic chain parallel manipulator using the Lagrange method to study the
torques in the kinematic chains. Advanced control methodologies, such as coupled PID
or control based on state variables, could be applied to improve the control of kinematic
chains. Additionally, the vision system could be enhanced by applying stereo vision, which
would expand the field of view from different angles and allow better object detection,
applying methodologies such as RANSAC and SURF to compare results. Finally, machine
learning methodologies could be implemented, such as deep neural networks, for the
estimation and detection of objects in the vision area.

In the current phase of the study, the control system utilizes Inverse Kinematics
(IK) without incorporating the dynamic model described in Section 2.3. The dynamic
model was included to outline potential future work where advanced control techniques,
such as those based on the dynamic model, could be implemented to further improve
system performance. This future work could integrate the dynamic model into the control
system to enhance the precision and responsiveness of the manipulator under various
operating conditions.

It is also suggested to empirically estimate and calibrate the parameters Q and R in
the Kalman filter to achieve an optimal balance between confidence in the system model
and the measurements provided by the sensor. This empirical estimation can begin with a
trial-and-error phase to adjust these parameters based on historical data and the specific
characteristics of the system, ensuring accurate and reliable predictions.

To further enhance the precision of tracking and reduce the delay in object following,
the application of advanced control systems and the unification of the manipulator’s
dynamics are recommended. These improvements would allow for the initialization of



Electronics 2024, 13, 2703 28 of 30

more accurate control data for the Kalman filter, potentially leading to better performance
in real-time applications.

Finally, the contribution of this work addresses the integration of vision systems in
parallel manipulators, highlighting the importance of improving object detection and ma-
nipulation capabilities. This approach can enhance flexibility and precision in industrial
automation. The implementation of the Kalman filter for estimating the position of mov-
ing objects, especially when they are occluded, is crucial to maintaining the continuous
operation of manipulators in dynamic, unstructured environments. The study of parallel
manipulators, such as the 3-RRR, and the application of advanced vision and control tech-
niques provide a basis for future research and development in more robust and precise
manipulators, with applications across various industries.

4. Conclusions

In this study, a Kalman filter was implemented to estimate the position of a moving
object, particularly when occlusions occur. The initial results indicated that while the
Kalman filter can provide estimations based on limited trajectory data, the precision of
these estimations can be limited due to the few data points collected and the lack of a control
system. The theoretical data and the data provided by the Kalman filter showed some
degree of correlation, but exact similarity could not be demonstrated. This discrepancy is
due to the Kalman filter’s attempts to estimate the position when the object is occluded,
which generates estimated positions in the angles of the kinematic chains and similarly for
the torques exerted by the servomotors.

The Eye-to-Hand configuration provided a stable and wide view of the environment,
enabling robust detection and tracking of the object and the robot’s end effector. One
significant advantage is the simplicity of camera calibration and mounting, as the camera
did not move with the end effector of the parallel manipulator, making the system easier
to implement and maintain. Additionally, applying image stabilization with homography
corrected distortions and alignments in images, resulting in a more stable vision in the
manipulator’s work area. However, it is important to ensure that the points used for
estimating the homography are well defined, as poorly defined points can negatively affect
the precision of the transformation.

The Kalman filter proved to be an essential technique for estimation and prediction in
noisy dynamic systems. Its effectiveness largely depends on the accurate calibration of the
Q and R parameters. The study acknowledged that improper values for these parameters,
as well as the points used for homography, could lead to system failure. The current
study did not provide a comprehensive analysis of these influences, and further research is
required to optimize these parameters and validate their impact on system performance.

This study not only advances the kinematic control and visual servoing fields but
also opens avenues for future research, particularly in refining accuracy and extending
applicability to more complex spatial manipulations. Future work could involve collecting
more extensive trajectory data to improve the accuracy of the Kalman filter estimations
and incorporating a control system to enhance the reliability of the results. Additionally,
detailed studies on the influence of the Q and R matrices and the points for homography
could be conducted to ensure robust and precise object tracking and manipulation.
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