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Abstract: The problem of data heterogeneity is one of the main challenges facing federated learning
(FL). Non-IID data usually introduce bias in the training process of FL. models, which can impact the
accuracy and convergence speed of the models. To this end, we propose a personalized federated
learning (PFL) algorithm with adaptive dynamic adjustment of the gradient clipping boundaries
and the idea of freezing to reduce the influence of non-IID data on the model, called PerFreezeClip.
PerFreezeClip is a design decision regarding parameter architecture, comparing the private and
federated models. PerFreezeClip facilitates the training of each device based on an adaptive clipping
gradient during training, with more rational updates and more stable gradients. The results based
on the CIFAR-10 and CIFAR-100 datasets show that the proposed PerFreezeClip algorithm provides
higher test accuracy after controlling the gradient: a maximum of a 50% enhancement compared to
typical federated learning (non-personalized) algorithms.

Keywords: freezing; gradient tailoring; personalized federated learning

1. Introduction

With the rapid development of the big data era, the networked devices in modern
distributed networks generate abundant data every day. Research related to deep learning
has also experienced explosive growth due to the massive amount of high-quality data
samples. Making full use of these highly expressive data can help to construct more complex
and accurate machine learning models. However, in practical applications, the issue of
data privacy protection is involved. In the process of centralized learning, data need to be
uploaded to cloud servers or data centers, which may result in unauthorized access, theft,
and leakage of data. In addition, some organizations and individuals with data security
protection needs, such as governments and hospitals, may not be able to accept uploading
data to a shared platform such as a public cloud, thus restricting their power.

Spawned by the aforementioned issues, researchers have started to gradually shift their
focus from data aggregation to model aggregation. Storing data locally and pushing network
computation to the edge are becoming increasingly attractive. Federated learning (FL) is a
distributed artificial intelligence framework that enables multiple edge devices (such as mobile
phones and wearables) to collaboratively train a shared model. In the FL algorithm, edge devices
complete the model training process by coordinating with a central server [1,2]. Federated
learning also provides valuable insights and potential solutions to data privacy and security
challenges in the rapidly evolving field of smart UAV delivery systems [3]. Federated learning
addresses the concern of transmitting private information, enables multiple parties to participate
in training while protecting data privacy, and solves the problem of data silos.

However, in a federated learning setup, the data are distributed unevenly across the
edge devices, resulting in an uneven distribution of data samples. In particular, the local
dataset used for training by each edge device is not only different in size but also may
contain non-1ID data samples. This means there is a data heterogeneity problem, which

Electronics 2024, 13, 2739. https://doi.org/10.3390/ electronics13142739

https://www.mdpi.com/journal/electronics


https://doi.org/10.3390/electronics13142739
https://doi.org/10.3390/electronics13142739
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2664-5216
https://orcid.org/0009-0007-0488-0374
https://doi.org/10.3390/electronics13142739
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13142739?type=check_update&version=2

Electronics 2024, 13, 2739

20f 18

can lead to a decrease in the accuracy of the model obtained from the federated learning
training, or even cause the training to fail in reaching convergence [4].

Within the IID case, it is observed that the difference between the local scatter weight,
which indicates each participant’s contribution to the global model aggregation, and the
average scatter weight of the central server is minimal. However, in the non-IID case, the
gap between the local scatter weight of a client and the average scatter weight of the central
server widens with the number of iterations due to data distribution issues.

To address the above problems, we propose identifying a shared parameter space
for every client model. By imposing restrictions on the gradient during the client model
training and complementing it with this shared parameter space, we can effectively min-
imize the mutual interference among client models. In this work, our contributions are
summarized as follows:

e  To address the impact of data heterogeneity on model performance in federated learning,
we propose a personalized federated learning method called PerFreezeClip. PerFreeze-
Clip employs freezing and gradient clipping methods to parallelize training and local
adaption on the client side, effectively resolving mutual interference among client models.

e  Weinvestigate the use of freezing methods to control knowledge transfer between differ-
ent devices in client-side training and show that by freezing the parameters of certain
sub-networks, it is possible to limit the sphere of influence of specific sub-networks, pre-
venting the over-dependence on information from other devices, and thus enabling more
accurate knowledge sharing and maintaining localized features (i.e., personalization)

e  We investigate limiting the updating of the gradient in the face of data heterogeneity
and show that by limiting the updating range of the gradient, we can balance the up-
dating of the weights of global and local information, control the model bias, maintain
the consistency of the globally shared parameters, and improve the generalization
ability of the model.

e Simulation experiments and performance evaluations of the PerFreezeClip method
were conducted on multiple datasets. The experimental results show that PerFreezeClip
outperforms personalized methods like FedRep on CIFAR10 and CIFAR100 datasets.

2. Related Work
2.1. Mitigating Client Drift

The objective of traditional federated learning is to train a global model that applies to
all distributed data without the need for the agent to disclose extensive local information [5].
However, since federated learning [6] aims to achieve high-quality global models by learning
from local data of all participating clients in a distributed manner, it overlooks capturing
individual device-specific information, resulting in reduced performance in inference and
classification. The drop in accuracy is most pronounced when learning on non-independently
identically distributed (non-1ID) data [7]. This is due to the presence of client-side drift [8].
To address the drift problem caused by processing non-IID data, some methods attempt to
enhance local training. Tian et al. propose to add a proximal term to the goal, a term that
provides a principled way for servers to address the heterogeneity associated with partial
information [6]. Among them, Acar et al. proposed dynamically adjusting the weights of the
regularization terms according to the characteristics and contribution of the data on different
devices [9]. Similarly, Karimireddy et al. introduced stochastic control averaging, which
utilizes a network of controllers to monitor the performance of the global model and performs
a weighted average based on the performance. This dynamic process adjusts the contributions
of the participants [8]. Li et al. introduced the concept of contrastive loss, which promotes
the model to maintain good performance after local updating by maximizing the similarity
between pairs of similar samples and minimizing the distance between pairs of dissimilar
samples [10]. Kirkpatrick et al. also proposed a combination of Elastic Weight Consolidation
(EWC) and Generative Adversarial Network (GAN) approaches to solve the catastrophic
forgetting problem [11]. These works focus on calibrating the optimization direction of the
local models to narrow the gap between the average model and the global optimum, aiming
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to achieve a more stable global model of the device. From an optimization perspective,
Wang et al. introduced a new intermediate layer called a “Coordinator” to map and adjust
the objective functions of every participant. It enables them to achieve a consistent global
optimization goal within a coordinated framework [7].

2.2. Personalized Federal Learning

While the aforementioned studies focus on the performance of training globally
shared FL models on heterogeneous data, simply minimizing the average local loss can
result in poorer performance, especially when dealing with data heterogeneity. Hence,
personalized strategies [12,13] emerged. The main approaches include model mixing,
multi-task learning, and local fine-tuning, all of which aim to enhance the performance
of subsequent personalization on local data via enhancing the performance of the global
model in the presence of data heterogeneity. Personalization techniques are divided into
architecture-based and similarity-based approaches.

Architecture-based approaches aim to provide a personalized model architecture
tailored to each customer. Among them, Arivazhagan et al. introduced the concept of a
personalization layer, which enables the model to be adapted to individual characteristics
and needs to achieve the objective of personalized learning [14]. Bui et al. proposed the
concepts of a user embedding layer and an aggregation layer to achieve a global user
representation by learning user representation in each participant and integrating user
embedding vectors from different participants while preserving privacy [15]. There is also
a dual aggregation strategy proposed by Liang et al. that consists of two steps: local model
updating and global model aggregation [16].

Similarity-based approaches aim to leverage customer relationships to improve the
performance of the personalization model. Among them, Smith et al. designed a federated
multi-task learning framework that employs a strategy of inter-task sharing and intra-
task personalization to enhance personalization performance [17]. Similarly, Corinzia
and Beuret proposed an approach based on variational inference. In this approach, each
participant is accountable for training their local model and learning the parameters of the
global model, along with the task-specific parameters through variational inference [18].
Huang et al. proposed the concept of personalization across data sources to adapt to
the characteristics of different data sources through personalized parameter sharing and
migration [19]. Collins et al. proposed to improve the performance and generalizability of
the model through a shared representation, which attempts to extract common features
and knowledge by sharing certain parts of the model [20].

In this paper, we apply the freezing method in local updating and global aggregation
and combine it with adaptive gradient clipping to address the data heterogeneity problem.
Compared to other personalization methods, the application of freezing methods allows for
the better management and optimization of model-specific parameters in local optimization,
and since adaptive clipping individualizes the parameters for each device or data source,
it allows the personalized model to better fit the local dataset distributions, resulting in a
better performance of the model. Table 1 illustrates the relevant work described above.

Table 1. Related work.

Aspect PerFreezeClip Personalized Federal Learning Traditional Federal Learning
Personalized federated learning Personalized federated learning on Global training of shared FL
Focus
on heterogeneous data heterogeneous data models on heterogeneous data
Main Strategies Freezing method, adaptive Model mixing, multi-task learning, local Limit local updates [6-11]

Personalization Approach

Specific Techniques

gradient clipping
Architecture-based
Freezing in local updating and

global aggregation, clipping in
local updating

fine-tuning

architecture-based [14-16],
similarity-based [17-20]

User embedding [15], aggregation layer
[14], dual aggregation [16], variational
inference [18], parameter sharing [17,19],
shared representation [20]

Null

Proximal term [6]
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3. The Principle of Perfreezeclip

This paper introduces PerFreezeClip, a novel method aimed at mitigating the impact
of non-IID (non-identically independently distributed) data on federated learning (FL)
models. Specifically, PerFreezeClip incorporates adaptive clipping (adapt_clip) to address
this challenge. The workflow of PerFreezeClip is illustrated in Figure 1. This study
employs a freezing method and a gradient clipping strategy to achieve its objectives.
PerFreezeClip adopts a gradient clipping technique, although it may incur additional
communication overhead [21,22]. However, the introduction of a freezing method for
freezing the trunk and head can compensate for the computational overhead incurred in this
part. Related work [23,24] has shown that freezing methods can reduce the computational
and communication resources required to train learning models in FL. Therefore, this work
is not from the perspective of communication overhead but focuses on performance on
heterogeneous data. Initially, the global model is distributed from the server to all clients
for local training. During local training, the global model is divided into a backbone part
and a personalized head. There is usually a division of the model hierarchy, with the
backbone part usually containing the bottom and middle layers of the network, which
are used to extract generic and universally applicable feature representations, whereas the
header is usually located at the top layer of the network or the last layers for a specific task
and is used to adaptively tune the model to fit individualized needs. Each client freezes
the backbone part and updates the personalized head. Once convergence is achieved, they
freeze the head and update the backbone part. Throughout these client model updates,
gradient clipping is applied to limit the gradient model. At the end of local training, the
client model is passed to the server for aggregation of the backbone parts.

The general form of federal learning is expressed as

m

‘ 1
Jmin f(x) = Y Fi(x) (1)

where F;(x) = E,p, [fi(x,%)] represents the loss function of the i'" client, x € Z. D;
denotes the data distribution for the " client. Here, ¢ € S, where S represents a set of
clients participating in the training process. For each < and x, it is assumed that there is
access to an unbiased stochastic gradient g;(x) of the client’s true gradient VF; (x).

In the context of heterogeneous data, where ¢ # j, the data distributions D; and D
may exhibit notable disparities. Unlike conventional federated learning, our goal is to freeze
some of the parameters during the model training and aggregation phases, to improve the
stability of the federated learning process, and to obtain a model that is more suitable for
individual device customization. Meanwhile, gradient clipping in our algorithm aims at
mitigating the effects caused by differences in data distribution and quality across devices,
adjusting the performance of the gradient during the training process, and making our
algorithm more suitable for each device’s characteristics, resulting in distinct models 6;
for ¢ € S. Drawing upon FedRep [20], we decompose each learning model 6; into two
components: a global representation model we € R, R? — RF, which maps data points
to a lower-dimensional space of size k, and a device-specific head model ¢; € R, where
k+ p = d. Here, k and p denote the dimensions of the global representation and local
head models, respectively. To facilitate personalized learning on each device, we employ
a strategy where wg and ¢; are frozen in different stages during the training process, and
their parameters cannot be updated after freezing.
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Figure 1. PerFreezeClip method flowchart. Step 1: the server sends the global model to the client.
Step 2: during the local training process of the client, the model is divided into a backbone part and a
personalized head. The backbone part is then frozen, while personalization updates are applied to the
head. Additionally, adaptive gradient clipping is employed during the training process to optimize
specific segments of the model update. Once the head reaches convergence, it freezes the head and
updates the backbone part. In Step 3, after local training, the head is frozen, and the updated global
model is returned to the server. The server then aggregates the backbone parts across devices to
obtain a new global model.

3.1. The Freezing Procedure

Algorithm 1 illustrates the entire freezing procedure. Suppose that during the t-th
round of training, 6! represents the model on the i-th client, where i € S. Initially, 6!
was received from the global model, 8! = 6;. The decoupling process is represented as
0; = wi, + ¢}, where w{ , denotes the decoupled global representation model and ¢}

denotes the personalized head model. The freezing of wi-,g and ¢! is managed in different

stages in the training process based on the freezing scale parameter T;g, as indicated by the

following equation: N .
QE < Freeze (Qi, L, pri’ e ng) @)

ZUb’/g

where 95_ denotes the model parameters after the freeze is completed. Here, 6! represents the

yl
model of the i-th client in t rounds of training. The parameter T;,g denotes the freezing scale
g
Liuﬂ,g and L‘Epi signify the respective numbers of layers before the freezing of wa’g (global rep-

parameter set for the global representation w, , serving as a hyperparameter. Meanwhile,

resentation) and ¢! (personalized head). The freezing of wilg and ¢! is regulated throughout
various local epochs in accordance with T;g. In lines 14 of Algorithm 1, in the beginning
epoch of local training, it is first determined whether to freeze wig If the last epoch of
freezing wi/g is reached, then the unfreezing of wf;/g is performed, as indicated in lines 11-13.
At this point, the transition is made to freezing the head ¢!, indicated in lines 7-10.

The goal of freezing wf;,g implemented in the local training process is to maintain the
static attributes of these layer parameters. This strategy preserves the feature capabilities
acquired from prior training, while exclusively updating the weights of the head layer
(personalized parameters). As a result, this Freeze method enhances the exploration of the
optimization space for the remaining layer parameters during subsequent training, that is,
the header layer parameter, thereby fostering personalized learning.
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o, = gt + Wigs 3)

Algorithm 1 Freeze

Input: 6!, L! ,L;,L,,e, T

1 Wi g
Output: 6 / /Freeze completed
1. ife< T;‘]q * local_epoch:/ / local_epoch denotes the number of rounds of local training

2: for I in Lﬁuiq do:

3: final Wi,g,; = wi/ ol // Wi denotes an immutable set of parameters
4 set0f | = ¢ |+ Wi

5: end for

6: else

7: for lin L, do:

8: final ®;; = ¢! ; //®;; denotes an immutable set of parameters
9: setf | = wf;,g'l +9,;

10: end for

11:  ife= T;{,g * local_epoch:

12: set 0 = w} , + i

13: 6! = 6!/ /Freeze completed

14:  end

The process of freezing ¢! during global aggregation serves to facilitate knowledge
exchange among clients independent of personalized parameters:

6! = wf;/g,l +®, 4)

1,

In this context, W; ¢ and @, represent a fixed set of parameters, where w! gl €
Wi,g,l € L;]i . and (pi. EDy L€ pri. This signifies the immutable nature of the parameters,
indicating that they are frozen and not subject to updates. Note that it is common to assign
a higher value to T;)?. Specifically, in cases involving heterogeneous data with distinct data

distributions, this configuration leads to a reduced percentage of freezing for ¢!, allowing
for increased local adaptive updates within the head.

3.2. Detailed Procedure of Adap_Clip

After completing the freezing process and starting local training, gradient clipping is
applied before updating parameters. In contrast to traditional approaches that employ fixed-
value gradient clipping methods, we proposed an adaptive gradient clipping algorithm
referred to as adap_clip, which is inspired by the methodology outlined in [25]. adap_clip dy-
namically calculates the clipping threshold based on recent gradient trends, offering improved
adaptability to diverse tasks, data, and models, and enhancing the stability of personalized
head parameter updates. Distinguishing it from the method proposed in [25], our adap_clip
incorporates a hyperparameter 1p to impose a global hard limit, enabling adjustments to the
threshold based on the distribution of gradient trends. This adaptive mechanism ensures that
the clipping operation aligns with the current gradient conditions. The adap_clip principle
is underpinned by the following observations: (1) The distribution of gradient trends com-
monly exhibits a long-tailed pattern, with the majority of gradients being small and only a
small fraction being large. (2) Parameters associated with smaller gradients predominantly
contribute to stabilizing model training, while a subset of parameters with larger gradients
may introduce instability, oscillation, or divergence during training.

The adap_clip algorithm predicts the variation in gradient in the current iteration by
utilizing historical gradient trends to establish a reasonable gradient boundary. The process
is outlined as follows:

Compute the L2 norm of the gradient for each iteration and designate T, the percentile
of the historical gradient’s L2 norm, as the clipping threshold for the current iteration.

P + 1/%23(,;6)(1‘” gt(xi) HZ (5)
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Ct:[PO,Pl,"',Pt]T,kZO (6)

where P; represents the L2 norm of the gradient in the -th iteration, while C; denotes the
gradient clipping threshold in the ¢-th iteration. X; signifies the batch data selected during
the -th iteration, & is the batch size chosen for each iteration, and T corresponds to the
clipping threshold selection percentage T € [0,100]. The first T% of the gradient norm is
chosen as the clipping threshold C;.

Following the dynamic computation of the clipping threshold C;, a hyperparameter
is introduced as a fixed threshold to restrict the maximum value of gradient norms. Any
gradient norm that exceeds this threshold is scaled to match the specified norm. The final
clipping threshold is determined by the combination of these two thresholds. While ¢
imposes a global hard limit, C; is adjusted based on the distribution of the gradient norm,
making the clipping operation more aligned with the current gradient scenario.

C; = min(Ct, 1/]) (7)

This approach ensures that the clipping threshold aligns with the gradient norm, thereby
effectively managing the gradient magnitude. When confronted with a large gradient norm,
the dynamically calculated clipping threshold is used for clipping. Conversely, in scenarios
characterized by small gradient norms, the gradient norms themselves are used as the clipping
threshold, providing enhanced flexibility to accommodate diverse gradient clipping needs.

The gradient of each data point within every training batch will be subject to clipping.
The averaged clipped values of all gradients in that batch will represent the gradient for that

iteration. .

G=g L { sl man(n iz) | (8)
X €Xy
By leveraging the adap_clip algorithm to flexibly determine the clipping threshold,
our PerFreezeClip algorithm can dynamically execute gradient clipping for various models
and tasks, thereby enhancing model stability and generalization. This adaptive approach
offers greater flexibility in addressing diverse gradient distribution scenarios, as opposed
to relying solely on a fixed threshold.

3.3. Pseudocode for PerFreezeClip

Initially, PerFreezeClip selects a set of clients S from K, where S € K and the sampling.
Meanwhile, the server holds model 6. PerFreezeClip, as shown in Algorithm 2, consists
of two primary steps: local training and server aggregation. It incorporates freezing and
clipping methods during the local training phase. In Algorithm 2, lines 5-17, the process
of local training for each client is described. In line 6, each local model decides whether
to freeze the global representation w;g or the personalized head ¢! at the current epoch,
based on the epoch it is currently in and the freezing scale parameter 7;, . The detailed
process of freezing is described in Algorithm 1. The process of updating and cropping is
described in lines 9-14, where for each round of local training, adaptive gradient cropping
is imposed. Line 19 describes the process of aggregating wig The update operation for
local training is illustrated by Equation (9):

xis1; = CLENTOPT (i, 85, (i) . t) 9)

The optimizer CLENTOPT, representing a gradient-based optimizer (e.g., SGD) with
a learning rate of 17, describes the update process for lines 13 and 14 in Algorithm 2. Here,
g’;,e (xk,j) signifies the clipped gradient. Furthermore, beyond the final round encompassing
the update of all parameters, the specific parameter updates are contingent upon the frozen
state during various epochs of the local training. In each round of local training, a freezing
procedure (Algorithm 1) is first entered. At the beginning of training, the trunk will be
frozen according to the freezing ratio parameter T,, . This hyperparameter will determine
at how many epochs the backbone will be frozen. At this time, the weights of the head
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layer will be updated to allow the head to adapt to the local data quickly. At the same
time, in the update of the head layer, gradient clipping will be used to limit the gradient

to ensure the stability of the overall gradient. In the frozen state 95 ;= ¢t + W, 1, the
parameter updates adhere to Equation (10): '

k k Sk
got,e+l — q)t,e - Ugt,e (10)
Conversely, in the state 931 = wi ol T @, ;, the updates are governed by Equation (11):
k k <k
wg,t,e+1 — wg,t,e - Ugt,e (11)

Global aggregation involves amalgamating all updated models after completing local
training, following Fed Avg’s standard aggregation procedure. At this juncture, 6! = wf;,g + oy,

wherein 6! signifies the locally trained model for each client i € S, and ;1 denotes the global
model for the next iteration. The process is summarized in Algorithms 1 and 2.

1

1
9t+1 = |S| =Tar

6; =
L% =Tg]

i1€S

Y wie (12)

i€S

Algorithm 2 PerFreezeClip

Input: Initialize model parameters 6y, learning rate 7, client set S, number of clients involved in model
training K, number of communication rounds T, number of local iterations E, size of local training batch B,
percentile of gradient clipping threshold selection T, freezing ratio T* for global representation of wg, maximal
value of norms

1: fort=1,2,---,Tdo

2: server Send 6 to all clients
3: for each client ¢ € S in parallel do
4: 6! = 6,;/ /initialization
5: fore=1,2,--- ,E do// Start training
6: 9:{ « Freeze (95, Léui,g’ pri, e, T;g) //denote the number of wg and ¢; layers before freezing
7: for I f € Dy do// If is a randomized non-repeating batch of data from Dy
8: for x;j € If do
9: g’t‘x (xk,j) — VFtlfe (xk,j),' //Calculate the gradient
10: Ck = [P, Pf,-- -, Pk] . ;//Adaptive clipping threshold selection
11: C¥ = min(Ck, p)
— lge (xi )l
12: g’f,e (Xk,]') — %Zxk,felf {Slf(,g("k/f)/max (1,4“(5;1) 2 ) }
13: w(’;tleﬂ — w(’é/,/e — ngf’e; //update
14: q;’;/e+1 — q)’,{e - ng’flg; //update
15: end for
16: end for
17: end for
18: end for

19: 0111 = (b Ties 0 = Tics (0!, 9 ) = Tics w! o/ /9! freezing state

20: Randomly select a subset of clients S;1; without repetition and send the updated model 6;; to all clients
in this subset

21: end for

4. Theoretical Analysis of Gradient Clipping

In heterogeneous data environments, we contend that during each communication
round involving personalized learning on devices, the local model is updated towards the
local optimum, which may diverge significantly from the global optimum. As a result, the
average model may also deviate from the global optimum, especially in scenarios with
significant local updates. These updates actually move along the gradient direction. Thus,
a straightforward method to regulate these updates is by restricting the gradient, thereby
constraining the gradient range within the personalized context. In addressing this issue,
we counteract overfitting in local updates by applying a gradient clipping technique during
parameter updates to confine the gradient range. The subsequent analysis is detailed below:
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During the aggregation step, ¢! remains in a frozen state, indicated by ¢! =®; |, where
®, | denotes an immutable set of parameters. Notably, ¢! does not participate in the
aggregation update. We can reframe the Fed Avg update as follows:

t
Or41 = |S|Z ’S|Z ( 1,8’ Ll) ‘S’Z (13)

When it is evident that ¢! in 6! consistently remains uninvolved in the update, it can
be interpreted as 6! = w Another reformulation of Equation (13) is presented below:

b = g DO~ gy 5 0= 0) =l - g D (wh-ulg) a9

1€S 1€S

where we define A} := wé - wﬁlg to represent the update of the i-th client. Subsequently,

At = (1/1s])L;es Al is introduced to denote the global update obtained by averaging the
updates of the global representation of all clients (i.e., the difference between the global
model 6,1 and the global model 6; from the previous round). Given that ¢! is in a frozen
state and does not participate in the update, 6,1 = wé“ + qoi“ and 6; = wfg, + ¢.. Here,

t+1

¢! = ¢i. The parameter update can be denoted as 6; 1 < 6; and wjt! < w}.

Based on the aforementioned definition, it is evident that A; functions as the pseudo-
gradient of the applied stochastic gradient descent (SGD) algorithm, guiding the server’s
updates to the global representation w(tg This definition clarifies that after using SGD on the
client, additional operations can be conducted to manage the pseudo-gradient A;, including
gradient clipping. As a result, we adaptively scale the gradients of the parameters before
updating them. Furthermore, we posit the following assumptions:

Assumption 1 (Lipschitz Gradient) [26]. The function F; is L-smooth for all i € [m], i.e.,
| VE(x) = VE(y) [|[< L||x—y]|, forallx,y € R%.

Assumption 1 presents a restriction on the gradient of the loss function F; (x) for each
client, referred to as the Lipschitz Gradient condition. Let us consider a set of clients,
each associated with a loss function F; (x), where ¢ € [m] denotes the client index and
m represents the total number of clients. The parameter L in this assumption represents
a positive constant that denotes the Lipschitz constant of the gradient VF; (x) for each
client. It is postulated that the gradient VF;(x) of the loss function F; (x) for each client
complies with the following property: for all x,iy € R% (where d signifies the dimension of
the real number space), the product of the disparity in the norms of the gradient and the
distance between the variables x and y does not surpass L. Here, || - || denotes the L2 norm
(Euclidean norm).

We argue that the gradient of the loss function does not change too drastically for
each client, and that the rate of change in the gradient is globally limited to a constant L.
This is a smoothing requirement that ensures the gradient of the loss function does not
vary too much in the local region, which is beneficial for the stability and convergence of
the optimization algorithm. Therefore, the Lipschitz Gradient assumption ensures that
PerFreezeClip can find an L (threshold) for limiting the range of gradient updates among
several local adaptation steps. It indirectly satisfies the condition of Lipschitz continuity
by setting the threshold for gradient clipping. The Lipschitz Gradient (Gradient clipping)
ensures that the rate of change in the gradient is somewhat limited, which helps to enhance
the convergence speed and stability of PerFreezeClip.

Hence, to correctly apply gradient clipping and satisfy Lipschitz continuity, it is
important to wisely choose the threshold for gradient clipping. Setting the threshold too
small may cause the gradient to be over-clipped, affecting the convergence performance of
the model, while setting the threshold too large may not satisfy the Lipschitz continuity
condition. A wise choice of threshold for gradient cropping can be a combination of
the following four aspects. (1) Initial estimation based on the model and the task; the
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typical range of gradient can be estimated through preliminary experiments or based on
previous experience with similar tasks. (2) Based on the statistical analysis of the gradient,
the statistical properties of the gradient, including the mean and standard deviation, are
monitored during the training process. (3) Assemble model architectures and optimizers,
which may have different sensitivities to gradient tailoring. (4) Experimental validation,
where a series of experiments are conducted to validate the model’s performance after
the threshold is set. Therefore, we introduce the hyperparameter ¢ for a global hard limit,
which is analyzed by the following assumptions:

Assumption 2 (Bounded Gradients) [27]. The function f;(x, %) has G-bounded gradients; i.e.,
forany i € [m],x € R, and = € F, we have ‘[Vfi(x,x)]]-‘g G forall j € [d].

Assumption 2 involves a restriction on the gradient of the loss function f;(x, %) on
each client < and all dimensions j and is known as the Bounded Gradients condition.
Specifically, assume that for each client ¢ (¢ € [m] denotes the index of the client), the
gradient V f;(x,%) of the loss function f;(x, %) is bounded by the absolute value of the
gradient V f; (x, z) in all dimensions j for any x € R? and x € F (F denotes the set of some

random variable). That is, ‘ [Vfi(x,%)] j‘ < G, where G is a positive constant representing

the upper bound of the gradient of each client’s loss function in all dimensions.

We argue that the gradient of each client’s loss function does not exceed G in each
dimension. This assumption ensures that the gradient of each client’s loss function is not too
large in each dimension, constrained by a global upper bound G. The gradient boundedness
condition in Assumption 2 can be seen as a formal representation of gradient clipping. The
hyperparameter 1 we introduce is the upper bound G on this global restriction. This can
help us to better limit the update of the gradient.

5. Experiment and Results
5.1. Experimental Setup
5.1.1. Datasets and Model Architectures

This chapter presents experiments conducted on the CIFAR-10 and CIFAR-100 image
classification tasks within the context of federated learning. The CIFAR-10 dataset consists
of 10 classes of Red—Green—Blue (RGB) color images, each sized at 32 x 32, with 6000 images
per class, totaling 50,000 training images and 10,000 test images. On the other hand, the
CIFAR-100 dataset consists of 100 classes, with 600 32 x 32 color images per class, where
there are 500 images for training and 100 images for testing. To preserve non-IID data
partitioning among devices, we allocated distinct classes from the respective CIFAR-10
or CIFAR-100 datasets to each of the 100 client devices. This allocation ensured an even
distribution of data samples across the devices.

5.1.2. Implementation Details

Stochastic gradient descent (SGD) with a momentum of 0.5 was utilized in every
algorithm that would be compared with our PerFreezeClip in the following simulations.
For both CIFAR-10 and CIFAR-100, a local sample batch size of 10 was employed. The
client participation rates were set to « = 0.1, and all clients were sampled in each round
during several local adaptive step phases. The clipping threshold in gradient clipping was
dynamically computed based on the gradient norm, with a maximum norm selected in
P € (30,80) to limit clipping, determined empirically. The dynamically computed clipping
threshold was chosen based on the gradient norm share, where the top 90% of gradient
norms were used as the clipping threshold in the experiment. Furthermore, we analyzed
and compared scaling methods for a fixed clipping threshold. For other methods, the
learning rate followed FedAvg’s default base learning rate of 0.01.

In the freezing setup, local updates of the backbone part of PerFreezeClip and the
personalization layer were fine-tuned through freezing operations for each corresponding
epoch, based on the parameter T;]g (indicating the freezing ratio for the global representation of
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wi,g), T;g = [0.1,1). All models were randomly initialized and trained for 100 communication
rounds. PerFreezeClip performs 10 epochs for each local update. The clients and classes
were set to (100,2) and (100,5). Other methods utilized the same local batch sample size. We
conducted 10 local update iterations for local adaptive fine-tuning of the learned model using
local training data samples from each device, and the accuracy was computed by averaging
the local accuracies of all users in the last 10 rounds of communication.

5.1.3. Baselines

We compared the performance of our proposed algorithm, PerFreezeClip, with the
following algorithms: FedAvg and FedProx are traditional single-model FL approaches
designed to address data heterogeneity. FedRep, LG-FedAvg, Ditto, and FedPer utilize
personalization strategies to mitigate data heterogeneity.

5.1.4. Performance Metrics

In our investigation, we consider test accuracy as a crucial performance metric. We
employed multiple local adaptive fine-tuning steps for the PerFreezeClip and FedRep
algorithms to construct a local head model for each device. The models are subsequently
subjected to personalized learning through a specific fine-tuning approach. In the local
adaptive step of PerFreezeClip, fine-tuning encompasses freezing and clipping operations.
The freezing ratio quantifies the epoch when freezing occurs, enabling the assessment of
the impact of different freezing ratios on accuracy. Subsequently, relevant experiments
are conducted to assess the impact of the freezing ratio and maximum norm settings on
accuracy. Moreover, we evaluate and analyze the application of different clipping methods
within the framework of PerFreezeClip.

5.2. Performance Evaluation
5.2.1. Performance Comparison with the Baseline

Table 2 presents the test accuracies of PerFreezeClip in comparison to the baseline
methods, where model accuracies are represented in percentage values.

For CIFAR-10, when C = 2, denoting a lower data heterogeneity and minimal influence
on the model, FedRep achieved an accuracy of 86.65%, while PerFreezeClip demonstrated a
1.84% improvement over FedRep. Furthermore, PerFreezeClip demonstrated enhancements
ranging from 1.36% to 4.35% compared to other personalized federated learning algorithms
such as LG-Fed, Ditto, and FedPer. It also exhibits improvements of approximately 46.14% to
48.57% in comparison to single models like FedProx and FedAvg. As the data heterogeneity
intensified with C = 5, the accuracies of all personalized algorithms decreased. However, Per-
FreezeClip can still maintain a 1.23% at least (to FedRep) and 14.53% at most (to LG-FedAvg).
Although the performance of Fed Avg and FedProx increased around 11%, PerFreezeClip also
demonstrated enhancements of 25.77% and 26.56%, respectively.

Table 2. Tested accuracy of PerFreezeClip compared to the baseline methods on the CIFAR-10 and
CIFAR-100 datasets when T;g =0.9. ¢ is the maximum value of norms, C is the class of random
samples obtained by the client, and T;g = 0.9 is the most adequate for personalized learning. The
values of FedRep in the brackets were obtained from the original paper.

Dataset n/S PerFreezeClip FedRep LG—Fed Ditto FedPer FedProx FedAvg
C=2 88.49 (y =35)  86.65(87.70) 84.14 85.39 87.13 39.92 42.65
CIFAR-10
C=5 77.55 (p =55)  76.32 (75.68) 63.02 70.34 73.84 50.99 51.78
C=5 83.66 ( =50)  83.47 (79.15) 72.44 78.91 76.00 20.17 23.94
CIFAR-100
C=20 75.90 (p =35)  75.09 (56.10) 38.76 56.34 55.68 28.52 31.97

For CIFAR-100, PerFreezeClip achieved similar results. It demonstrated accuracy im-
provements of 0.19% and 0.81% compared to FedRep for C =5 and C = 20, respectively. But
PerFreezeClip exhibits significantly greater enhancements compared to other personalized
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algorithms. It maintained 4.67% at least (to Ditto) and 11.22% at most (to LG-Fed Avg)
with C =5, and 19.56% at least (to Ditto) and 37.14% at most (to LG-Fed Avg) with C = 20.
PerFreezeClip also demonstrated enhancements of 43.93% at least and 63.49% at most,
respectively. These results are significantly better than those of CIFAR-10.

Conclusively, PerFreezeClip exhibits comparable performance to FedRep and out-
performs other baseline algorithms in terms of fine-tuned test accuracy. And PerFreeze-
Clip demonstrates an effective mitigation of the impact on non-IID data compared to the
single-model federal approach. In comparing CIDAR-10 and CIDAR-100, the simulations
conducted on CIDAR-100 exhibit greater heterogeneity. The performance of FedAvg and
FedProx decreased significantly, and other personalized federated learning algorithms also
decayed severely. Nonetheless, PerFreezeClip demonstrated consistent performance with
minimal degradation, indicating its stability when processing heterogeneous data.

5.2.2. Applying Different Clipping Methods on PerFreezeClip

Figure 2 illustrates the performance of two clipping methods within the PerFreezeClip
framework under a scenario emphasizing personalized information. After T = 50 rounds, when
personalization is fully learned, the accuracy of FedRep becomes susceptible to overfitting of the
personalized head, which results in a decreased generalization ability and slower convergence.
In this stage, PerFreezeClip demonstrates a more stable convergence rate than FedRep in both
of the value-based and adaptive clipping approaches, resulting in higher accuracy. Specifically,
compared to FedRep, PerFreezeClip achieves a 2.38% accuracy improvement using the value-
based clipping method and a 1.84% improvement with adaptive clipping.

90 -

80

701

60

ACC

50 1

401

30 1 40 60 80 100
— fedrep

20 1 —— value_base_clip
— adap_clip

10

0 25 50 75 100

Communication Rounds
Figure 2. Performance comparison of applying two different clipping methods on PerFreezeClip
with FedRep on CIFAR-10 dataset when T;g =0.9 and C = 2. value_based_clip is a clipping based on
a fixed threshold and adap_clip is a clipping that adaptively selects a threshold based on a gradient
norm with a maximum norm of ¢ = 35.

Figures 3 and 4 depict the performance results of PerFreezeClip compared to FedRep
after fine-tuning maximum norms using different clipping methods. In Figure 3, by using
adaptive clipping, PerFreezeClip outperforms FedRep at maximum norms of 35, 40, and
45, exhibiting accuracy improvements of 1.84%, 1.58%, and 0.99%, respectively. Optimal
performance is achieved at a maximum norm of 35. Similarly, in Figure 4, by utilizing
a fixed-value-based clipping approach, PerFreezeClip achieves higher accuracies than
FedRep at thresholds of 35, 40, and 45. The accuracy improvements are 2.38%, 1.79%, and
3.06%, respectively, demonstrating optimal performance at a threshold of 45.

Overall, limiting the gradient through clipping can indirectly influence personalized
head updates and mitigate the adverse effects of personalized overlearning. Notably,
compared to FedRep, PerFreezeClip exhibits superior performance with either value-based
or adaptive clipping based on gradient norms.
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Figure 3. Performance comparison of applying adap_clip on PerFreezeClip with FedRep after fine-tuning
the maximum value of norms when 'r;,g =0.9 and C =2, where ¢ is taken as 35, 40, and 45.
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Figure 4. Performance comparison of applying value_based_clip on PerFreezeClip with FedRep after
fine-tuning the maximum value of norms when T;]q =0.9 and C =2, where 1 is taken as 35, 40, and 45.

5.2.3. Impact of Personalized Fine-Tuning

We investigated the influence of personalized learning on the final test accuracy of
PerFreezeClip and FedRep after multiple fine-tuning steps during local training. As the
number of local training rounds on each device was set to 10, the degree of personalized
learning can be quantified as the number of training rounds on personalized layers during
local training, and this number was determined by the freeze ratio. Notably, we do not
predetermine the maximum value of norms during the fine-tuning process. Instead, it
relies on experiential knowledge to establish the optimal value.

In Table 3, it is evident that both PerFreezeClip and FedRep achieved higher accuracy
on CIFAR-10 through personalized fine-tuning. When C = 2, the accuracy of FedRep
improved from 86.65% to 91.62%, while PerFreezeClip also increased from 88.49% to 93.61%.
In the context of synchronous growth, PerFreezeClip maintained a 1.99% performance
advantage over FedRep. Likewise, with C = 5, where data heterogeneity was intensified,
the accuracy of FedRep improved from 76.32% to 83.58%, while PerFreezeClip increased
from 77.55% to 84.03%. Under a worse case of data heterogeneity, PerFreezeClip remained
0.45% higher than FedRep.

Similar effects on CIFAR-100 are illustrated in Table 4. Personalized fine-tuning can
improve the accuracy of models. When C =5, PerFreezeClip achieves accuracy improve-
ments of 0.27%, 1.36%, and 1.58% over FedRep in each stage of personalized fine-tuning,
starting from T;gz 0.8. Although enlarging the value of C made the heterogeneity of the
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data distribution even worse, when C = 20, PerFreezeClip can enhance its accuracy by
0.36%, 0.14%, and 0.27% over FedRep in each stage of personalized fine-tuning.

Table 3. Test accuracy of PerFreezeClip and FedRep after fine-tuning the degree of personalized
learning on the CIFAR-10 dataset. T;q = 0.9 implies the fullest personalized learning.

. . . *
Personalized Fine-Tuning Tuw,

Dataset n/S Algorithm . *
T, = 0.9 Tw,= 0.5
Cor PerFreezeClip 88.49 (y = 35) 93.61 (1 = 55)
FedRep 86.65 91.62
CIFAR-10
cos PerFreezeClip 77.55 (i = 55) 84.03 (1 = 50)
FedRep 76.32 83.58

Table 4. Test accuracy of PerFreezeClip and FedRep after fine-tuning the degree of personalized
learning on the CIFAR-100 dataset. T;g = 0.9 implies the fullest personalized learning.

Personalized Fine-Tuning T, g

Dataset n/S Algorithm
Te=0.9 T =08 Toe=07 T =05
C=5 PerFreezeClip 84.61 (y = 80) 86.17 (¢ = 40) 88.19 (y = 40) 88.68 (¢ = 40)
FedRep 83.47 85.90 86.83 87.10
CIFAR-100
C=20 PerFreezeClip ~ 75.90 (¢ = 35) 79.25 (1 = 40) 80.70 (y = 70) 81.13 (y = 80)
FedRep 75.09 78.86 80.56 80.86

In summary, the simulations indicated that personalized models are sensitive to the
degree of personalized learning. Maximizing the value of T;g would lead to an overfitting
problem, as the model overly relies on personalized data on clients and ignores general
patterns and trends. Thus, an exaggerated T;g reduced the model’s generalization ability
and accuracy. Subsequently, by mitigating degrees of personalized learning, personalized
fine-tuning led to improved accuracy for both PerFreezeClip and FedRep. Meanwhile,
PerFreezeClip demonstrated superior performance.

5.2.4. The Effect of the Maximum Norm 1

We investigated the impact of the PerFreezeClip algorithm on the final test accu-
racy by limiting the gradient size based on the maximum value of gradient norms .
Figures 5 and 6 depict the influence of PerFreezeClip on the final test accuracy after fine-
tuning the maximum value of norms.

In Figure 5a, setting the maximum value of norms to 35 yields the highest perfor-
mance for PerFreezeClip. Afterward, the accuracy decreases accordingly. Subsequently,
Figure 5b—d demonstrate fluctuations in the final test accuracy of PerFreezeClip. Nonethe-
less, the best value of ¢ among various maximum norm thresholds can still be selected.
Across a-d in Figure 5, PerFreezeClip consistently outperforms FedRep when the maximum
value of norms is set to 35, 55, 55, and 50, respectively. This emphasizes the significance of
selecting optimal thresholds for peak performance.

Similar effects also appear in Figure 6. Pronounced fluctuations in PerFreezeClip can
be observed on CIFAR-100 with the adjustment in the maximum value of norms. The
accuracy of PerFreezeClip exhibits an upward trend, ultimately identifying the optimal
threshold in each case. In Figure 6a,c, the optimal accuracy for PerFreezeClip is achieved
with a maximum value of norms of 80 and 35, respectively. In contrast, in Figure 6¢, a
heightened heterogeneity and maximal personalized learning lead to a decreasing trend
in accuracy as the maximum number of norms increases, highlighting the need for more
stringent gradient limitations under these conditions to achieve the best accuracy.
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Figure 5. Changes in test accuracy of PerFreezeClip after fine-tuning the maximum value of norm on
the CIFAR-10 dataset.
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Figure 6. Changes in test accuracy of PerFreezeClip after fine-tuning the maximum value of norm on
the CIFAR-100 dataset.

This emphasizes the importance of choosing the appropriate ¢ tailored to specific
problem settings and dynamics. A smaller i may excessively restrict the gradient. This
may result in the inability to use the threshold obtained from dynamic computation. As a
result, PerFreezeClip cannot achieve optimal generalization performance. Conversely, a
larger ip may inadequately control the gradient size. This hindered the effective training of
PerFreezeClip. Thus, PerFreezeClip must carefully select the maximum value of norms to
achieve optimal performance across diverse tasks and settings.

5.2.5. Effect of the Number of Local Iterations on PerFreezeClip

We investigated the impact of adjusting the number of local iterations on the test
accuracy of PerFreezeClip. Given the varying numbers of local epochs under consideration,
we refrain from targeting an optimal maximum value of norms across epochs, and instead
focus on a generalized empirical analysis. We observe that the test accuracy tends to
increase with an escalation in local iterations. We specifically employ the optimal value
of 1y when the number of local epochs is set to 10, recognizing that this value may not be
universally optimal for other local epochs.
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Empirically, a larger number of local epochs entails more gradient updates on the
client in each communication round. Figure 7 illustrates the comparison of PerFreezeClip
and FedRep with 2, 10, 20, 30, and 40 local epochs. Overall, PerFreezeClip surpasses
FedRep in certain epochs. Notably, even when local epochs are set to 2, PerFreezeClip
outperforms FedRep when the maximum value of norms approximates the optimal value
for that epoch. However, when the number of local epochs is 20 or 30, PerFreezeClip’s
test accuracy improvement is not significant. When the number of local epochs is 40, the
training accuracy decreases, which is not what was previously expected. This suggests that
the freezing ratio parameter and the maximum value of norms are inappropriate at this
time for a local epoch number of 40.

ACC

NN -
-~

== fedrep_ep_2 = clip_35_ep_2
== fedrep_ep_10 == clip_35_ep_10
== fedrep_ep_ 20 === clip_35_ep_20

fedrep_ep_30 clip_35_ep_30
= = fedrep_ep 40 == clip_35_ep_40

80

50 100
Communication Rounds
Figure 7. Accuracy of PerFreezeClip in different local epochs of calendar elements when T:U? =09
and C =2, where ¢ = 35 and epochs are taken as 2, 10, 20, 30, and 40.

Based on the findings of the investigation into the impact of adjusting the number of
local iterations on PerFreezeClip, it can be concluded that an increase in the number of
local epochs generally leads to enhanced test accuracy. However, it is important to note
that the optimal value of i may vary depending on the number of local epochs, and a
larger number of local epochs may not always result in a proportional increase in training
accuracy. Moreover, the comparison between PerFreezeClip and FedRep with varying
numbers of local epochs demonstrated that PerFreezeClip outperformed FedRep in specific
epochs, even with a smaller number of local epochs. Nevertheless, as the number of local
epochs extended to 30 and 40, the training accuracy did not align with the anticipated
outcomes, suggesting that the maximum value of norms equal to 30 was inadequate for
these extended epochs. From the experiments, we conclude that the test accuracy of
PerFreezeClip is jointly determined by the freezing ratio parameter, the maximum number
of norms, and the number of local training rounds.

6. Conclusions

In this study, PerFreezeClip, a personalized federated learning (FL) algorithm, effec-
tively addresses heterogeneous data challenges using adap_clip for gradient regulation and
a freezing method for personalized parameter control. It excels in test accuracy compared to
some other personalization methods while maintaining a lightweight design. Future work
will explore layer adaptive learning rates to enhance gradient adjustments across different
layers. In future research, we believe that we can explore the layer adaptive learning rate
that dynamically adjusts the gradient across different layers based on the existing dynamic
thresholding methods.
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