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Abstract: Most current trackers utilize only the highest-level features to achieve faster tracking
performance, making it difficult to achieve accurate tracking of small and low-resolution objects.
To address this problem, we propose an end-to-end anchor-based multi-scale transformer tracking
(AMTT) approach to improve the tracking performance of the network for objects of different sizes.
First, we design a multi-scale feature encoder based on the deformable transformer, which better
fuses the multilayer template features and search features through the self-enhancement module and
cross-enhancement module to improve the attention of the whole network to objects of different sizes.
Then, to reduce the computational overhead of the decoder while further enhancing the multi-scale
features, we design a feature focusing block to compress the number of coded features. Finally, we
introduce a feature anchor into the traditional decoder and design an anchor-based decoder, which
utilizes the feature anchor to guide the decoder to adapt to changes in object scale and achieve more
accurate tracking performance. To confirm the effectiveness of our proposed method, we conduct a
series of experiments on different datasets such as UAV123, OTB100 and GOT10k. The results show
that our adopted method exhibits highly competitive performance compared to the state-of-the-art
methods in recent years.

Keywords: tracking; multi-scale; anchor; transformer; encode; decode

1. Introduction

The main task of visual object tracking is to obtain the feature information of the
tracked target in the first frame of the video sequence so that then the tracker can automati-
cally localize the target and calculate the position and size of the target in the subsequent
frames of the video sequence based on this information. Nowadays it is used in several
fields of real life, such as drone detection, live sports broadcasting, etc [1,2]. However,
this field still faces numerous technical challenges, such as changing lighting conditions,
occlusion of objects, and low resolution of objects. Therefore, the development of a visual
object tracker that can effectively cope with these problems and has wide applicability is
crucial for the further development of this technology field.

The current mainstream trackers are designed based on twin networks, which uti-
lize a backbone network of shared weights to extract features and then fuse them for
prediction [3,4]. However, most of the contemporary object tracking methods mainly rely
on the last layer of high-dimensional features for feature fusion and prediction. SiamFC [5]
fused the last layer of features of the twin feature extraction network through a simple
cross-correlation operation to generate the final predicted response map for object track-
ing. But this method does not consider the problem of object size variation. Therefore,
SiamRPN [6] added the RPN network to SiamFC by utilizing a predefined anchor frame
to estimate the size of the object in advance. CSiam [7] increased the network depth
and employed a tandem structure of multiple RPN networks to enhance the network’s
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generalization performance and made it more sensitive to the object size. DaSiam [8]
enhanced the network’s immunity to interference by adjusting the dataset training strategy.
However, the RPN network-based tracker had a complex structure and need to set several
parameters such as the size, aspect ratio, and number of anchor frames, which not only
increased the memory consumption but also affected computational efficiency. To over-
come this difficulty, SiamCAR [9] proposed a novel labeling method to construct the final
predicted response map into a four-layer structure, where each layer of the response map
represents the distance from a point on the response map to one of the four edges of the
image. By eliminating the original multi-parameter anchors set at each location in this
way, the effect of hyperparameterization of the anchor settings on the tracking results is
removed. TransT [10] designed a simple end-to-end tracking algorithm framework based
on a transformer, which utilized the structure of codecs to achieve two-part feature fusion
more efficiently while reducing the impact of hyperparameters on the results. But these
methods rely heavily on a single highest dimensional feature for fusion prediction. As the
backbone network goes deeper, the high-dimensional features behave as semantic informa-
tion, and using only this information for tracking leads to poor model predictions for small
and low-resolution targets.

In order to break through this limitation, some researchers have realized object track-
ing by introducing multi-layer features. SiamRPN++ [11] introduced the use of multi-layer
features for fusion based on SiamRPN and reduced the number of parameters by re-
placing the traditional inter-correlation operation with a deep inter-correlation operation.
SiamBAN [12] proposed an anchor-free multi-layer feature fusion tracker, which utilized
two regression branches to directly obtain the position and dimensional size of the object,
dramatically improving the speed of the tracker. However, existing multi-layer feature
fusion tracking methods are all based on mutual correlation operations for fusion. This is a
linear operation, making it difficult to avoid information loss during the fusion process, re-
sulting in decreased tracking performance. Moreover, the complex structure of multi-layer
correlation fusion consumes significant computational resources during actual operation,
demanding more computing resources.

For the above reasons, the current visual target tracking technology has made some
achievements, but the complexity of its network architecture and the lack of depth in
the utilization and fusion of multi-layer features make the network’s tracking ability for
different size targets still require further improvement. Therefore, we propose an end-
to-end Anchor-based Multi-scale Transformer Tracking (AMTT) method which aims to
achieve accurate tracking of targets of different sizes through a concise network framework.
One of our main innovations is the design of the multi-scale feature fusion network, which
consists of three parts: a deformable attention-based multi-scale feature encoder, a feature
focusing block, and an anchor-based decoder. First, inspired by Deformable DETR [13], we
design a multi-scale feature encoder with a simple and stackable structure, which enables
the network to efficiently fuse multiple feature maps of the template image and the search
image. Then, to reduce the computational overhead of the decoder, we design a feature
focusing block which is able to reduce the number of features by feature aggregating
the multi-layer template features and search features passed from the encoder. Finally,
we introduce anchor information in the conventional decoder. Unlike anchors in RPN
networks, our anchors are a set of fixed anchors that are automatically generated in advance
without setting parameters. To obtain the feature anchor, we fuse the initial anchor with the
feature of the search image, and then use these feature anchor to guide the decoder to more
accurately decode the location of the target from the search feature map. After validating
our AMTT tracker on multiple datasets of GOT-10K [14], TrackingNet [15], OTB100 [16] and
UAV123 [17], the results of the study show that our method exhibits excellent performance
on every dataset, further confirming the utility of our method.

In this study, our main work includes the following four points:
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1. We design a multi-scale feature encoder. This encoder is able to utilize the multi-layer
features of the backbone network for fusion, which enhance the ability of the tracker
to sense targets of different sizes.

2. We design a feature focusing block module inserted between the encoder and the de-
coder. This module can perform feature aggregation on the fused multi-layer features
to achieve feature enhancement while reducing the number of feature token numbers.

3. We introduce an anchor in a traditional decoder to design an anchor-based decoder.
The query of the traditional encoder is split into content query and location query,
where the content query is a search feature and the location query is a predefined
anchor. The combination of the two parts yields the feature anchor to guide the
decoder’s work and enable the tracker to predict the location and size of the target
more accurately.

4. We evaluate our method on multiple datasets and compare it with state-of-the-art
object tracking methods. The results validate the effectiveness of our method. In ad-
dition, we perform ablation experiments on each module to verify the independent
validity of each module.

2. Related Work
2.1. Transformer in Vision

Transformer [18] was proposed in 2016 as a new architecture for machine translation,
which has significant global feature fusion capability. Recently, it has been applied to
the field of machine vision and is able to fuse a large range of features more efficiently
than with convolutional neural networks (CNNs) [19,20]. DETR [21] is an end-to-end
object detection method designed using transformer which employs CNN as a feature
extraction network, utilizes transformer’s codec structure for feature fusion, and performs
classification and regression with a simple prediction header. This approach removes the
extensive post-processing in object detection and greatly simplifies the object detection
process. Deformable DETR introduces a multi-layer feature representation based on DETR
and redesigns the codec module through the deformable attention to achieve the fusion
of multi-layer features. This improvement solves the problem of DETR for small object
detection. Conditional DETR [22] decouples the query from the decoder and introduces
anchor information to accelerate the learning of the decoder, enabling the detector to be
able to acquire the target location in a fine-grained manner. In this study, we are inspired
by Deformable DETR and Conditional DETR, applying them to the field of object tracking.
We design an encoder capable of fusing multilevel features and an anchor-based decoder
that enables the network to sense targets of different sizes and target them more precisely.

2.2. Visual Object Tracking

The main strategies for visual object tracking are mainly categorized into two types:
correlation filter-based object tracking methods and deep learning-based object tracking
methods. Correlation filter-based tracking strategies achieve the distinction between object
and background to determine the object location by designing correlation filters and using
manually extracted feature images for filter training [23–25]. However, the feature extrac-
tion process of this method is more complicated and it has been gradually replaced by the
rise of convolutional neural network feature extraction methods. Recently, object tracking
algorithms based on the structure of twin networks have made remarkable achievements.
This type of method contains three main parts: first, it extracts features from template
image and searches the image using the twin neural network; second, it designs a feature
fusion module to fuse the extracted features; and lastly, it performs simple prediction and
regression on the fused features to determine object location through the detection head.
However, most twin network trackers such as SiamFC [5], SiamRPN [6] and TransT [10]
select only the last layer of features in the backbone network for fusion prediction to achieve
faster tracking performance. This results in the network’s lack of accuracy in tracking small
and low-resolution targets and the occurrence of lost followers at length. Each position
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in the high-level feature map represents the semantic information within that region in
the original image, so it is ineffective for tracking small and low-resolution targets in the
image, and may even fail to track them. Some methods such as SiamRPN++ [11] and
SiamBAN [12] use multi-layer features for fusion prediction. However, these methods
are fused by hierarchical inter-correlation operations, which is a linear fusion, and the
arithmetic process may lead to information loss. Moreover, the structure of hierarchical
fusion is complex and computationally intensive, which cannot achieve the desired effect
of multilayer feature fusion. HiFT [26] realizes the fusion interaction of multi-layer features
using a codec designed by a transformer to compensate for the loss of information due to
the inter-correlation operation. However, the method underutilizes the bottom-level fea-
tures and is only used to assist the top-level features for interaction, indirectly limiting the
further improvement of tracker performance. Therefore, in order to utilize the multi-scale
features more effectively, we design an end-to-end Anchor-based Multi-scale Transformer
Tracking method, through which we solve the above problems and enhance the accuracy
and efficiency of object tracking.

3. Method

In this section, we present our end-to-end anchor-based multi-scale transformer track-
ing method. The specific structure of our method is illustrated in Figure 1. It consists of
three main components: a feature extraction network, a multi-scale feature fusion network,
and a network prediction head. Among them, the multi-scale feature fusion network
is composed of three main modules: the multi-scale feature encoder (MFE), the feature
focusing block (FFB), and the anchor-point-based decoder (AD), which are designed by us.
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Figure 1. Overall framework of AMTT.

3.1. Feature Extraction Network

In this paper, we use the architecture of twin network, i.e., ResNet50 [27] network as
a backbone to extract the features of the template image Z ∈ R3·HZ0·WZ0 and the search
image X ∈ R3·HX0·WX0 . Figure 2 illustrates the structure of the modified ResNet50. In order
to make the output feature map with higher resolution, we remove the fourth block of
ResNet50 and reduce the convolution step of the third block to 1 to achieve higher precision
localization. We input the template image and the search image into the backbone network
to obtain the multilayer features, respectively, and extract the features of the first and the
third layers of them to be stacked together as the template features and the search features,
which are expressed as follows in Equation (1).
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Stage0 Stage1 Stage2 Stage3

(H, W, 3)

(H/4, W/4, 64) (H/4, W/4, 256) (H/8, W/8, 512) (H/8, W/8, 1024)

Conv & Flatten
(H/4·W/4, 256) (H/8·W/8, 256)

Conv & Flatten

Concat
Feature Extraction

(H/4·W/4+H/8·W/8, 256)

Source Image

Multi-Scale Feature

Low-level Feature High-level Feature

Modified Resnet50

Stage4

Figure 2. Structure of the modified ResNet50.

Φk(Z) ∈ Rdimk ·HZk ·WZk , k = 1, 3, (1)

Φk(X) ∈ Rdimk ·HXk ·WXk , k = 1, 3, (2)

where, Φk() is defined as the kth layer feature output of the backbone network. A connec-
tivity layer is introduced to unify the feature depths of different layers to dim = 256. Finally,
the width and height dimensions are spread out into one dimension and the multilevel
features are stitched together in the new dimension. Thus, the final feature output of the
template image and the search image after the backbone network is obtained as

FZ ∈ Rdimk ·(Hz1·Wz1+Hz3·Wz3) = Rdim·Nz , (3)

FX ∈ Rdimk ·(Hx1·Wx1+Hx3·Wx3) = Rdim·Nx . (4)

3.2. Multi-Scale Feature Fusion Networks

In the following section, we describe the multi-scale feature fusion network we de-
signed, which includes three core components: a multi-scale feature encoder, a feature
focusing block, and an anchor-based decoder.

3.2.1. Multi-Scale Feature Encoder

The encoder processes multi-scale search and template image features from the back-
bone network. First, attention self-enhancement techniques are utilized to integrate both
bottom- and top-level features. This enhances the network’s ability to attend to objects
at different scales. Then, a cross-enhancement technique is used to combine the template
and search image features to enhance the search features by utilizing the target markers
in the template features. Multi-scale features that incorporate low-dimensional spatial
details and high-dimensional semantic data are finally generated. Our proposed multi-
scale feature encoder is shown in Figure 3, which is obtained by superposition of multiple
encoder units, where the encoder units are obtained by connecting the multi-scale attention
self-enhancement (MAS) module and the multi-scale attention cross-enhancement (MAC)
module in series. The structure and design ideas of MAS and MAC are described below.
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Figure 3. Structure of the multi-scale feature encoder.

Multi-scale Attention Self-enhancement Module (MAS): Its structure is shown in the
pink box to the left of Figure 3. We introduce the multi-scale deformable attention (MDA)
mechanism for feature enhancement. Considering that there is no position information in
the multi-level feature output of backbone network, we generate multi-level position em-
bedding (mPE) by combining sinusoidal position embedding and hierarchical embedding.
It is added with multi-level features to obtain MDA query, and the multi-level features are
separately introduced as the value of MDA. Finally, the reference points of each position on
the feature map are directly generated by the function. The output of the MDA is summed
with the value and passed through a LayerNorm layer with a dimensional depth of 256
to obtain the output of the MAS. The search image as an example with the equation is
expressed as follows:

QX = Add(FX , mPEX), (5)

VX = FX , (6)

MASout(X) = Norm(MDA(QX , VX , RPX) + VX), (7)

where QX stands for the query of MDA, FX stands for the search feature, mPEX stands for
the search location, VX stands for the value of MDA, RPX stands for the reference point
with the search feature as the datum and MASout is the output of MAS. The computation
of multi-scale deformable attention is as follows:

MDA(xq, X, Pq) =
M

∑
m=1

Wm[
L

∑
l=1

K

∑
k=1

AmlqkW
′
mXl(Φl(P̃q) + ∆Pmlqk)], (8)

where xq ∈ Rdim·1 denotes a query vector in the vector space of X ∈ Rdim·Nx , Pq denotes
the relative position of the query on the whole feature map, Wm represents the multi-head
weight matrix, Amlqk represents the relative position Pq of xq under the lth scale feature
map in the mth head versus the attentional weight of the kth position Xl(ϕl(Pq) + ∆Pmlqk)

in the scale and W
′
m is the Value transformation matrix, satisfying

L

∑
l=1

K

∑
k=1

Amlqk = 1, (9)

It can be seen from Equation (8) that xq is not weighted with all vectors in the X
space in the deformable attention operation, but the weighting operation is carried out at a
specific location, where M represents the number of multiple heads of multi-head attention,
L represents the number of feature map scales and K represents the number of reference
points. With this deformable attention, the amount of computation can be greatly reduced
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without degrading the information interaction, allowing for each query to focus only on the
information around itself that is relevant to it. Figure 4 illustrates the computation process
of deformable attention through graphical representation.

qx

'

mW

X

mlqkPD

1 1

L K

mlqk

l k

A
= =

åå

Figure 4. Illustration of a multi-scale deformable attention mechanism.

Multi-scale Attention Cross-enhance-ment Module (MAC): Its structure is shown in
the blue box to the right of Figure 3. We take the MAS output of the search branch as the
input to this module, and the reference coordinates are passed in by the MAS module.
Unlike MAS, the Value of a MAC consists of the MAS output in the template branch.
By simply adjusting the input composition of MDA, the network structure in the blue box
can obtain the ability of cross-fusion. Then, the fusing features of MDA are sent to the FFN
module to further enhance the MAC fitting capability. The FFN module is composed of a
Relu layer and two fully connected layers, represented by the following Equation (10):

FFN(X) = ReLU(x · W1 + b1) · W2 + b2, (10)

where W1, W2 are the weight matrices of the two linear layers, respectively, and the subscript
is the index of each layer. Thus, the multi-scale attention cross-enhancement module can be
generalized as

QX = Add(MASout(X), mPEX), (11)

VX = MASout(Z), (12)

Resout = Norm(MDA(QX , VX , RPX) + VX), (13)

MACout(X) = Norm(FFN(Resout) + Resout), (14)

where QX is the query of MDA, MASout(X) is the MAS output result of the previous level
search image, mPEX is the search position, MASout(Z) is the MAS output result of the
template image, VX is the value of MDA, RPX is the reference point based on the search
feature, Resout is the output of MDA after passing the Add&Norm intermediate value and
MACout is the final output value of MAC.

3.2.2. Feature Focusing Block

To reduce computational load and improve encoding performance, we introduce a
feature focusing block. This module extracts and enhances high-dimensional features from
the multi-scale features, significantly reducing the number of decoded features without
losing critical information. Figure 5 illustrates the exact construction of the feature focusing
module. Similar to the multi-scale feature encoder, we decided to use MDA as the attention
mechanism for this module to reduce the overhead of multiscale feature computation.
First, we extract the high-dimensional features from the multi-scale features sent by the
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MFE. At the same time, we extract location code PH from the location code that matches
the high-dimensional features. Next, we use the spatial feature enhancement module,
as shown in the blue box in Figure 5, to enhance the information-rich vectors in the high-
dimensional features.
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Figure 5. Structure of the feature focusing block.

In order to avoid gradient diffusion in training, we use the spatial feature enhancement
(SFE) module as a side path and dot-multiply it with higher-dimensional features to obtain
higher-dimensional features XH . XH is combined with PH to obtain the query input of
MDA. XH receives the Reference point input through the Get Reference Points module,
and then the multi-scale features of MFE output are taken as the Value input of MDA.
Finally, the output of MDA is residually linked with the high-level features and input to
FFN to obtain the final focusing on features.

3.2.3. Anchor-Based Decoder

In the decoding stage, we introduce anchor information in the traditional encoder
to design an anchor-based decoder. The tracking results obtained from ordinary position
information-assisted query decoding are not satisfactory [22]. Therefore, we we consider
decoding query into the content query and the position query, where the position query
utilizes the feature anchor instead, and the decoder is able to decode finer tracking results
through the guidance of the feature anchor. Figure 6 illustrates the construction of the
anchor-based decoder. In the decoding process, we use the traditional multi-head attention
(MHA) mechanism [18]. In the previous stage, the feature focusing block greatly reduces
the number of feature vectors, which allows for the multi-head self-attention algorithm to
effectively model the image at the most economical cost.

Position Embeding Pointwise Add

Pointwise ProductConcat

AD

Figure 6. Structure of the anchor-based decoder.
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The init anchor is a four-dimensional bounding box∈ [1024, 4] pre-generated at each
location of the search feature map. We extend the second dimension to 256 using sinusoidal
coding to facilitate interaction with the search features. Search features align the channel
dimension with the anchor through a layer of ML and dot-multiply the two to obtain a
feature anchor with search features, as shown in Figure 7.{ 32

Init Anchor

Feature Info

Feature Anchor

Figure 7. Illustration of the feature anchor frame generation mechanism.

The feature anchor is used as position query, and the search features and position
embedding are summed to obtain a content query. The two parts of the query are spliced
together in the channel direction to obtain the final multi-attention query. The template
features serve as the value of multi-head attention. To align with the query dimension,
the template features are added with the location code and then spliced with the position
embedding to obtain the final input as the Key. The multi-head attention module is used
to decode the search features by using the template features, and the feature box is used
to refine the tracking results to find out the position with the highest matching degree
between the search features and the template features.

3.3. Prediction Head and Loss Function

After being processed by the multi-scale feature fusion network, the output feature
maps not only contain rich semantic information, but also have spatial information, while
interferences and background information are effectively suppressed in the feature maps.
Therefore, after the decoding is completed, the final classification correspondence map and
regression response map are generated by simple MLP classification branching as well as
MLP regression branching.

We realize the labeling marking all points corresponding to the target box on the
response graph as positive samples and other places as negative samples. At the same
time, in order to reduce the large gap between the number of positive samples compared
to the number of negative samples due to the small area corresponding to the target true
box on the response map, we reduce the loss of negative samples by 16 times for balancing
the training of the whole network. We utilize the cross-entropy loss function for binary
classification as the classification shoots the function for positive and negative samples,
defined as follows:

Lcls = −∑
j
[yi · log(pj) + (1 − yj) · log(1 − pj)]. (15)

where yi represents the true value, yi = 1 is for the foreground and pj is the probability
value of the foreground in the network prediction result. We use two metrics, the L1 loss
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and the generalized IoU loss GIoU [28], and combine them to arrive at the final regression
loss, defined as follows:

Lreg = ∑
j
[1{yi=1}λG · LGIoU(bj, b̂) + λ1 · L1(bj, b̂)], (16)

In calculating the regression loss, we only use the predicted data of the positive sample,
where bj represents the predicted result of the jth bounding box and b̂ represents the actual
bounding box after normalization. Both λG and λ1 are parameter settings for regularization,
which we choose to be 2 and 5, respectively.

4. Experiments and Results
4.1. Experimental Details

Our experiment is divided into two parts, the training phase and the inference phase,
and uses a total of six public datasets including GOT-10k [14], TrackingNet [15], LaSOT [29],
COCO [30], OTB100 [16] and UAV123 [17]. The connection between the datasets and the
model is shown in Figure 8.

TrackingNet

30,643 videos

Split

GOT-10K

7266 videos

Split

LaSOT

1120 videos

COCO

118,287 

images

UAV123

123 videos

OTB100

100 videos

Train Datasets

Test Datasets

180 videos

511 videos

123 videos

100 videos

30,132 videos

180 videos

1120 videos

118,287 images

Trainer

AMTT

Random Sampler

1000 epoch

1000×19 pair 

images per epoch

Checkpoints

TestResults

Selet a test dataset

Train datasets & Test datasetsVideo Datasets Detection Datasets

Figure 8. The figure illustrates the structure and data volume of the entire dataset, where the red line
represents the training process and the blue line represents the testing process.

Training stage: Our study employs an Intel i7-13700K processor with 32GB of RAM
and a single RTX3090 GPU with 24GB of video memory. We use Ubuntu 22.04.1 with the
Pytorch 1.12 framework to build our code. Four datasets, the GOT10k segmented training
set, LaSOT, COCO and TrackingNet are used to train the model during the training process.
Commonly used data enhancement methods such as luminance dithering and level flipping
are incorporated in the training process. We directly use the image pairs extracted within
10 frames from tracking datasets GOT10k, LaSOT and TrackingNet as the training data,
and for the COCO dataset, the original images are directly extracted and transformed
to obtain the image pairs as the training data. The size of the template image in the
training data pair is 128 × 128 and the size of the search image is 256 × 256. Our feature
extraction network uses the parameter weights of ResNet50 pre-trained on ImageNet,
and the parameter weights of the remaining modules are initialized using Xavier. We use
λ1 = 5, λG = 2 and λcls = 8.334 as the loss weighting coefficients for the L1 loss, GIoU
loss, and cross-entropy loss. The model is trained using the AdamW optimizer, setting the
feature extraction network and other parameter learning rates to 1 × 10−5 and 1 × 10−4,
respectively, and the weight decay to 1 × 10−4. We set the batch size to 19 and perform
1000 iterations per epoch for a total of 1000 epochs, and reduce the learning rate to 10 times
the original rate at the 500th epoch. Our main training parameters are shown in Table 1.



Electronics 2024, 13, 2710 11 of 19

Table 1. The main training parameters.

Parameter Value

Template image size 128
Search image size 256
Epoch number 1000
Batch size 19
The number of iterations per epoch 1000
Total training image pairs 19,000,000
Start learn rate 0.0001
End learn rate 0.00001
Output feature map size 32

Inference stage: A Hanning window of size 32 × 32 is first set and expanded to
1024 size. Then, we multiply it with the classification map predicted by the network to
obtain the final matching map. Based on this, we select the point with the largest score on
the score matching map as the location where the target is located, and then determine the
coordinates and size of the predicted target on the regression response map to determine
the final prediction region. The flow of a single video tracking is shown in Figure 9.

Start

First frame?
Crop the image according to the position as a 

template image.

Crop the image according to the position as a search image.

The template image and the search image are passed through the tracking 

network to obtain the classification map and the regression map.

The classification map is multiplied with the Hanning window and the 

location with the highest score is the area where the target is located in the 

current frame.

Updates the target position and frames.

Last frame?

end

The 4-dimensional coordinates of the corresponding region of the regression 

map are taken as the predicted position of the target in the current frame.

Yes

No

Yes

No

Figure 9. Flowchart of a single video tracking.

4.2. Comparison of Experimental Results

In this section, we analyze the proposed method in comparison with the most represen-
tative methods in the field of single-target tracking as well as the state-of-the-art methods
in recent years on four different benchmarks. These benchmarks include OTB100 [16],
GOT-10k [14], TrackingNet [15] and UAV123 [17].

OTB100: The OTB100 benchmark contains 100 video sequences for evaluating the
parameters of Precision and Success, where the Precision plot indicates the proportion of all
predicted frames whose predicted coordinate positions are within 20 pixels of the object’s
real coordinate positions. The Success plot indicates the proportion of all frames whose
predicted frames overlap with the object’s real frames by varying the overlap rate from 0 to
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1, and the proportion of all frames whose predicted frames meet the requirements. It also
includes eleven challenges including Illumination Variation, Occlusion, Scale Variation,
Deformation and so on [16]. Table 2 shows the results on the OTB100 test set. From the
table, we can see that our designed AMTT almost achieves leading performance in terms of
success rate, with a 1.5% improvement compared with TransT [10] and a 1.6% improvement
in terms of accuracy. We also compare the results of our designed tracker with other trackers
under different challenges as shown in Figure 10. It can be seen that under the challenge
of scale variation, our method achieves the best results compared with other methods
thanks to the anchor-based decoder we designed, which is able to decode the size and
dimensions of the target more finely with a feature anchor when the object changes. It
shows that our algorithm presents better performance for low-resolution and small-scale
target tracking. We visualize the tracking effect of our method with the state-of-the-art
algorithm in Figure 11.

Table 2. The table shows the results on the OTB100 dataset. The best two results are shown in red
and blue fonts.

Success (%) Precision (%)

AMTT (Ours) 69.6 89.9
RBO [31] 69.7 90.7
TransT [10] 68.1 88.3
Ocean [32] 66.6 89.1
ATOM [33] 66.4 87.3
DaSiamRPN [8] 65.4 87.3
SiamRPN [6] 62.6 84.2
SiamFC [5] 58.3 76.5

Figure 10. The figure shows the success rate of our method and other methods under multiple
challenges on the OTB100 dataset.
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AMTT(Ours)

Jump

Skating1

Tiger1

Skiing

ATOM DaSiamRPN

TransT RBO Ocean

SiamRPN SiamFC

Figure 11. The figure shows some of the results of AMTT with other methods on the OTB100 dataset
for three video sequences of Jump, Skating1, Tiger1 and Skiing. It is best viewed zoomed in, where
the red box indicates the real box.

GOT-10k: GOT-10k is a training set containing 10,000 video sequences; 180 sequences
are used as tests, and the training and test dataset categories do not overlap with each other.
We validate our tracking methods by strictly adhering to the test protocol and submitting
the test results to the official website for validation [14]. As shown in Table 3, we compare
the average overlap (AO) and success rate (SR0.5, SR0.75). Our method demonstrates signif-
icant improvements over both classical methods and the advanced methods developed in
recent years. There is a 4.8% improvement over GdaTFT [34] on AO and a 1.7% on SR0.5.
Compared with CIA [35], which also uses multilevel features, we lead by 0.9% on AO,
indicating that our proposed algorithm can better combine multi-scale features and the
tracking algorithm performs better.

Table 3. The table shows the results on the GOT-10k test set. The best two results are shown in red
and blue fonts.

ATOM AutoMatch SiamGAT TrDiMP RBO UTT CIA GadTFT AMTT
[33] [36] [3] [37] [31] [38] [35] [34] Ours

AO (%) 55.6 65.2 62.7 67.1 64.4 67.2 67.9 65.0 69.8
SR0.5 (%) 63.4 76.6 74.3 77.7 76.7 76.3 79.0 77.8 79.5
SR0.75 (%) 40.2 54.3 48.8 58.3 50.9 60.5 60.3 53.7 63.4

TrackingNet: TrackingNet is a comprehensive object tracking dataset featuring a
large training set and a test set that includes 511 video sequences with a variety of object
classes [15]. Similar to GOT-10k, TrackingNet uses an online official test method. Our
method also achieves commendable results when compared to recent methods. Table 4
presents the results on the TrackingNet test set, highlighting the effectiveness of our ap-
proach.
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Table 4. The table shows the results on the TrackingNet test set. The best two results are shown in
red and blue fonts.

ATOM SiamRPN++ AutoMatch SiamRCR TransT UTT CIA GadTFT AMTT

[33] [11] [36] [39] [10] [38] [35] [34] Ours

Prec. (%) 64.8 69.4 72.6 71.6 80.3 77.0 75.1 75.4 77.4

N.Prec. (%) 77.1 80.0 - 81.8 86.7 - 84.5 - 84.8

Success (%) 70.3 73.3 76.0 76.4 81.4 79.7 79.2 77.8 80.0

UAV123: UAV123 is a benchmark consisting of videos captured by UAVs which in-
cludes 123 sequences with an average of 915 frames each, containing 12 challenges of
Aspect Ratio Change, Background Clutter, Camera Motion, Fast Motion, Full Occlusion,
Illumination Variation, Low Resolution, Out-of-View, Partial Occlusion, Similar Object,
Scale Variation and Viewpoint Change [17]. Table 5 shows the results of our algorithm in
terms of accuracy and success rate in comparison with classical algorithms and advanced
algorithms in recent years, while in Figure 12 the results are shown more clearly by means
of curves. From the results, it can be seen that our algorithm achieves the best perfor-
mance, and on the success rate graph, we improve by 1.7% compared to the second-ranked
TrDiMP [37] and by 9.5% compared to HiFT [26], which also uses multi-scale features. This
demonstrates that our proposed multi-scale feature fusion network effectively leverages
multi-scale information, resulting in superior tracking performance. Additionally, Figure 13
compares our method with the top five state-of-the-art methods across various challenges,
revealing that our approach consistently achieves the best results in nearly every scenario.
Meanwhile, we visualize the partial tracking of the top five methods in three video se-
quences on the UAV123 dataset in Figure 14, and even if the object to be tracked is small,
our tracker can accurately track the target.

Table 5. The table shows the results on the UAV123 dataset. The best two results are shown in red
and blue fonts.

Success (%) Precision (%)

AMTT (Ours) 69.2 85.9

TrDiMP [37] 67.5 85.6

TransT [10] 67.0 85.2

SiamAttn [40] 65.9 83.9

STMTrack [41] 65.7 83.2

SiamPW-RBO [31] 65.6 82.6

AutoMatch [36] 65.4 81.3

Ocean [32] 63.1 81.1

SiamBAN [12] 61.2 78.0

HiFT [26] 59.7 77.1
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Figure 12. Results of our proposed AMTT with state-of-the-art methods on the UAV123 dataset in
terms of precision and success rate.

Figure 13. The results of the top eight success rate across challenges on the UAV123 dataset.

Person7_1

Person14_1

Bike3

AMTT(Ours)

AutoMatch

TransT

Ocean

RBO

SiamAttnTrDiMP

STMTrack

Figure 14. The figure shows some of the results of AMTT with other methods on the UAV123 dataset
for three video sequences of Person7_1, Person14_1 and Bike3. It is best viewed zoomed in, where
the red box indicates the real box.
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4.3. Ablation Experiment

In this section, we perform ablation experiments on the proposed modules to check
the performance of each module and validate it on the UAV123 dataset. First, we introduce
the meaning of each abbreviation in Table 6. I denotes a multi-scale encoder using ResNet50
as a feature extraction network, an ordinary multicapitate attention composition and a
single-scale decoder using multicapitate attention composition. II, III, IV, V are the codes
for ablation experiments performed on I, respectively. MFE denotes the use of a multi-scale
feature encoder of our design, FFB denotes the Feature Focusing Block and AD denotes the
Anchor based decoder.

As can be seen from the first two rows of data in Table 6, I uses the original multi-head
attention module as a multi-scale encoder, which has a lower performance of the tracker. II
is the change of the encoder to the multi-scale feature encoder of our design; the accuracy
of the tracker increases by 14.4% points. It shows that our designed encoder can better
fuse multi-scale information. The traditional multihead attention module fuses all the
multi-scale information, and the large amount of background information increases the
computation of the module and pollutes the fused image features. In contrast, our designed
decoder only takes the k most relevant locations in each layer for feature encoding, which
is reflected in the feature map as the local features are continuously enhanced, and the
background and interference information at the edges do not interact with the tracking
object which is continuously suppressed.

Table 6. The table shows the results of ablation experiments on the UAV123 dataset for each module
of our design.

MFE FFB AD Success Precision

I 50.2 70.3
II ✓ 65.715.5%↑ 84.714.4%↑

III ✓ ✓ 67.11.4%↑ 86.31.6%↑
IV ✓ ✓ 66.81.1%↑ 85.71.0%↑

V ✓ ✓ ✓ 69.23.5%↑ 85.91.2%↑

The performances of the FFB module and the AD module are verified separately
based on the inclusion of our designed encoder. As can be seen from the data in the
second and third rows of Table 6, the performance of the tracker improves slightly after the
introduction of the FFB module, thanks to the fact that after encoding the features, if the
low-level features are directly discarded and the high-level features are directly decoded,
there is a problem of information loss. We add the FFB module which can further enhance
the high-level features before decoding to obtain the effect of information aggregation.
Meanwhile, on the basis of adding the MFE module, we introduce the AD module. The data
in the second and fourth rows show that there is also a small increase in the performance of
the tracker. According to the analysis, the decoder after introducing the anchor information
is able to produce finer results by guiding the decoder toward the correct object position and
scale information through the pre-set Anchor. The last row is our designed AMTT tracking
method, which introduces both FFB and AD modules on the basis of adding the MFE
module, and from the ablation experiment, we can obtain the best result of our designed
tracker. The baseline and the score of our method in the final prediction are visualized in
Figure 15 using a heat map. It can be seen that our method is able to achieve more accurate
tracking when there are similar objects with different scales in contact, and AMTT is able to
clearly separate the tracked objects.
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Baseline

Human3

Bolt

AMTT(Ours)

AMTT(Ours)

Baseline

Figure 15. The figure shows the AMTT and baseline in the final prediction scores using a heat map.
The green box represents the real object and the higher red color of the heat map represents the
position where the network has a higher likelihood of predicting the object.

5. Conclusions

In this work, we propose an end-to-end anchor-based multi-scale transformer tracking
method. Unlike existing feature fusion methods, we design a simple and comprehensive
multi-scale feature fusion network. First, we design a deformable attention-based multi-
scale feature encoder which suppresses the background information in the features through
a self-enhancement module and reinforces the target information in the features through a
cross-enhancement module, thus realizing efficient fusion of multi-scale features. Then,
we propose the feature focusing block module to compress the number of encoded search
features and encoded template features so as to reduce the decoding operations without
loss of information. Finally, the focused features are decoded by an anchor-based decoder
that utilizes feature anchor to guide the decoder to decode finer target locations. Our
method is validated on the UAV123, OTB100, GOT10k and TrackingNet datasets. A success
rate of 69.2% is achieved on the UAV123 dataset, demonstrating that our method can
effectively fuse multi-scale features. Moreover, our method also achieves a leading position
on several challenges of UAV123 and OTB100, such as scale transformations, fast moving
object movement, and so on. Even if the object is deformed and its position changes too
fast, our method can still track it well thanks to the proposed anchor-based decoder.

The proposed method can be applied to several practical application scenarios such
as UAV tracking and video surveillance, and can better cope with the localization and
tracking of targets at different scales. However, the method still has certain shortcomings.
Compared with the ATOM method, the method does not introduce an update template to
realize tracking, and it cannot avoid the situation of tracking failure due to the loss of target
in long-time tracking. Therefore, in the future, an effective template updating method
needs to be investigated and embedded into our method to realize target tracking adapted
to different time lengths.
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