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Abstract: Efficient energy management is a significant task in Internet-of-Things (IoT) devices because
typical IoT devices have the constraint of a limited power supply. In particular, energy harvesting
IoT devices must be tolerant of complex and varying temporal/spatial environments for energy
availability. Several schemes have been proposed to manage energy usage in IoT devices, such as
duty-cycle control, transmission power control, and task scheduling. However, these approaches need
to deal with the operating conditions particular to energy harvesting devices, e.g., power depletion
according to energy harvesting conditions. In this paper, regarding a wireless sensor network (WSN)
as a representative IoT device, we propose an Energy Intelligence Platform Module (EIPM) for energy
harvesting WSNs. The EIPM provides harvested energy status prediction, checkpointing, and task
execution control to ensure continuous operation according to energy harvesting conditions while
minimizing required hardware/software overheads such as additional measurement components
and computations. Our experiment results demonstrate that the EIPM successfully enables a device
to cope with energy insufficiency under various harvesting conditions.

Keywords: energy harvesting; IoT devices; solar harvesting; duty cycling; WSN

1. Introduction

The advancement of the Internet-of-Things (IoT) is paving the way for revolutionizing
industries as well as explosive economic growth [1,2]. For example, usage of wireless
sensor networks (WSNs), a representative realization of IoT deployments, is increasingly
growing, with numerous applications such as monitoring rivers, wildfires, volcanoes,
and earthquakes [1,3,4].

One of the important constraints on the performance and lifetime of such devices is
their dependence on batteries. The limited capacity of the batteries embedded in IoT devices
incurs high maintenance costs for manually replacing batteries when depleted [5,6]. Recent
studies have introduced various energy harvesting techniques to resolve this problem and
enable perpetual operations without maintenance [1,5,7–9]. Energy harvesting is essentially
a technique to obtain energy from ambient sources such as RF radio waves [10], light [11],
and mechanical motion [12]. The best energy harvesting method differs depending on the
application’s operational needs and environment [13].

Among various energy harvesting technologies available today, solar energy harvest-
ing is generally the most effective at providing high power density. It is the optimal energy
source for an IoT device like a sensor node operating with relatively small harvesting
modules [14,15]. However, due to power fluctuations from the solar panels and the limited
storage capacity of an energy buffer, there are several design issues for solar harvesting in
IoT devices:

• The amount of harvested energy can exceed the storage capacity from time to time.
An energy harvesting IoT device should aggressively utilize such abundant energy.
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• Energy harvesting conditions vary temporally and spatially. An energy harvesting
IoT device must cope with such uncontrollable variability to extend its lifetime and
increase sustainability.

• Energy harvesting without another external power source can cause frequent power
depletion. Such power depletion results in shutdowns and restarts, leading to loss of
data and severe operational disruptions. An energy harvesting IoT device must respond
appropriately to frequent system failures caused by insufficient harvested energy.

To address these design issues, we first build an analytical model for the status of
energy harvesting IoT devices that includes power depletion and task rejection probabilities
according to the energy harvesting rate and event arrival rate. Then, we propose an energy
intelligence platform to control the device behavior according to the energy harvesting
conditions. If the device works under a time-varying energy harvesting environment, the
EIPM enables it to adjust its task execution rate accordingly and keep its state even with
power depletion.

The remainder of this paper is organized as follows: In Section 2, we discuss related
work. Section 3 presents our target environment and analytical model. The proposed
EIPM is explained in Section 4. Section 5 demonstrates the experiment results using our
EIPM implementation in a solar energy harvesting device. Finally, we conclude this paper
in Section 6.

2. Related Work

Enormous research efforts have focused on energy-aware management for mobile and
IoT devices [16]. Singh et al. [5] provide a systematic taxonomy for energy management
schemes, particularly for WSNs, and examine various protocols and algorithms along with
different energy management policies. However, these conventional approaches aim to
control devices based solely on the battery level and do not consider the energy harvested
from the environment.

There have been several research studies for managing scarce energy resources for
devices powered by harvested energy [9]. Corke et al. [17] present the hardware design
principles for long-term solar-powered wireless sensor networks. Simjee and Chou [18]
propose a supercapacitor-operated solar-powered wireless sensor node called Everlast.
These studies address initial system architectures for energy harvesting sensor nodes.
Noh et al. [19] propose an energy assignment approach for solar-powered sensor systems
to satisfy an objective such as ENO. Moser et al. [20] propose a parameterized specification
and a corresponding optimal policy to control sensing and communication rates for devices
powered by harvested energy instead of solving the optimization problem in real-time.
Vigorito et al. [21] seek to address this limitation by formulating duty cycling as an adaptive
control problem. Sarang et al. [22] present an energy-neutral operation (ENO)-based
adaptive duty cycle MAC protocol that supports each sensor remaining in ENO as long as
possible and using the surplus harvested energy to improve network performance. In [23],
Bengheni et al. propose a multi-threshold energy regulating algorithm that dynamically
adjust its duty cycle through calculating its sleep interval according to the amount of
currently remaining energy. Havrlík et al. [24] address how distortion of signals in an energy
harvesting environment affects the complexity and performance of the overall system.

However, these approaches assume that the energy harvesting source is stable or
that the devices’ energy usage and workload profiles are known, although energy sources
such as solar power have high variability and the profiles will likely be unavailable. Sub-
stantial research has been conducted with the objective of addressing these issues [25].
Zou et al. [26] develop an approach to enable devices to adjust their scheduling plans
according to energy production and residual battery levels. Cammarano et al. [27] present
an energy prediction model for energy harvesting sensor networks that leverages past
energy observations to forecast future energy availability. By integrating energy predictors
with time slots of varying lengths, it is possible to enhance the performance of the system by
adapting to the fluctuations of the power source. Peng et al. [28] propose a framework for
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managing harvested energy in a prediction-free manner. The authors validate the efficacy
of their scheme through theoretical analysis and extensive simulations without real-world
experiments. In [29], Ashraf et al. employ a queue control model to maintain the energy
level at a reference value based on a prediction of the harvestable energy and achieve
higher throughput compared with throughput optimal schemes. Li et al. [30] explore task
scheduling using predictions based on weather forecasts in energy harvesting systems and
demonstrate accurate predictions for medium timescales. For the purpose of minimizing
unnecessary errors in solar-based harvesting systems, Sah et al. [3] present a prediction
technique based on prior energy measurements to show the future energy status for the
respective time slot. In [31], Sah et al. propose a routing awareness scheduling algorithm to
address crucial issues such as energy depletion, coverage preservation, routing, clustering,
etc. The presented approach dynamically coordinates the role of sensor nodes , i.e., a
header or a member of a cluster, based on both the remaining and harvested energy and
the number of active nodes.

The research studies discussed above focus on maximizing the utilization of devices
that use an ambient power source rather than considering seamless operation after power
depletion occurs. Even though these approaches enable devices to optimize power con-
sumption, power depletion events are inevitable. Checkpointing [32] is a typical technique
to save the memory state on non-volatile storage in operating systems; restarting from the
checkpointed state enables devices to recover their memory state from the last checkpoint.
If an IoT node has a checkpoint before it turns off, it can perform subsequent operations
after power becomes sufficient. Several studies [33,34] introduce checkpointing techniques
to prevent the loss of state information due to power depletion. However, these approaches
need to cope carefully with dynamic energy harvesting environments. Considering energy
harvesting environments, Ransford et al. [35] suggest checkpointing and rescheduling
techniques in computational RFIDs that scavenge energy from an ambient source. How-
ever, since RFIDs have severe resource constraints, their proposed approach uses a simple
voltage-based policy to determine whether to perform checkpointing and rescheduling.

3. Problem Statement
3.1. Energy Harvesting IoT Devices

We focus on energy harvesting IoT devices that use capacitors rather than conventional
rechargeable batteries as an energy storage/buffer. These two energy storage methods
have trade-offs: a capacitor works for many recharge cycles but discharges quickly without
a power source. In contrast, a rechargeable battery works for limited recharge cycles and
takes a relatively long time to charge up but discharges very slowly. Aiming to sustain the
IoT environment without maintenance, we consider capacitors as energy storage for the
devices. However, the energy storage capacity of capacitors varies from a few tens of µF
to thousands of F. In particular, a typical capacitor has just a few thousand µF, which is
too small compared with rechargeable batteries. This results in intolerance to dynamics
in energy availability. Also, the intolerance will matter even with a large energy storage
capacity if the amount of harvested energy is insufficient. For an energy harvesting source,
we choose a solar panel: the most popular and available power source with a dynamic
nature for the available amount of harvested energy. Regarding a sensor node as the
simplest representative of an IoT device, we use a legacy sensor node [36] equipped with a
TI solar panel [37] for the implementation and experiments.

3.2. Microbenchmarks

For the selected device, we conduct a series of microbenchmarks to measure energy
consumption for the devices’ operations, as presented in Table 1. The device uses a capacitor
as energy storage in these experiments. Before each experiment begins, we fully charge
the capacitor by connecting the device to an external power supply. After disconnecting
the external power supply from the device, we make the device run each operation using



Electronics 2024, 13, 2704 4 of 19

only the energy in the capacitor. Then, we compute the energy consumption based on the
output voltage drop of the capacitor while completing each operation.

Table 1. Energy consumption of operations.

Operation Measured Energy Consumption

Flash Write (E f w) 0.5793 µJ/byte

Flash Read (E f r) 0.1588 µJ/byte

Flash Erase (E f e) 15,065 µJ

ADC Read (Eadc) 5.2280 µJ/trial

Memory Operation (Emem) 0.0142 µJ/byte

Do Nothing (ELPM3) 22.082 µJ/s

3.3. Analytical Model

We build an analytical model to estimate the status of energy harvesting devices, such
as the usage of the harvested energy and power depletion, under the following assumptions:

• A device performs a duty cycle with a fixed active period ratio ρ in one cycle of L unit
time for processing event tasks.

• The energy buffer of the device is initially empty, and its maximum size is emax units.
The device starts its first operation once the energy buffer becomes full.

• A device executes tasks that have arrived with the rate of µt, which means the average
service time of a task is 1

µt
. The arrival of events is a Poisson process with the rate of

λt. One task execution consumes one unit of energy from the buffer.
• The arrival of harvested energy is also a Poisson process, with the rate of λh.
• Task acceptance and execution are possible only during an active period and with avail-

able energy.

Energy is drained from the buffer when the device runs a task, which occurs when the
task queue system is not empty during an active period in the duty cycle. Let Pt(0) = 1− λt

µt
denote the probability that the task queue system is empty. Then the energy drain rate of
the buffer µd is computed as µd = µt(1 − Pt(0)). Figure 1 illustrates the behavior of the
task queue and energy buffer under these assumptions.

(a)
Figure 1. Cont.
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(b)
Figure 1. System diagram: (a) active period; (b) idle period.

Let E[B0] denote the expected energy buffer level at the moment of the first duty cycle
of the device. Since we assume the device starts its first operation with a fully filled buffer,
E[B0] is emax. The expected amount of harvested energy during one cycle is Lλh, and that
of consumed energy for executing tasks during an active period is Lλtρ. We define the
expected energy level at cycle k (E[Bk]) as follows:

E[B0] = emax

E[Bk] = E[B0] + kL(λh − µdρ)

When E[Bk] becomes zero, the device goes into power depletion status. Therefore,
the expected number of duty cycles until power depletion occurs (E[k]) is defined as follows:

E[k] =
emax

L(µdρ − λh)

After experiencing power depletion, the device starts new cycles once the energy level
reaches emax again. Let Cd (power depletion cycle) denote the total length of duty cycles
until power depletion happens and the energy harvesting duration for restarting the device.
Then the expected value for Cd (E[Cd]) is computed as follows:

E[Cd] = E[k]L +
emax

λh
= emax

(
1

µdρ − λh
+

1
λh

)

Then, the power depletion probability is defined as
1

E[Cd]
.

The device cannot accept tasks during an idle period or while fully charging the empty
energy buffer in one power depletion cycle. Therefore, the duration for which the device

cannot accept tasks in one power depletion cycle is (1 − ρ)E[k]L +
emax

λh
, and then, the

probability that tasks are not being queued Pi is defined as follows:

Pi =
(1 − ρ)E[k]L + emax

λh

E[Cd]
= 1 − λh

µdρ

To guarantee feasible service availability of IoT devices, we must minimize Pi as much
as possible. It is straightforward that a larger λd results in a higher Pi. If the device enqueues
tasks once they occur, the energy drain rate µd is λt since Pt(0) = 1 − λt

µt
. However, if the

device accepts a task with some probability p ∈ [0, 1], we can decrease µd = λt p, which
means that an appropriate policy to control tasks is required.

We validate our analytical model through event-driven simulations written in C++.
We compare the estimated probabilities with the measured ones from simulations for 5000 s
assuming backlogged tasks (i.e., a large event rate like λt = 50) and an energy buffer of
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size 10. Figure 2 is a 3D plot to present the power depletion probability according to the
energy harvesting rate and duty cycle. As shown in Figure 2, our model is likely to yield
the same probability as the simulation results. Looking into further detail, we investigate
the number of power depletions while fixing the energy harvest rate λh = 0.25, as shown
in Figure 3. We observe that our model more correctly estimates the number of power
depletion occurrence as the duty cycle ρ becomes larger. With ρ < 0.2, our model does not
expect any power depletion; our model presumes that the duty cycles ideally prevent the
occurrence of power depletion.
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Figure 2. Power depletion probability: (a) simulation; (b) model.
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Figure 3. Number of power depletions as a function of duty cycle (λh = 0.25).

4. Energy Intelligence Platform Module

In this section, we present a platform module for implementing energy intelligence in
energy harvesting IoT devices called the Energy Intelligence Platform Model (EIPM). The
EIPM workflow has four stages: sampling, prediction, scheduling, and action, as shown in
Figure 4. We develop the EIPM to process each stage through four components: a Power
Manager for the sampling and scheduling stage, an Energy Predictor for the prediction
stage, a Task Scheduler for the scheduling stage, and a Checkpoint Manager for one of
the actions that the EIPM performs (checkpointing). Figure 5 presents the EIPM structure
overview implemented for our legacy device using TinyOS [38].
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Figure 4. EIPM workflow.

Flash Memory Peripherals (LEDs, CC2420, etc)

EnergyPredictorC

CheckPointC

TinyOS SchedulerC

PowerManagerC

Figure 5. Implemented structure overview.

4.1. Power Manager

The Power Manager takes charge of sampling the collected amount of energy and
profiling the energy usage for tasks. As with the energy consumption measurement of
device operations in Table 1, the Power Manager computes the amount of harvested energy
by measuring the output voltage changes for the capacitor.

Let Ts denote the length of a voltage sampling cycle, as shown in Figure 6. The amount
of harvested energy at the moment of the ith sample (Eh(i)) is defined as follows:

Eh(i) =
C
2

(
V(i)2 − V(i − 1)2

)
−ELPM3 × Ts − 2 × Eadc ,

where the capacitance of the capacitor is C µF and the measured voltage at the ith time slot
is V(i) volts.
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Figure 6. Estimation of harvested energy.

The online task profiles can be easily obtained by measuring the voltage change
between task start and end. Assume that a node executed a task k. Denote the voltage
levels measured right before and after task execution as V1 and V2, respectively. Then the
profile of task k, π(k), can be defined as follows:

π(k) =
C
2
(V2

1 − V2
2 ) .

The problem with such online task profiling is that it is difficult to discriminate
between energy consumption and harvested energy, e.g, if harvested energy is larger than
the energy consumption for a user’s task, it seems that the user task does not consume any
energy. But we focus on such a profile being able to reflect the energy harvesting condition.
This can be used for an estimation of remaining energy after a user’s task execution under
a specific energy harvesting condition.

4.2. Energy Predictor

Several statistical methods such as auto-regression and the Holt–Winters algorithm [39]
can be a solution to predict/forecast the future energy status based on current observations.
However, these statistical approaches require large amounts of collected data and corre-
sponding computations to build a prediction model, making them inappropriate for IoT
devices with limited computing and energy capability.

For IoT devices, we suggest predicting the energy acquisition status (sufficient or
insufficient) rather than the exact amount of harvested energy. First, we define an insuf-
ficient state as a case in which a device cannot preserve the current level of the energy
buffer even without a task to be executed. Therefore, at the moment of the ith sampling,
the energy acquisition status is in the insufficient state when the amount of harvested
energy is as follows:

Eh(i) < ELPM3 × Ts + 2 × Eadc + γ ,

where γ is a margin for an energy-sufficient state.
Then, we build a simple two-state discrete Markov chain, as shown in Figure 7, for

which states 0 and 1 mean insufficient and sufficient light, respectively. Based on the series
of collected light sufficiency information, we simply compute transition probabilities by
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counting the number of transitions. We utilize the corresponding stationary probabilities
for each state, Pr[0] and Pr[1], to make decisions on device behavior.

Figure 7. Energy acquisition state transition model.

However, as observations are accumulated for long time, recent transitions between
insufficient and sufficient states are likely to be ignored in the model. To resolve this
problem, we employ an algorithm to decay the significance of previous observations, as
described in Algorithm 1. The accumulated count on each transition is multiplied by
0 < β < 1 every α samplings from the last decay. To ensure the two-state Markov chain is
irreducible and aperiodic and has stationary probabilities, we define the threshold θ = 1 to
limit the minimum value of the accumulated count of each transition.

Algorithm 1 Energy Acquisition Status Prediction

Init : Cnt[x → y] = 0 for x, y ∈ {0, 1}
Perform the following actions every voltage sampling

CurrState = Reading the light sufficiency information
if CurrState is a reading after α samplings from the last decay then

Cnt[x → y] = β × Cnt[x → y] for x, y ∈ {0, 1}
if Cnt[x → y] for x, y ∈ {0, 1} < θ then

Cnt[x → y] = θ
end if

end if
Cnt[PrevState → CurrState] + = 1
PrevState = CurrState
Calculate Pr[0], Pr[1] from current Cnt[x → y] for x, y ∈ {0, 1}

Since the EIPM makes decisions based on voltage samples and the corresponding
states, it is important for the EIPM to determine an appropriate sampling cycle in order to
prevent unnecessary energy usage while collecting enough information to control a device;
a large sampling cycle can result in delayed responses with regard to energy-sufficient
conditions, and a short cycle can incur too much energy consumption for ADC readings
and corresponding computations. To resolve this issue, the EIPM adjusts the sampling
cycle Ts based on the number of consecutive sufficient or insufficient light states. Let us
assume that the set of possible lengths for the sampling cycle is L = {l0, l1, l2, ..., lmax}.
Algorithm 2 presents the pseudocode for sampling cycle adjustment.
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Algorithm 2 Sampling Cycle Adjustment

Init : Ts = lmax, idx = max
Perform the following actions every time slot i

if Eh(i) indicates light insufficiency then
if there are ψd consecutive insufficient light states then

idx = idx − 1 if idx > 0
end if

else
if there are ψu consecutive sufficient light states then

idx = idx + 1 if idx < max
end if

end if
Ts = lidx

4.3. Task Scheduler

Suppose that a device executes tasks without any control. In that case, it can result in
inefficient energy usage or an unexpected energy depletion due to a power drain that is too
large from the energy buffer. So the EIPM needs a component to decide whether a device
executes a task based on the energy harvesting status.

The Task Scheduler controls device task execution based on the energy sampling and
task profiling from the Power Manager. It decides whether a device executes a task based
on the energy harvesting conditions to prevent inefficient energy usage and unexpected
energy depletion. Instead of finding the most proper task to be executed, like in [40], the
Task Scheduler simply focuses on the decision about whether or not to execute the task
at the head of the task queue. It aims to guarantee that the capacitor voltage after task
execution is larger than or equal to the minimum required voltage for operating the device.
Denote the minimum voltage for a device as Vdev (the Vdev of our device is 1.8 V). Assume
that the Task Scheduler controls the execution of task k at the ith sampling. The expected
voltage after task k execution, Va f ter(k), is as follows:

Va f ter(k) =

√
V(i)2 − 2

C
π(k) ,

where V(i) is a measured voltage level at the ith sampling.
Task k can be executed only if Va f ter is larger than or equal to Vdev; thus, Vdev can be a

minimum threshold for the Task Scheduler to compare to Va f ter. Note that the EIPM also
seeks to make a checkpoint before power depletion happens. Therefore, the threshold to
execute the task k should consider the amount of energy for checkpointing if necessary (i.e.,
if light is continuously insufficient). To reflect this, the Task Scheduler adjusts the threshold
to be close to the voltage level required for checkpointing (Vchk) as the stationary probability
of the insufficient light state Pr[0] increases. Then, it executes task k if Va f ter(k) ≥ Vthreshold.

Vthreshold = Vdev + (Vchk − Vdev)× Pr[0]

However, several system tasks are critical for device operation, such as timer expiration
and interrupts. If the Task Scheduler blocks such tasks, a node cannot work correctly.
To avoid blocking this type of task, the Task Scheduler divides tasks into two categories:
system tasks and user tasks. As shown in Figure 8, the Task Scheduler manages two
queues for each type of task. Tasks in the system task queue are under the default queue
management policy, e.g., they are preemptive against user tasks, and the Task Scheduler
does not control them at all. In contrast, a device executes user tasks only when the Task
Scheduler checks that the energy condition satisfies the above constraints with the help of
the Power Manager.



Electronics 2024, 13, 2704 11 of 19

PowerManagerC

System Tasks

User Tasks

SchedulerC

Figure 8. Task queues.

4.4. Checkpoint Manager

Checkpointing is a typical technique to save the memory state on non-volatile storage
in operating systems; restarting from the checkpointed state allows applications to recover
their memory state to the last checkpoint. In the EIPM, the Checkpoint Manager creates
such a rollback point to keep the device state information regardless of power depletion.
It is straightforward that deferring a checkpoint to just before power depletion is energy
efficient since saving a checkpoint triggers additional energy consumption. However, to be
tolerant of unexpected failures, it can be better to do an eager checkpoint, which saves the
memory state periodically or at certain points in the application’s execution. To decide an
appropriate time for a checkpoint, the Checkpoint Manager collaborates with the Energy
Predictor; it makes a checkpoint when the stationary probability for the insufficient light
state is larger than a particular threshold, e.g., we use Pr[0] > 0.8 as a triggering condition
for a checkpoint in our implementation. Also, as discussed for the Task Scheduler, the
Checkpoint Manager also check whether the capacitor voltage level is larger than Vchk,
which satisfies the following condition:

C
2

(
V2

chk − Vf
2
)
≥ (E f w + Emem)× S ,

where Vf is the minimum voltage level for operating flash memory, and S is the size of
a checkpoint.

If checkpoints are created too frequently, most of them are useless since they do
not contain any new information compared with the previous one. To avoid unneces-
sary checkpoints, the Checkpoint Manager sets an indicating value for each checkpoint
(checkpoint TTL), which specifies how long the corresponding checkpoint is worthwhile.
Assuming more task executions make a checkpoint obsolete, the Checkpoint Manager
decreases the value of the checkpoint TTL (reduces it by one) every task execution. Then,
if the checkpoint TTL becomes zero, the Checkpoint Manger makes a new one if necessary.

5. Evaluation
5.1. Real Device Experiments

To evaluate the performance of the EIPM on our device, we build a simple application
that calculates the average values from sensed data and transmits them to a basestation.
The communication component is turned on only when a node tries to transmit a packet,
and each transmitted packet contains a sequence number to identify how many values
are used for computing the average. We compare the EIPM with a naive threshold-based
approach to control task execution. In the case of the threshold-based scheme, the device
periodically samples its voltage level and determines whether to execute a task based on
the measured voltage level.
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We run outdoor experiments using the simple applications compiled with each ap-
proach for 24 h. We select parameter values for the EIPM and the threshold-based approach
as shown in Tables 2 and 3, which yield feasible and comparable performance from prelim-
inary experiments. Recall that the EIPM adjusts the sampling cycle according to the energy
harvesting conditions. In contrast, the threshold-based approach uses a fixed value for the
sample cycle; we choose the medium value of L for the EIPM. In the case of the threshold
for task execution, the naive approach uses the voltage value for operating flash memory
as a threshold.

Table 2. EIPM parameters.

Parameter Description Value

α Threshold for decaying 30

β Decaying factor 0.5

γ Margin for light sufficiency 300 µJ

ψu Threshold for increasing Ts 10

ψd Threshold for decreasing Ts 2

S Set of possible Ts {50 ms, 100 ms, ..., 450 ms, 500 ms}
TTL Checkpoint lifetime 15 task executions

Table 3. Threshold-based approach parameters.

Parameter Value

Sampling cycle Ts 300 ms

Threshold for task execution 2750 mV

5.1.1. Task Execution Rate

To investigate whether the EIPM successfully manages energy usage while executing
a feasible number of tasks, we explore the task execution rate and the voltage level before
task execution. Figure 9 depicts the average task execution rate during 24 h. The appli-
cation compiled with the EIPM executes tasks more aggressively than the one with the
threshold-based approach while successfully decreasing the execution rate as the evening
goes on (light becomes insufficient). In contrast, the threshold-based approach yields about
12,000 task executions per hour, which is much lower than that with the EIPM. Recall that
both approaches execute a task after measuring the voltage level. Therefore, in the case
of the threshold-based approach without sampling cycle adjustments, its maximum task
execution rate is fixed just by the pre-determined sampling cycle even under sufficient
light condition (12:00 to 19:00). Therefore, the naive approach fails to fully utilize har-
vested energy for processing tasks, while the EIPM makes a device more aggressive under
sufficient light.

Figure 10 shows the average voltage level before task execution, which represents the
amount of energy stored in the capacitor before task execution. As discussed with regard
to the task execution rate, the EIPM more aggressively utilizes harvested energy than the
threshold-based approach under the sufficient light state. Also, in the case of the EIPM,
the voltage level before task execution increases as the evening goes on. This is because the
EIPM increases the voltage threshold for task execution when it needs to make a checkpoint
due to potential power depletion (light becomes insufficient).
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Figure 9. Average task execution rates.
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Figure 10. Average voltage levels before task execution.

5.1.2. Checkpoints

To examine how efficiently the EIPM creates checkpoints while avoiding unnecessary
ones, we investigate the number of checkpoints and the amount of lost information due to
power depletion. Since the threshold-based approach does not have a mechanism to create
checkpoints, we assume that it makes a checkpoint when the voltage level becomes the
minimum threshold to operate flash memory. Therefore, we count the number of expected
checkpoints based on the threshold during the last hour before power depletion.

Table 4 presents the average number of checkpoints and lost information (the num-
ber of executed tasks from the last checkpoint to power depletion). The EIPM creates
13 checkpoints while losing 9 states on average. The amount of lost information with
13 checkpoints is smaller than that of the predetermined checkpoint TTL = 15, which means
that the last checkpoint is still relevant. These results show that the EIPM efficiently miti-
gates unnecessary checkpoints while preserving a valid checkpoint. In contrast, since the
threshold-based approach uses the voltage level to determine whether to make a check-
point, it yields 84 checkpoints on average, which is much more frequent than the EIPM.
Also, the threshold-based approach does not guarantee successful checkpoint creation
because it does not check energy availability for completing a checkpoint.
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Table 4. Checkpoint statistics.

Scheme Description Count

Threshold-based Number of expected checkpoints 84

EIPM
Number of checkpoints 13

Amount of lost information 9

5.2. Simulations

To compare the EIPM with other approaches in more detail, we conduct event-driven
simulation based on the assumptions of the analytical model in Section 3.3. For the com-
parison study, we select the threshold-based approach in the implementation experiments
and a control method based on statistical time series prediction using the Holt–Winters
algorithm [39]. Note that in the simulations, we simplify the EIPM to utilize energy level
measurements instead of voltage. In the case of the Holt–Winters algorithm, we use a
smoothing parameter of 0.25 and utilize a series of 20 samples for the algorithm to predict
the one-step-ahead energy level.

5.2.1. Static Environments

First, we explore the simulations for 10,000 units of time with the static environment
parameter settings in Table 5. Each setting of the energy harvesting rate represents scarce
(λh = 1), moderate (λh = 5), and sufficient (λh = 15) energy harvesting conditions.
Figure 11 and Table 6 present the average number of power depletions, the average task
execution latencies (i.e., the interval between task enqueuing and execution), and device
turn-on durations collected from five simulation runs. As shown in Figure 11a, the EIPM
successfully prevents power depletions under moderate and sufficient conditions. In the
case of scarce conditions, the EIPM experiences inevitable power depletions but mitigates
them as much as possible. By doing so, the EIPM guarantees longer device turn-on duration
than the others, as shown in Table 6. In contrast, the other approaches suffer from power
depletions even when the energy harvesting condition is moderate. Compared with the
threshold-based approach, the Holt–Winters-algorithm-based one yields slightly fewer
power depletions but still yields many more than the EIPM. Figure 11b shows that task
execution latency decreases as the energy harvest rate becomes larger because enough
energy in the energy buffer enables a device to execute tasks more frequently. Since the
EIPM regulates task executions to avoid power depletions, it yields longer task execution
latency than the others under scarce and moderate conditions. However, once the EIPM
detects sufficient conditions, it more aggressively executes tasks; thus, its average task
execution latency becomes much shorter than the others.

Table 5. Simulation parameters for static environments.

Parameter Description Value

ρ Ratio of active period in one cycle 0.7

L Length of cycle 10

K Size of energy buffer 10

Q Size of task queue 100

λt Task arrival rate 10

µt Task service rate 15

λh Energy harvesting rate 1, 5, 10
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Figure 11. Power depletion and task execution latency in static environments: (a) number of power de-
pletions; (b) task execution latency.

Table 6. Device turn-on duration (units of time) in static environments.

Energy Harvesting Condition

Method Scarce (λh = 1) Moderate (λh = 5) Sufficient (λh = 15)

Threshold 12.21 348.06 always

Holt–Winters 12.09 451.60 always

EIPM 16.05 always always

5.2.2. Dynamic Environments

Next, we investigate the behavior of the EIPM and the other approaches under dy-
namic environments wherein the energy harvesting rate changes from time to time. To this
end, we artificially generate five time-series traces by continuously changing the energy
harvesting rates based on the previous ones for 10,000 units of time. We set the minimum
and maximum values of the energy harvesting rate to 0 and 15, respectively. Figure 12
presents the energy harvesting rate traces of the selected scenarios.
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Figure 12. Example scenarios using dynamic energy harvesting rate: (a) scenario 2; (b) scenario 5.

Table 7 presents the number of power depletions, device turn-on duration, and task
execution latency on average. Note that we sort the scenarios by the increasing order of
the number of power depletions. We expect that scenario 1 results in similar behavior to
the sufficient scenario in the static environment, scenarios 2–4 relates to the moderate one,
and scenario 5 relates to the scarce one. Similar to the result for the static environments,
the EIPM entirely prevents power depletions in scenarios 1–4 and suffers from a relatively
small number of inevitable power depletions in scenario 5. In contrast, the other approaches
severely suffer from power depletions, except for in scenario 1. The other metrics also
correspondingly behave similarly to those in the static environments. The EIPM yields the
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largest average device turn-on time for all scenarios, followed by the Holt–Winters and
threshold-based approaches. For example, Figure 13 presents the cumulative distribution
function of the device turn-on duration in scenario 5. As shown in Figure 13, the threshold
and Holt–Winters approaches exhibit device turn-on times of up to 33 units while the
EIPM does up to 681. In the case of task execution latency, the EIPM always yields longer
latencies. As with sufficient conditions in static environments, the EIPM successfully
shortens task execution latency as the energy harvesting condition becomes good, as in
scenario 1, although it is still slightly longer than the others to prevent power depletions.
These results demonstrate that the EIPM successfully manages device energy consumption
to mitigate power depletions while preserving feasible task execution performance.

Table 7. Results with dynamic environments.

a. Number of Power Depletions

Scenario

Method 1 2 3 4 5

Threshold 8 191 313 409 1015

Holt–Winters 6 155 254 365 1001

EIPM 0 0 0 0 66

b. Device Turn-on Duration (Units of Time)

Scenario

Method 1 2 3 4 5

Threshold 1078.32 51.33 31.50 24.05 9.42

Holt–Winters 1319.42 63.53 38.23 26.91 9.57

EIPM always always always always 147.08

c. Task Execution Latency (Units of Time)

Scenario

Method 1 2 3 4 5

Threshold 43.61 43.78 44.27 44.71 58.36

Holt-Winters 43.58 44.01 44.62 45.12 58.64

EIPM 59.11 71.12 72.55 73.59 77.16
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Figure 13. CDF of device turn-on duration (scenario 5).
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6. Conclusions

This paper proposes the EIPM: a platform module to implement energy intelligence
for energy harvesting IoT devices. First, we devise a simple energy measurement scheme
and prediction model to realize the EIPM in IoT devices with limited capabilities. Using
lightweight energy sampling and prediction models, the EIPM enables devices to adjust
their task execution rates according to energy harvesting conditions. Also, the EIPM pro-
vides a checkpoint mechanism based on predictions of energy conditions, allowing devices
to cope with inevitable power depletion events. Our simulation results prove that under
various environments, the EIPM almost perfectly prevents power depletions and enables
devices to turn on for a longer time; e.g., compared to the other approaches, the EIPM
reduces the number of power depletions by 93.4% if those are inevitable and provides
15.6× longer device turn-on duration while yielding 32.6% increased task execution latency
as a tradeoff, which is feasible. Also, we implement a proof of concept for the EIPM in a
wireless sensor node as a representative energy harvesting IoT device. Our experiment
results demonstrate that the EIPM successfully achieves the design goal of aggressively pro-
cessing tasks with the consumption of abundant energy under good harvesting conditions
and preparing a checkpoint with restricted task execution otherwise.
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