
Citation: Wu, N.; Bao, X.; Wang, D.;

Jiang, S.; Zhang, M.; Zou, J. Task

Offloading in Real-Time Distributed

Energy Power Systems. Electronics

2024, 13, 2747. https://doi.org/

10.3390/electronics13142747

Academic Editor: Dario Di Cara

Received: 14 May 2024

Revised: 5 July 2024

Accepted: 10 July 2024

Published: 12 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Task Offloading in Real-Time Distributed Energy Power Systems
Ningchao Wu 1,*, Xingchuan Bao 2, Dayang Wang 3, Song Jiang 3, Manjun Zhang 1 and Jing Zou 4

1 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China; zhangmanjun@bupt.edu.cn

2 State Grid Laboratory of Electric Power Communication Network Technology, State Grid Smart Grid
Research Institute Co., Ltd., Nanjing 210003, China; boxicha@sina.com

3 Information and Communication Branch of State Grid Jiangsu Electric Power Co., Ltd.,
Nanjing 210024, China; wangdy1@js.sgcc.com.cn (D.W.); jsong@js.sgcc.com.cn (S.J.)

4 State Grid Economic and Technological Research Institute Co., Ltd., Beijing 102200, China; lailaizou@163.com
* Correspondence: wuningchao@bupt.edu.cn

Abstract: The distributed energy power system needs to provide sufficient and flexible computing
power on demand to meet the increasing digitization and intelligence requirements of the smart
grid. However, the current distribution of the computing power and loads in the energy system is
unbalanced, with data center loads continuously increasing, while there is a large amount of idle
computing power at the edge. Meanwhile, there are a large number of real-time computing tasks in the
distributed energy power system, which have strict requirements on execution deadlines and require
reasonable scheduling of multi-level heterogeneous computing power to meet real-time computing
demands. Based on the aforementioned background and issues, this paper studies the real-time
service scheduling problem in a multi-level heterogeneous computing network of distributed energy
power systems. Specifically, we consider the divisibility of tasks in the model. This paper presents a
hierarchical real-time task-scheduling framework specifically designed for distributed energy power
systems. The framework utilizes an orchestrating agent (OA) as the execution environment for the
scheduling module. Building on this, we propose a hierarchical selection algorithm for choosing the
appropriate network layer for real-time tasks. Further, we develop two scheduling algorithms based
on greedy strategy and genetic algorithm, respectively, to effectively schedule tasks. Experiments
show that the proposed algorithms have a superior success rate in scheduling compared to other
current algorithms.

Keywords: distributed energy power system; real-time scheduling; greedy algorithm; genetic algorithm

1. Introduction

With the rapid development of new energy technologies and the wide application
of renewable energy, distributed energy power systems have become some of the main
development directions in the power industry. However, the integration of distributed
energy brings many challenges to the traditional power system, including energy man-
agement, scheduling optimization, system stability, etc. For instance, the consumption
and grid integration of new energy introduces a large amount of real-time data collection,
analysis, and decision-making tasks, which require efficient real-time scheduling to ensure
the stable operation of the power system and the balance of supply and demand. The
real-time scheduling of computing tasks, as one of the key links in the optimization of
distributed energy power systems, has a significant impact on the efficiency and stability of
the system’s operation.

However, the distribution of the current power system’s computing resources is char-
acterized by multi-level heterogeneity, from the headquarters’ data center to provincial
and municipal data centers, and then to edge and terminal sides. Not only is the distri-
bution of computing resources uneven, but there is also a significant difference between

Electronics 2024, 13, 2747. https://doi.org/10.3390/electronics13142747 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13142747
https://doi.org/10.3390/electronics13142747
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13142747
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13142747?type=check_update&version=2


Electronics 2024, 13, 2747 2 of 16

various types of storage, communication, and computing resources. This distributed and
heterogeneous characteristic, although providing rich computing resources for the power
system, also leads to the problem of low resource utilization efficiency. A large portion
of the computing load is concentrated in the computing centers of big cities, while the
edge computing resources scattered around are mostly idle. This situation not only limits
the efficient use of energy by the power system but also hinders the process of intelligent
management of the power system.

Faced with this challenge, we need to rethink how to schedule computing tasks in
the distributed energy power system. Through analyzing the current distribution of com-
puting resources and the characteristics of computing tasks, we find that different tasks
have varying demands for resources and time constraints. In this context, the real-time
system described in our paper offers a perspective by highlighting the dynamic nature
of such environments. Unlike traditional real-time systems, it underscores how tasks are
not only generated in real-time but also how the various resources of the nodes change
dynamically over time [1–3]. This understanding allows us to fully leverage the multi-level
heterogeneous characteristics of computing resources in distributed energy power systems,
thus more effectively meeting these differentiated demands and improving the completion
rate of real-time tasks. For example, energy data collection and processing tasks have
lower computing resource demands but more urgent time constraints; energy storage
control tasks have higher computing resource demands but more relaxed time constraints;
and energy-precise prediction and regulation tasks have both high computing resource
demands and urgent time constraints. For time-sensitive computing tasks, distributing
them to lower-level edge nodes closer to users, the computing pressure on the computing
centers can be dispersed, and task latency can be reduced. For tasks with high computing
resource demands and relaxed time constraints, handing them over to higher-level data
centers for execution, efficient resource utilization can be ensured. For tasks that require
high computing power and have urgent time constraints, task splitting is needed. Consid-
ering the divisibility of tasks, they are decomposed into several subtasks, harnessing the
scattered heterogeneous computing resources in the distributed energy power system to
collaboratively complete the entire task.

Therefore, researching and designing computing task-scheduling algorithms in dis-
tributed energy power systems is of great importance. It meets the differentiated resource
and time requirements of computing tasks within these systems and improves the comple-
tion rate of real-time tasks.

Researchers have extensively studied the computing task-scheduling problem across
different computing environments. Singh et al. explored the scheduling problem in
homogeneous nodes [4]. Fizza et al. introduced the deadline requirements of tasks to
enhance the timeliness and accuracy of the scheduling strategy [5]. Yang et al. proposed an
energy-saving computing framework that demonstrates how to share computing resources
among multiple neighboring assisting nodes to determine the optimal scheduling decision
for task nodes, thereby optimizing resource utilization and improving energy efficiency [6].
Furthermore, Yang et al. expanded the research field by proposing a real-time algorithm
named DEBTS, aimed at achieving systemic performance balance while focusing on two
key indicators: service latency and energy consumption [7]. However, these studies did
not consider the heterogeneous characteristics of computing nodes.

In the work by Ale et al., the authors considered a single-layer mobile edge com-
puting (MEC) system aimed at dynamically processing computing tasks generated by
Internet of Things (IoT) devices in a time-varying operational environment with various
requirements [8]. Chen et al. discussed a distributed computation offloading strategy in a
vehicular edge computing environment based on the Deep Q-learning Network (DQN),
focusing solely on a single-layer network structure, specifically vehicle-to-vehicle (V2V) [9].
Elgendy et al. addressed the simultaneous computation offloading problem in mobile edge
computing (MEC) systems using the reinforcement learning algorithm Q-learning to reduce
the total overhead of time and energy [10]. Zhang et al. proposed a task-offloading method



Electronics 2024, 13, 2747 3 of 16

for Internet of Vehicles (IoV) edge computing based on deep reinforcement learning, aimed
at achieving lower task delay and energy consumption [11]. Karimiafshar et al. proposed a
dynamic request scheduling algorithm that minimizes energy consumption and timeliness
through the Lyapunov optimization technique [12]. Li et al. presented an adaptive queue
weight (AQW) resource allocation and real-time offloading technique in a heterogeneous
computing environment [13]. Adhikari et al. worked on reducing the waiting time for
latency-sensitive tasks and minimizing the starvation of low-priority tasks by using multi-
level feedback queues [14]. Although these studies have made significant progress, they
mostly focus on single-layer or large-scale computing node scheduling strategies, which
do not apply to the multi-level architecture of distributed energy power systems.

Progress has also been made in multi-level network scheduling. Zhang and Yu pro-
posed an artificial bee colony algorithm to solve the task-collaborative offloading problem
in multi-layer edge networks [15]. Chekired et al. proposed a multi-tier fog cloud archi-
tecture and classified tasks into low-priority and high-priority [16]. Wang et al. and oth-
ers proposed task-offloading strategies for multi-level heterogeneous architecture [17–20].
Zhou et al. considered a hierarchical network hybrid computational offloading scheme,
allowing edge users to offload workloads through various communication methods [21].
Ren et al. provided a solution named HT3O to solve the scheduling problem in large-
scale UAV-assisted MEC systems in dynamic environments, introducing the concept of
multi-level network scheduling [22]. These studies are dedicated to minimizing response
time, providing a new direction for the development of multi-layer scheduling strategies.
However, the tasks targeted by the above work do not have deadlines, failing to address
the real-time scheduling problem of time-critical tasks in multi-level distributed energy
power systems.

Based on the above analysis, to our knowledge, few studies have considered the
hierarchy of three or more layers of heterogeneous networks while also taking into account
the deadlines of real-time tasks. In summary, the real-time computing task-scheduling
problem in multi-level distributed energy power systems is a challenging issue. This paper
aims to improve the overall performance of distributed energy power systems through
real-time computational task scheduling and designs an efficient real-time computing
task-scheduling algorithm.

This paper is organized as follows: Section 2 presents the system model, including the
modeling of multi-level heterogeneous computing power networks in distributed energy
systems, real-time tasks, and scheduling problems. Section 3 proposes our solution to
the scheduling problem, which includes a scheduling framework for real-time tasks and
introduces a hierarchical selection algorithm to fully utilize the properties of hierarchical
networks. On this basis, scheduling strategies based on greedy algorithms and genetic
algorithms are presented. Section 4 covers the model simulation and results analysis,
comparing our solution with other baseline algorithms, and discussing the impact of task
load, node delay, and changes in network topology on the success rate of real-time task
scheduling. Section 5 summarizes the conclusions and outlines future prospects.

2. System Model

This section first models the multi-level heterogeneous computing network in the
distributed energy power system. It then models real-time tasks based on their storage,
communication, computing, and deadline requirements. Subsequently, a model for the
real-time task-scheduling problem is proposed, transforming the real-time task-scheduling
issue into a MINLP (mixed-integer nonlinear programming) problem.

2.1. Network Model

The computing network in distributed energy power systems exhibits a multi-level
structure, with the central cloud at the top and edge nodes close to users at the bottom.
The higher the level of the node, the richer its storage, communication, and computing
resources, but the higher its latency due to distance from users. Conversely, nodes closer to



Electronics 2024, 13, 2747 4 of 16

the bottom have fewer resources but lower latency. Additionally, the computing network
is characterized by heterogeneity, not only between different levels but also within the
same level, specifically manifested as the variance in various resources. In this paper, the
N set represents all computing nodes, Nk represents the set of nodes at level k, and Nn
represents the n-th computing node. A virtual node N0 is introduced, assumed to have
infinite resources and zero latency. If a task is scheduled to N0, it indicates scheduling
failure. Each computing node possesses heterogeneous computing resources, and this
paper considers the joint scheduling of computing, storage, and communication resources,
with each computing node defined as a quadruple:

Nn = (Sn, Bn, Cn, Dn) (1)

For node Nn, Sn represents the node’s storage resources, Bn represents the node’s
network bandwidth, and the bandwidth attribute of a node is described as a resource that
supports task execution, similar to storage resources. This means that bandwidth is one of
the resources consumed during task execution. Cn represents the node’s computing rate,
and Dn is the average time delay experienced when transmitting a task from the user to the
node. According to the multi-level nature: if Nn ∈ Nk, Nj ∈ Nk + 1, then Sn < Sj. Bn < Bj,
Cn < Cj, Dn < Dj.

2.2. Task Model

Each user may initiate one or more tasks, represented by the set U, with Uu represent-
ing the u-th task. Each task is considered to have simultaneous storage, communication,
and computing demands, and each real-time computing task has a deadline. Additionally,
considering a sequence of task flows, each task also has an attribute of arrival time, which
is uncertain. Therefore, each task is modeled as a quintuple, as follows:

Uu = (su ,bu, ou, du, au) (2)

For task Uu, su represents the storage resources required to execute the task (in MB),
bu represents the communication resources required (in Mbps), ou represents the amount
of computation (in million instructions, or MI), du represents the task’s deadline, and au
represents the task’s arrival time. A workflow may include multiple tasks, with possible
dependencies between tasks. For example, if task A depends on task B, task A may require
the output of task B as input, and the start time of task A must be later than the end time of
task B. Tasks form a Directed Acyclic Graph (DAG), termed as a task group.

2.3. Problem Model

The scheduling problem involves assigning certain tasks to appropriate computing
nodes, using a set of 0/1 variables to indicate which computing nodes a task is scheduled
to. ynu represents whether node n processes task u, with 0 indicating no and 1 indicating
yes. However, for some tasks with high demands for computing, bandwidth, and storage
resources, and with tight time constraints, it is not feasible to schedule them to high-level
nodes or a single bottom-level node because high-level nodes have higher latency and
low-level nodes do not have enough resources. Therefore, these tasks need to be split into
subtasks for execution by lower-level nodes. Tasks or subtasks must satisfy the following
constraints. As specified in Equation (3), each task should be served by at least one node.

∑
n∈N

ynu ≥ 1, u ∈ U (3)

Each task can be split into subtasks for multiple nodes to execute; that is, each node
executes a certain proportion of the task. rnu represents the proportion of task u processed
by node n. We assume that tasks can be arbitrarily split [20,23,24]. For example, in the
context of a distributed energy system, tasks such as inspecting equipment like transformers
may involve data from hundreds or even thousands of devices. In this case, we consider that



Electronics 2024, 13, 2747 5 of 16

such a task can be arbitrarily divided. Only when a task is assigned to a node can that node
process the task, Thus, the feasibility constraint is given by Equation (4), for u ∈ U, n ∈ N,
as follows:

rnu =

{
0 if ynu = 0,
x if ynu = 1 and 0 < x ≤ 1,

(4)

Assuming the communication and storage resources required for the split subtasks
are proportional to rnu. Each subtask will consume a part of the computing node’s storage
and communication resources, but will not exceed the node’s total storage and communica-
tion resources. The constraints for storage and communication resources are specified in
Equations (5) and (6):

∑
u∈U

rnusu ≤ Sn n ∈ N (5)

∑
u∈U

rnubu ≤ Bn, n ∈ N (6)

Every task should be executed completely, as specified in Equation (7):

∑
n∈N

rnu = 1 (7)

Each node can serve multiple tasks, and pnu represents the proportion of computing
power allocated by node n to task u, which can be envisioned as each node having a multi-
core CPU. The computing power allocated for tasks should not exceed the total computing
power of the node, as specified in Equation (8):

∑
u∈U

pnu ≤ 1 n ∈ N (8)

The feasibility constraint is given by Equation (9), for u ∈ U, n ∈ N, as follows:

pnu =

{
0 if ynu = 0,
x if ynu = 1 and 0 < x ≤ 1,

(9)

This paper studies the scheduling problem of real-time computing tasks, consid-
ering the tasks’ deadlines. Since the split subtasks are executed in parallel, the total
completion time should equal the completion time of the latest subtask, as specified by
Equations (10) and (11), for u ∈ U, n ∈ N:

θnu =

{
rnuou
pnu Cn

+ Dn if ynu = 1,

0 if ynu = 0
(10)

θu = max
n∈N

θnu (11)

where θnu represents the execution time for node n to process task u, θu represents the total
completion time for task u, and Dn is the node’s inherent delay.

Each task needs to wait in the queue for some time before being scheduled, au repre-
sents the arrival time of task i, and wu represents the waiting time of the task in the queue.
The completion time of each task should be less than its given deadline, otherwise, it is
considered a scheduling failure, as specified by Equation (12).

au + wu + θu ≤ du (12)

The goal of real-time task scheduling is to maximize the scheduling success rate.
The virtual node N0 has infinite computing power and zero latency. If a task cannot be
scheduled before its deadline, it is handed over to the virtual node. If a task is scheduled to
N0, it represents task failure. Therefore, the goal of the real-time task-scheduling problem is



Electronics 2024, 13, 2747 6 of 16

transformed into minimizing the number of tasks scheduled to the virtual node, as specified
by Equation (13), the variable yN0u indicates whether task u is scheduled on node N0.

min ∑
u∈U

yN0u (13)

Because the calculation of delay involves division and maximization, the model pro-
posed is classified as a mixed-integer nonlinear programming (MINLP) problem, which is
NP-hard. This complexity persists even with a small number of tasks and nodes, making
it challenging to obtain an exact solution. In Section 3, we introduce the layered selection
algorithm along with two scheduling algorithms, aiming to derive sufficiently good approx-
imate solutions. The scheduling algorithm detailed in this paper could be augmented by
integrating with node-level scheduling algorithms, such as the earliest deadline first (EDF)
algorithm. This combination can improve task allocation efficiency and resource utilization.

3. Scheduling Algorithms

This section first introduces a hierarchical real-time computing task-scheduling frame-
work for distributed energy power systems, incorporating an orchestrating agent (OA)
as the execution environment for the scheduling module. Following this, a hierarchical
selection algorithm is proposed to choose the appropriate network layer for real-time
tasks. Based on this, scheduling algorithms based on both a greedy strategy and a genetic
algorithm are subsequently introduced to accomplish task scheduling.

3.1. Real-Time Task-Scheduling Framework

This paper proposes a layered real-time task-scheduling framework node model,
as shown in Figure 1, where each node is equipped with an OA. The OA serves as the
execution environment for the scheduling algorithm, responsible for collecting information
from all nodes and the tasks received by the node, as well as implementing the scheduling
plan output by the scheduling algorithm.

Figure 1. Scheduling framework.

The scheduling process is shown in Figure 2. Each OA possesses several of the modules.
The OAs in the first-level nodes have a task waiting queue for accepting tasks, while a
higher-level decision node has a scheduling module responsible for running the scheduling
algorithm. The information communication module is responsible for communication
between nodes and can utilize real-time communication protocols such as MQTT (message
queuing telemetry transport). As shown in Figure 1, nodes within the same level and nodes
between adjacent levels can communicate directly, while nodes between non-adjacent levels
can communicate through relay nodes in intermediate levels. When a user task arrives, it
will be handed over to the OA of a bottom-layer node closer to the user, adding it to the
OA’s waiting queue.



Electronics 2024, 13, 2747 7 of 16

We divide time into multiple short intervals, and only one scheduling operation
is completed within each interval. At the beginning of each interval, a decision node
performs information synchronization through an information communication module.
This involves obtaining information from all nodes and from tasks that are in the waiting
queues. Since the data volume of synchronization information is much smaller than that of
the tasks, the synchronization time can be negligible.

Once synchronization is complete, the node information collected by the decision
node can be considered valid for that time interval. All scheduling decisions for tasks with
pending assignments are made by the scheduling module within the OA of the decision
node. The scheduling results are then distributed to the nodes receiving the tasks. Finally,
the tasks are forwarded to the target nodes for execution through the scheduling result
execution module. Because the scheduling module is activated periodically, and although
some tasks may finish early within a given period, the freed resources will be utilized in
the next period. Since the intervals are short, the waste of resources caused by this can be
considered negligible.

Upon receiving a task group with dependencies, the receiving node will maintain the
in-degree of each task within the group. At the start of each time period, the node will only
synchronize the task information of those tasks with an indegree of 0 to the decision node.
After receiving notification that a task has been completed, the receiving node will adjust
the indegrees of the remaining unscheduled tasks based on the dependency graph, and
then synchronize the information of tasks with an indegree of 0 to the decision node in the
next moment, continuing until all tasks in the group are completed or a task times out.

Figure 2. Scheduling process.

3.2. Layered Selection Algorithm

The input to the scheduling algorithm consists of tasks and node information from the
scheduling queue, and its output is the scheduling plan, i.e., a set of tasks that should be
allocated to which computing nodes for execution. The problem proposed in this paper
is a MINLP problem, which is an NP-hard problem, it is impossible to obtain the optimal
solution within a reasonable time when the number of nodes and tasks is large. For the
real-time scheduling problem in a distributed energy power system computing network,
which involves a large number of tasks and multiple nodes.

The scheduling algorithm needs to fully utilize the multi-level heterogeneous comput-
ing network resources to meet the diversified needs of tasks. This paper decomposes the
scheduling process into two steps, first utilizing the hierarchical nature of the computing
network to propose a layered selection algorithm, attempting to allocate tasks to appropri-
ate levels, and then running the scheduling algorithm, as described in Sections 3.3 and 3.4,
for the allocated level.

Referring to Algorithm 1 in the pseudo-code, the layered selection algorithm initially
extracts tasks from the waiting queue one by one, while updating each task’s waiting time.
Then, the algorithm checks whether the task can start scheduling. If the task has already
exceeded its deadline, then the task fails.



Electronics 2024, 13, 2747 8 of 16

The decision node’s OA has a scheduling queue for each layer of the computing
network. Tasks are first added to the scheduling queue of the highest layer of the node
for scheduling. Since the higher-level nodes have more resources while the lower-level
nodes have fewer resources, the algorithm prefers to assign tasks to higher-level nodes.
This paper assumes that each task can only be processed by nodes on the same layer. For
each layer’s scheduling queue, the specific scheduling algorithm (see the following two
subsections) is run. If a task cannot be allocated to a suitable node at that layer, i.e., it cannot
be completed before its deadline, then the task is passed to the scheduling queue of the next
layer. The scheduling between layers is independent of each other. If the task still cannot
be completed by the lowest layer’s node, then the task is re-added to the waiting queue.

Algorithm 1: Layered selection algorithm for task scheduling
Input: Tasks and node information
Output: Scheduling plan

1 Initialize scheduling queues for each level of the computing network;
2 Initialize schedulableTasks as empty;
3 for each task j in the waiting queue do
4 Update the waiting time of task j;
5 if task j times out then
6 Mark task j as failed execution, continue;
7 end
8 Add task j to schedulableTasks;
9 end

10 for k← number of network levels to 1 do
11 Add schedulableTasks to the scheduling queue of level k;
12 Execute the scheduling algorithm on nodes of the computing network at level

k;
13 set schedulableTasks as empty;
14 schedulableTasks← tasks that failed to schedule at level k;
15 end
16 Re-add tasks in schedulableTasks to the waiting queue;

3.3. Scheduling Algorithm Based on the Greedy Strategy

The greedy algorithm is a method used to solve optimization problems. It makes
the optimal choice at each step, representing an efficient algorithm. In the context of task
scheduling, this algorithm aims to achieve overall resource allocation and scheduling
optimization through a series of locally optimal choices. The core idea of the greedy
algorithm is that each choice is the best under the current state, meaning that at each
decision point, the algorithm selects the option that is most beneficial to the current state,
without considering future states and consequences.

As shown in Algorithm 2, the greedy algorithm sorts the tasks in the scheduling queue
from the nearest to the farthest deadline. If the deadlines are the same, tasks with smaller
volumes have priority. The design of the sorting strategy is based on the following analysis:
(1) Prioritizing tasks that are not urgent may cause urgent tasks to miss their deadlines.
(2) If tasks with larger volumes are prioritized, these larger tasks will occupy more time,
causing smaller tasks to miss their deadlines. Next, the algorithm sequentially selects
an appropriate node at that layer for each task according to the sorted order, preferably
choosing nodes with more remaining computing resources to ensure a balanced load of
computing resources among the nodes. The allocation ratio of the computing power of
nodes follows Equation (14), where, {u′ | u′ < u} represents all tasks before task u.

pnu = 1− ∑
{u′ |u′<u}

pnu′ (14)



Electronics 2024, 13, 2747 9 of 16

Algorithm 2: Scheduling algorithm based on the greedy strategy
Input: The scheduling queue and node information for this layer
Output: The scheduling scheme for this layer

1 Sort tasks by deadline and workload;
2 Add nodes to the priority queue q;
3 for each task in order after sorting do
4 while the task has not met resource requirements do
5 if q is empty then
6 The task scheduling fails, break;
7 end
8 Pop a node n from q;
9 if n’s computation capability is zero then

10 continue;
11 end
12 Allocate computing resources according to Equation (14);
13 Allocate computation ratio according to Equation (15);
14 end
15 if task scheduling is successful then
16 Output the scheduling scheme for this task;
17 Update node information;
18 end
19 Re-add the popped node to q;
20 end

If a task cannot be executed by a single node, the task’s division needs to be considered.
Each node should take on as much of the task’s computing requirements as possible, and
the proportion of the current task completed by each node is calculated using Equation (15).

rnu = min
{Sn

su
,

Bn

bu
,
(dur − Dn)Cn

ou
, rnur

}
(15)

where the first term in the parentheses represents the proportion of the remaining storage
resources of the current node to the storage resources required by the task. The second
term represents the proportion of the remaining communication resources of the current
node to the communication resources required by the task. The third term represents the
maximum proportion of the task that the current node can complete before the deadline of
the task. Here, dur represents the remaining time of the task, equal to the deadline du minus
the current time. The fourth term, rnur, represents the proportion of unallocated computing
task volume remaining after the task volume distribution by previous nodes. The minimum
value of the four terms is the proportion of the task completed by the current node.

The complexity of the algorithm is O(NM + N log N), where N represents the number
of nodes, M represents the number of tasks, and N log N denotes the complexity of sorting.

3.4. Scheduling Algorithm Based on Genetic Algorithm

The genetic algorithm transforms the solution of a problem into chromosomes and sim-
ulates natural selection, iteratively approaching the optimal solution [25–27]. The genetic
algorithm mainly consists of initialization, selection, crossover, and mutation steps. Among
these, the fitness function plays the role of natural selection. The lower the fitness function
value, the closer it is to the problem’s optimal solution and, thus, the corresponding chro-
mosome should have a higher probability of mating and producing more offspring. The
algorithm design is detailed below. Algorithm 3 is the pseudocode for the genetic algorithm.



Electronics 2024, 13, 2747 10 of 16

Algorithm 3: Scheduling algorithm based on the genetic algorithm
Input: The scheduling queue and node information for this layer
Output: The scheduling scheme for this layer

1 Set the total population set as P Initialize population P;
2 for i = 1 to iteration_num do
3 Calculate the fitness of chromosomes in population P (see Section 3.4.3);
4 Set new population P′ to empty;
5 Retain a certain number of elites to add to P′;
6 for j = 1 to (population_size− n)/2 do
7 Select a pair of chromosomes C1 and C2 using tournament selection;
8 C1 and C2 crossover to produce offspring C1′ and C2′;
9 Mutate C1′ and C2′ separately, add to P′;

10 end
11 Set P = P′;
12 end
13 Extract the chromosome C with the lowest fitness;
14 Construct a feasible solution for C (see Section 3.4.5);
15 Translate the feasible solution into a scheduling plan and output;

3.4.1. Chromosome Construction

The first step is to translate the problem’s solution into the expression of a chromo-
some. Each chromosome contains several genes, each representing a node, with each
gene recording all task allocation schemes for the corresponding node. Notably, the last
gene corresponds to a virtual node, recording tasks that failed to be scheduled. Each
task scheme includes the task’s information, the completed task proportion rnu, and
the allocated computing resource proportion pnu. Through this method, the solution
to the problem is encoded, with each chromosome corresponding to a solution to the
scheduling problem.

3.4.2. Population Initialization

Initially, each task is simply assigned to a random node (including the virtual node).
Then, the rnu in the scheme is set to 1 (meaning task splitting is not considered initially),
as each node can perform multiple tasks, and initially, the computing power ratio pnu is
evenly distributed among tasks within the same node.

3.4.3. Fitness Function

Given the model’s numerous constraints, some constraints need to be transformed
into a fitness function. If a constraint is violated, a penalty will be given in the fitness
function. Firstly, each node will tally the total storage, communication, and computing
resources occupied by the allocated tasks. δ1 indicates the penalty for violating resource
constraints, increasing by 1 for each task that violates these constraints.

δ2 represents the penalty for tasks not completed within their deadline. For each
task, ∆t represents the difference between the task’s projected completion time and its
deadline. If ∆t is less than 0, meaning the task is completed within the deadline, no
penalty is given. If δ2 is greater than 0, indicating the task exceeded its deadline, a penalty
is needed. Moreover, the more the time exceeded, the larger the penalty. A sigmoid
function is used to achieve this effect (Equation (16)), where this penalty is smaller than
the penalties for resource constraints and task completion constraints, hoping the genetic
algorithm can make as many attempts as possible (even though it may exceed the task’s
time requirements).

δ2 = −0.2 +
1

1 + e−∆t (16)



Electronics 2024, 13, 2747 11 of 16

δ3 represents the penalty for scheduling failure, referring to tasks assigned to the virtual
node. Similar to the idea in the greedy algorithm, if a task is more urgent, the penalty for
scheduling failure is larger; conversely, if a task’s deadline is more lenient, the penalty
is smaller. An exponential function is used to achieve this effect (see Equation (17)).
For each task in the virtual node, where ‘now’ represents the current moment, and di is the
task’s deadline.

δ3+ = 0.5 + 2−(di−now) (17)

Ultimately, the fitness of the chromosome is denoted by δ, calculated by Equation (18).
The smaller δ is, the more adapted the chromosome is to the environment, and the more
likely it is to mate and produce offspring.

δ = δ1 + δ2 + δ3 (18)

3.4.4. Genetic Operators

The selection operator in this paper uses the tournament selection method as well
as elite selection. The crossover operator employs k-point crossover. Two gene loci are
randomly selected, exchanging all genes between these two loci on the two chromosomes,
essentially swapping the scheduling schemes for the same node regarding the chosen loci.
Due to the unique encoding method of the genetic algorithm designed in this paper, careful
design of the mutation operator is needed to match the background of the problem to be
solved. Firstly, there is the computing power allocation mutation. Each node will randomly
mutate the computing power allocation ratio pnu within the range of (0, 1] for the tasks
currently assigned to it, which can increase or decrease. Next is the split mutation. As
previously mentioned, when a single node cannot complete a task, it needs to be split.
Upon mutation, a task is divided into two equally sized sub-tasks A and B, with A assigned
to the node and B assigned to another node (non-virtual). At this point, the computing
power ratio pnu is randomly reallocated for the two sub-tasks. Tasks in the virtual node
cannot undergo split mutation. Note that through sufficient iterations, any proportion of
task division can be achieved. The design of this mutation method actually uses a binary
approach to approximate the optimal split ratio. Moreover, this splitting naturally meets
the task completion constraint (Equation (7)). Lastly, there is the transfer mutation, which
randomly assigns a task to another node. After being transferred to another node, the
computing power ratio is also randomly reallocated.

3.4.5. Constructing a Feasible Solution

Chromosomes must be converted into solutions. Since these solutions might violate
constraints, they need to be modified to satisfy these constraints, thereby constructing a
set of feasible solutions. Initially, tasks are assigned to the virtual node, which directly
indicates that the task has failed to be scheduled. Then, each node checks if any task
violates the node’s resource constraints. If the required computing power ratio exceeds the
node’s maximum computing power ratio, then the allocation will be readjusted to meet
the computing resource constraints, evenly distributing the remaining computing power
among the remaining tasks. If communication, storage, or time constraints are violated,
then the task fails, releasing the occupied resources and transferring them to the next task.
Due to task splitting, if any sub-task of a task fails, then the entire task is considered failed.
Through this construction of feasible solutions, solutions that meet constraints are created
and then handed over to the OA for scheduling.

3.4.6. Complexity Analysis

The complexity of the algorithm is O(CPL+CP log P), where C represents the number
of iterations, P represents the population size, and L represents the encoding length of each
chromosome (related to the number of tasks and nodes). CP log P represents the sorting
complexity in elite selection.



Electronics 2024, 13, 2747 12 of 16

4. Simulation and Results Analysis

This section first introduces the experimental and simulation environment, then an-
alyzes and compares the scheduling success rates of the proposed algorithm and related
comparison algorithms under changes in task load, node latency, and network structure.

4.1. Experiment and Simulation Environment

The experiments were conducted on an AMD 8-core, 3.2 GHz, 16 GB server, using
Java jdk1.8 for coding.

The experimental environment simulates a four-layer hierarchical network, where the
top layer (fourth layer) is a central cloud node. The model and algorithms can be extended
to any number of layers. There are eight level-one nodes, four level-two nodes, one level-
three node, and one level-four node. The latency from users to level-one nodes is 2 ms, to
level-two nodes is 6 ms, to level-three nodes is 12 ms, and to level-four nodes is 137 ms. The
storage resources of level-1 nodes range from 1 GB to 8 GB, communication resources range
from 10 Mbps to 200 Mbps, and computing resources range from 1000 MIPS to 2500 MIPS,
with the capabilities of nodes at other levels detailed in Table 1.

Table 1. Node Attributes.

Layer Storage/GB Bandwidth/Mbps Computation/MIPS Latency/ms

1 1, 8 200, 500 1000, 2000 2
2 10, 50 200, 500 2500, 4000 6
3 500, 800 500, 800 6000, 10,000 12
4 2000, 3000 5000, 10,000 70,000, 100,000 137

Each task requires storage resources ranging from 0.15 GB to 2.5 GB, communication
resources ranging from 0.1 Mbps to 100 Mbps, and computational workload ranging from
100 MI to 8500 MI, with deadlines ranging from 0 to 200 ms.

The population size of the genetic algorithm is fixed at 1500, with an elitism rate set to
0.3, computing power allocation mutation rate set to 0.3, splitting mutation rate set to 0.2,
transfer mutation rate set to 0.3, and the number of iterations set to 100 generations. In the
experiment, each attribute of every task is independently and uniformly randomly selected
from a given range.

4.2. Result Evaluation

This paper compares the layered real-time task-scheduling algorithm based on the
greedy strategy (abbreviated as greedy) and the layered real-time task-scheduling algorithm
based on the genetic algorithm (abbreviated as genetic) with the longest time first (LTF) and
workload first (WLF) algorithms, analyzing the scheduling success rates of each algorithm
under different scenarios. The scheduling success rate (SR) refers to the ratio of successfully
scheduled tasks to the total number of tasks; we conducted ten independent experiments
and calculated the average SR from these experiments.

The LTF algorithm prioritizes tasks with the longest deadlines, assigning them to the
fastest computing nodes. The WLF algorithm prioritizes tasks with smaller workloads,
assigning them to the fastest computing nodes to minimize response time.

Figure 3 shows the change in scheduling success rates of the four algorithms as the
task load increases. As illustrated in the figure, the scheduling success rates of all four
algorithms decrease as task load increases, due to resource contention among multiple
tasks, causing some tasks to not be completed within their deadlines. However, compared
to the LTF and WLF algorithms, the greedy and genetic algorithms demonstrate superior
performance. Both consider task splitting, allowing tasks with high resource demands
and urgent deadlines to be completed on time. Additionally, unlike LTF, which schedules
tasks in descending order of deadlines, the greedy algorithm does so in ascending order,
preventing urgent tasks from missing their deadlines due to long waits. The WLF algorithm



Electronics 2024, 13, 2747 13 of 16

performs slightly better than LTF, scheduling tasks in ascending order of computational
requirements, preventing small tasks from missing their deadlines while waiting for large
tasks to complete.

Figure 3 also shows that the genetic algorithm performs similarly to the greedy algo-
rithm when the task volume is 50 and 100, but outperforms the greedy algorithm when the
task volume reaches 150. As the task volume continues to increase, the genetic algorithm
surpasses the greedy algorithm. This is because when the task volume is below 150, the
computing tasks relative to node resources are not fully saturated, so both algorithms
perform well. As the task volume increases to 250, the greedy algorithm shows significant
advantages. This is due to the increasing solution space of the Genetic algorithm with the
rise in task volume, making it challenging for the Genetic algorithm to find the optimal
solution within a limited number of iterations. Meanwhile, the greedy algorithm is less
sensitive to increases in task volume, thus maintaining good performance under high
task load conditions. In summary, for smaller task loads (as in the experimental setup of
this paper with 150 tasks), the genetic algorithm demonstrates superior performance. In
contrast, the greedy algorithm is less sensitive to increases in task volume, making it more
suitable for handling larger task loads.

Figure 3. Scheduling framework.

Figure 4 the impact of node delay changes on scheduling success rates. By fixing the
number of tasks at 100 and multiplying each node’s delay by a delay coefficient ranging
from 1 to 5, the greater the coefficient, the greater the transmission delay between nodes.
As shown in Figure 4, the scheduling success rates of all four algorithms decline as node
delay increases. This is because the rise in node delay causes more tasks to be unable to
be executed and completed before their deadlines. The LTF algorithm, scheduling tasks
in ascending order of deadlines, causes some urgent tasks to miss their deadlines due
to long waits. The WLF algorithm performs slightly better than LTF, with the greedy
algorithm showing excellent performance. The genetic algorithm performs similarly to
the greedy algorithm when the node delay coefficient is small, but underperforms as node
delay increases. This is due to the rise in node delay preventing high-layer nodes from
meeting the requirements of some urgent tasks, leading to more tasks being backlogged to
lower-layer nodes, thereby increasing the load on lower-layer nodes and causing a decline
in scheduling success rates.



Electronics 2024, 13, 2747 14 of 16

Figure 4. Scheduling framework.

Figure 5 shows the effect of changes in the number of network layers on scheduling
success rates. As shown, the scheduling success rates of all four algorithms tend to increase
as the hierarchical structure increases. With more low-latency nodes closer to users being
added to the network structure, the completion of some urgent tasks becomes possible.
When there is only a central cloud (a single-layer network), the scheduling success rates
of all four algorithms are at a lower level (52%). This section evaluates the performance
of various algorithms under changes in task load, node delay, and network structure.
Under various conditions, compared to the baseline algorithm, the layered real-time task-
scheduling algorithm based on greedy strategy and the layered real-time task-scheduling
algorithm based on the genetic algorithm proposed in this paper demonstrates superior
performance. The genetic algorithm performs better than the greedy algorithm when the
task volume is small but is inferior under large task volumes.

Figure 5. Scheduling framework.

5. Conclusions

This study discusses the problem of real-time computational task scheduling in multi-
tier heterogeneous computing networks within distributed energy power systems. This
paper models the multi-tier heterogeneous computing network and the real-time computa-
tional tasks mathematically, transforming the scheduling problem into a MINLP problem.



Electronics 2024, 13, 2747 15 of 16

It proposes a computing network scheduling architecture based on an orchestration agent;
based on a hierarchical selection algorithm, it introduces a task-scheduling algorithm based
on a greedy strategy and another based on a genetic algorithm. Experiments show that
the proposed algorithms can fully utilize the resources of the multi-tier heterogeneous
computing network, meet the diverse needs of tasks, and improve the success rate of
real-time task scheduling. We plan to conduct future work experiments in more real-life en-
vironments and to verify and enhance the applicability and stability of algorithms through
more rigorous theoretical derivation.

Author Contributions: Conceptualization, N.W.; data collection, D.W.; formal analysis, S.J.; investi-
gation, X.B.; writing—original draft preparation, M.Z.; writing—review and editing, J.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Project of State Grid, project No.
5700-202318269A-1-1-ZN.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: X.B. is employed by the State Grid Smart Grid Research Institute Co., Ltd.,
D.W. and S.J. are employed by the Information and Communication Branch of State Grid Jiangsu
Electric Power Co., Ltd., and J.Z. is employed by the State Grid Economic and Technological Research
Institute Co., Ltd. The remaining authors, N.W. and M.Z., declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed as a potential
conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Ku, Y.-J.; Baidya, S.; Dey, S. Adaptive computation partitioning and offloading in real-time sustainable vehicular edge computing.

IEEE Trans. Veh. Technol. 2021, 70, 13221–13237. [CrossRef]
2. Wang, J.; Zhu, K.; Chen, B.; Han, Z. Distributed clustering-based cooperative vehicular edge computing for real-time offloading

requests. IEEE Trans. Veh. Technol. 2021, 71, 653–669. [CrossRef]
3. Wang, X.; Ning, Z.; Wang, L. Offloading in internet of vehicles: A fog-enabled real-time traffic management system. IEEE Trans.

Ind. Inform. 2018, 14, 4568–4578. [CrossRef]
4. Singh, A.; Auluck, N.; Rana, O.; Jones, A.; Nepal, S. RT-SANE: Real time security aware scheduling on the network edge. In

Proceedings of the International Conference on Utility and Cloud Computing, Austin, TX, USA, 5–8 December 2017; pp. 131–140.
5. Fizza, K.; Auluck, N.; Azim, A. Improving the schedulability of real-time tasks using fog computing. IEEE Trans. Serv. Comput.

2019, 15, 372–385. [CrossRef]
6. Yang, Y.; Wang, K.; Zhang, G.; Chen, X.; Luo, X.; Zhou, M.T. Maximal energy efficient task scheduling for homogeneous fog

networks. In Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu,
HI, USA, 16–19 April 2018; pp. 274–279.

7. Yang, Y.; Zhao, S.; Zhang, W.; Chen, Y.; Luo, X.; Wang, J. DEBTS: Delay energy balanced task scheduling in homogeneous fog
networks. IEEE Internet Things J. 2018, 5, 2094–2106. [CrossRef]

8. Ale, L.; Zhang, N.; Fang, X.; Chen, X.; Wu, S.; Li, L. Delay-aware and energy-efficient computation offloading in mobile-edge
computing using deep reinforcement learning. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 881–892. [CrossRef]

9. Chen, C.; Zhang, Y.; Wang, Z.; Wan, S.; Pei, Q. Distributed computation offloading method based on deep reinforcement learning
in ICV. Appl. Soft Comput. 2021, 103, 107108. [CrossRef]

10. Elgendy, I.A.; Zhang, W.Z.; He, H.; Gupta, B.B.; Abd El-Latif, A.A. Joint computation offloading and task caching for multi-user
and multi-task MEC systems: Reinforcement learning-based algorithms. Wirel. Netw. 2021, 27, 2023–2038. [CrossRef]

11. Zhang, D.; Cao, L.; Zhu, H.; Zhang, T.; Du, J.; Jiang, K. Task offloading method of edge computing in internet of vehicles based on
deep reinforcement learning. Clust. Comput. 2022, 25, 1175–1187. [CrossRef]

12. Karimiafshar, A.; Hashemi, M.R.; Heidarpour, M.R.; Toosi, A.N. An energy-conservative dispatcher for fog-enabled IIoT systems:
When stability and timeliness matter. IEEE Trans. Serv. Comput. 2021, 16, 80–94. [CrossRef]

13. Li, L.; Guan, Q.; Jin, L.; Guo, M. Resource allocation and task offloading for heterogeneous real-time tasks with uncertain duration
time in a fog queueing system. IEEE Access 2019, 7, 9912–9925. [CrossRef]

14. Adhikari, M.; Mukherjee, M.; Srirama, S.N. DPTO: A deadline and priority-aware task offloading in fog computing framework
leveraging multilevel feedback queueing. IEEE Internet Things J. 2019, 7, 5773–5782. [CrossRef]

15. Zhang, W.; Yu, J. Task offloading strategy in mobile edge computing based on cloud-edge-end cooperation. J. Comput. Res. Dev.
2022, 65, 1–14.

http://doi.org/10.1109/TVT.2021.3119585
http://dx.doi.org/10.1109/TVT.2021.3122001
http://dx.doi.org/10.1109/TII.2018.2816590
http://dx.doi.org/10.1109/TSC.2019.2944360
http://dx.doi.org/10.1109/JIOT.2018.2823000
http://dx.doi.org/10.1109/TCCN.2021.3066619
http://dx.doi.org/10.1016/j.asoc.2021.107108
http://dx.doi.org/10.1007/s11276-021-02554-w
http://dx.doi.org/10.1007/s10586-021-03532-9
http://dx.doi.org/10.1109/TSC.2021.3114964
http://dx.doi.org/10.1109/ACCESS.2019.2891130
http://dx.doi.org/10.1109/JIOT.2019.2946426


Electronics 2024, 13, 2747 16 of 16

16. Chekired, D.A.; Khoukhi, L.; Mouftah, H.T. Industrial IoT data scheduling based on hierarchical fog computing: A key for
enabling smart factory. IEEE Trans. Ind. Inform. 2018, 14, 4590–4602. [CrossRef]

17. Wang, P.; Zheng, Z.; Di, B.; Song, L. HetMEC: Latency-optimal task assignment and resource allocation for heterogeneous
multi-layer mobile edge computing. IEEE Trans. Wireless Commun. 2019, 18, 4942–4956. [CrossRef]

18. El Haber, E.; Nguyen, T.M.; Assi, C. Joint optimization of computational cost and devices energy for task offloading in multi-tier
edge-clouds. IEEE Trans. Comms. 2019, 67, 3407–3421. [CrossRef]

19. Peixoto, M.L.M.; Genez, T.A.; Bittencourt, L.F. Hierarchical scheduling mechanisms in multi-level fog computing. IEEE Trans.
Serv. Comput. 2021, 15, 2824–2837. [CrossRef]

20. Sun, Y.; He, Q. Computational offloading for MEC networks with energy harvesting: A hierarchical multi-agent reinforcement
learning approach. Electronics 2023, 12, 1304. [CrossRef]

21. Zhou, H.; Long, Y.; Gong, S.; Zhu, K.; Hoang, D.T.; Niyato, D. Hierarchical multi-agent deep reinforcement learning for
energy-efficient hybrid computation offloading. IEEE Trans. Veh. Technol. 2022, 72, 986–1001. [CrossRef]

22. Ren, T.; Niu, J.; Dai, B.; Liu, X.; Hu, Z.; Xu, M.; Guizani, M. Enabling efficient scheduling in large-scale UAV-assisted mobile-edge
computing via hierarchical reinforcement learning. IEEE Internet Things J. 2021, 9, 7095–7109. [CrossRef]

23. Qiu, X.; Zhang, W.; Chen, W.; Zheng, Z. Distributed and collective deep reinforcement learning for computation offloading: A
practical perspective. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 1085–1101. [CrossRef]

24. Zhan, Y.; Guo, S.; Li, P.; Zhang, J. A deep reinforcement learning based offloading game in edge computing. IEEE Trans. Comput.
2020, 69, 883–893. [CrossRef]

25. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80,
8091–8126. [CrossRef] [PubMed]

26. Lambora, A.; Gupta, K.; Chopra, K. Genetic algorithm-A literature review. In Proceedings of the International Conference on
Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 380–384.

27. Haldurai, L.; Madhubala, T.; Rajalakshmi, R. A study on genetic algorithm and its applications. Int. J. Comput. Sci. Eng.
2016, 4, 139.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TII.2018.2843802
http://dx.doi.org/10.1109/TWC.2019.2931315
http://dx.doi.org/10.1109/TCOMM.2019.2895040
http://dx.doi.org/10.1109/TSC.2021.3079110
http://dx.doi.org/10.3390/electronics12061304
http://dx.doi.org/10.1109/TVT.2022.3202525
http://dx.doi.org/10.1109/JIOT.2021.3071531
http://dx.doi.org/10.1109/TPDS.2020.3042599
http://dx.doi.org/10.1109/TC.2020.2969148
http://dx.doi.org/10.1007/s11042-020-10139-6
http://www.ncbi.nlm.nih.gov/pubmed/33162782

	Introduction
	System Model
	Network Model
	Task Model
	Problem Model

	Scheduling Algorithms
	Real-Time Task-Scheduling Framework
	Layered Selection Algorithm
	Scheduling Algorithm Based on the Greedy Strategy
	Scheduling Algorithm Based on Genetic Algorithm
	Chromosome Construction
	Population Initialization
	Fitness Function
	Genetic Operators
	Constructing a Feasible Solution
	Complexity Analysis


	Simulation and Results Analysis
	Experiment and Simulation Environment
	Result Evaluation

	Conclusions
	References

