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Abstract: Sunspots have a significant impact on human activities. In this study, we aimed to improve
solar activity prediction accuracy. To predict the sunspot number based on different aspects, such
as extracted features and relationships among data, we developed a hybrid model that includes a
one-dimensional convolutional neural network (1D-CNN) for extracting the features of sunspots and
bidirectional long short-term memory (BiLSTM) embedded with a multi-head attention mechanism
(MHAM) to learn the inner relationships among data and finally predict the sunspot number. We
evaluated our model and several existing models according to different evaluation indicators, such
as mean absolute error (MAE) and root mean square error (RMSE). Compared with the informer,
stacked LSTM, XGBoost-DL, and EMD-LSTM-AM models, the RMSE and MAE of our results were
more than 42.5% and 65.1% lower, respectively. The experimental results demonstrate that our model
has higher accuracy than other methods.

Keywords: sunspot prediction; 1D-CNN; BiLSTM; multi-head attention mechanism

1. Introduction

Sunspots are prominent features of the Sun’s surface and usually appear as darker
areas [1], and their formation and activity significantly impact the magnetic field and
energy output of this star. The Sun is the source of light and heat for the Earth, and its
activity has a variety of effects on the planet. For instance, sunspots cause climate change
on Earth. More than 100 years ago, a Swiss astronomer discovered that when there are
many sunspots, our planet’s climate is dry, and agriculture is impaired; on the contrary,
when there are few sunspots, the climate is humid, and rain is torrential [2]. Zhu Kezhen,
a famous Chinese scientist, also found that in every century in which there were many
sunspots, as recorded in ancient Chinese books, there were also more particularly cold
winters in China. Researchers have studied the rainfall change patterns in some areas and
found that change occurs every 11 years, which is probably related to the increase and
decrease in the number of sunspots [3]. Since sunspots are violent phenomena resulting
from material activity on the Sun, it is natural that they have an impact on the Earth.
Therefore, the accurate prediction of sunspot activity is very important for understanding
solar behavior.

Many researchers have used different methods to forecast sunspot numbers. These
methods can be classified into three main categories, including physical models, statistical
models, and methods based on machine learning. There are two types of physical models:
prediction models based on surface flux transport and prediction models based on dynamo
theory. The former predicts the peak and cycle length of the solar cycle several years in
advance by simulating magnetic field migration and evolution on the Sun’s surface [4,5];
even though in these models, the approach to the boundary is different (some use empirical

Electronics 2024, 13, 2804. https://doi.org/10.3390/electronics13142804 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13142804
https://doi.org/10.3390/electronics13142804
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9638-2506
https://orcid.org/0000-0002-1142-7582
https://doi.org/10.3390/electronics13142804
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13142804?type=check_update&version=2


Electronics 2024, 13, 2804 2 of 15

relationships and some are data-driven), their results for Solar Cycle 25 are similar. Models
based on dynamo theory are used for prediction on the basis of physics-based integrated
conservation equations, which can also include a data assimilation model. The mature
model-based dynamo theory for solar cycle prediction not only allows for prediction but
also offers a useful means of assessing how well we comprehend the solar cycle. However,
some of these models can only predict the amplitude of the cycle, not its shape, so they do
not provide physical insights into how the cycle changes.

As the number of records about sunspots has increased, in the past decade, several
statistical models, such as models based on probability theory and established by using
mathematical–statistical methods, have been applied to predict future sunspots. The classi-
cal statistical method used is autoregression (AR). R. Werner [6] developed an AR method
based on the Box–Jenkins method for predicting the annual sunspot number from 1749
to 2010; it was estimated that by 2013, the number of sunspots would have reached its
maximum value of approximately 90. Exponential smoothing was an early method for pre-
dicting linear time series [7]. The logistic regression method [8] has been used to construct
a model for predicting the categories of solar flares. The local linear approximation method
has been adopted to predict the number of upcoming sunspots by extending a continuous
dataset based on the group sunspot number and the international sunspot number [9].
The generalized autoregressive conditional heteroskedasticity (GARCH) and AR models,
combined in a model denoted as AR-GARCH, have been used to predict the sunspot
cycle [10]. Some improved methods based on AR have been utilized for sunspot prediction,
such as the autoregressive moving average method [11,12], the autoregressive integrated
moving average (ARIMA) method, and their variants. Abdel-Rahman and Marzouk [6] ap-
plied the ARIMA statistical method to predict the number of sunspots. Because the sunspot
number is a classical time series that may contain seasonal components, seasonal ARIMA
(SARIMA) was developed by Box and Jenkins [13]. These methods have demonstrated
better performance on linearly changing time series and have long played a dominant role
in the field of time series forecasting. However, their accuracy in capturing nonlinear rela-
tionships in chaotic time series is poor. Many prediction methods for nonlinear time series
have been applied to forecast the number of sunspots. For example, the gray topological
theory [14] has been applied to predict the average yearly sunspot number. Sabarinath and
Anilkumar [15] combined the multivariate regression technique with a binary mixture of
Laplace distribution functions to predict the cycle of sunspot numbers.

The application of machine learning technology has become a research hotspot and is
utilized for sunspot number prediction. These methods include the Bayesian approach [16,17],
support vector machine [18,19], and random forest [20]. In recent years, deep learning
(DL) has become one of the mainstream methods in the time series field. DL-based models
can be divided into two categories: single-neural-network-based models and hybrid-
neural-network-based models. In [21], a recurrent convolutional neural network was
adopted for sunspot prediction, and a predictive system was constructed with a customized
graphic user interface in MATLAB 7 [22]. Amrita Prasad et al. [23] used a long short-
term memory (LSTM) neural network to predict Solar Cycle 25 and predicted that the
peak of sunspot activity would appear approximately in August 2023. Zhu et al. [24]
optimized an LSTM neural network to predict Solar Cycle 25 by fine-tuning the different
hyperparameters of LSTM. Abhijeet and Vipin [25] proposed a stacked-1D-convolution-
based LSTM (sConvLSTM1D) model to predict the sunspot time series and predicted that
the peak would be in 2024. Dai et al. [26] first reconstructed the sunspot numbers and then
used a temporal convolutional neural network (TCN) to predict the number of sunspots in
Solar Cycle 24. A gated recurrent unit (GRU) [27] was used to predict the sunspot number,
and a mean absolute percentage error (MAPE) index of 9.9557% was achieved. Abduallah
and Wang et al. [28] proposed a method based on a transformer neural network for sunspot
number prediction. Zhou et al. [29] presented an improved model, called the informer
model, based on a transformer to predict the time series of sunspot numbers and verified
its prediction performance. The above models are based on a single neural network.
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To improve predictive accuracy, complex models have been established based on
the hybridization of different neural networks and even by combining neural networks
with traditional regression methods. A combined model that included a convolutional
neural network and an LSTM neural network was proposed by Hu et al. [30] and was
applied to predict sunspot numbers. Fully connected deep neural networks combined with
LSTM have been utilized for the prediction of sunspot numbers [31]. LSTM and neural
network autoregression (NNAR) [32] have also been employed in the field of sunspot
number prediction. Further, Okoh et al. [33] combined regression and neural networks
to forecast the sunspot number and predicted that Solar Cycle 24 would end in March
2020. A model based on empirical mode decomposition (EMD) and integrated long short-
term memory (LSTM) has been used to predict sunspot numbers [34] and was further
improved by Yang et al. [35] by adding an attention module. The beta+SARMA model,
which is based on the beta distribution, has been combined with LSTM for predicting
sunspot numbers [36]. In a previous study, researchers proposed a model composed of
a convolutional neural network and bidirectional GRU and employed a novel gradient
residual correction technique to improve sunspot number predictive accuracy [37]. Finally,
the ensemble method, extreme gradient boosting (XGBoost), and deep learning methods
have been combined into a hybrid prediction model [38].

Because LSTM can be used to process and forecast significant events in time series
with comparatively lengthy intervals and delays [39], it has been widely applied to time
series in different fields. In solar activity time series, there are likely relationships among
sunspot numbers. A 1D-CNN model can be adopted to extract the features of sunspot
numbers at different scales, and bidirectional LSTM can be utilized to learn the potential
relationships among the observed data and predict the number of sunspots. Finally, unlike
attention mechanisms, multi-head attention mechanisms (MHAMs) can assign different
weights to each location, which can better capture long-distance dependencies in a sequence
by calculating the degrees of association between each location and other locations [40];
thus, these techniques have an obvious advantage in processing long sequences and
complex relationships. Based on the above analysis, we used a 1D-CNN, BiLSTM, and an
MAHM to build a model to predict sunspot numbers in this study.

The remainder of this paper is organized as follows: The basic principles of the 1D-
CNN, Bi-LSTM, and the multi-head attention mechanism are described in Sections 2.1–2.4.
The prediction model and the evaluation indicators are described in Section 2.5 and
Section 2.6, respectively. Section 3 includes the data description and experimental settings.
Section 4 presents the simulation results and discussion. The conclusions are presented in
Section 5.

2. Methodology
2.1. One-Dimensional Convolutional Network

A CNN, the structure of which is shown in Figure 1, is a classical neural network
model in the deep learning field. To process data of different dimensions, researchers
have developed three different network structures for one-dimensional sequence data, two-
dimensional data (images), and three-dimensional data (video) called 1D-CNN, 2D-CNN,
and 3D-CNN, respectively [41]. Among them, the 1D-CNN model has a strong feature
extraction ability and can be used to analyze fixed-length signals and filter out the features
of SSNs. The formulas of the convolutional layer are as follows:

xl
j = f ( ∑

i∈Mj

xl−1
i × kl

ij + bl
j) (1)

where xl
i is the input of the lth layer, xi

j is the output of the lth layer, kl
ij is the convolutional

kernel of the lth layer, bi
j is the bias parameter of the lth layer, and Mj is the jth input

feature vector.
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Pl+1
I (j) = max

(j−1)W+1≤t≤jW
{ql

i(t)} (2)

where W is the width of the pool region, ql
i(t) is the value of the neural cell of the ith vector

in the lth layer, and the scope of t is [(j − 1)W + 1, jW], where Pl+1
i (j) is the corresponding

value of the neural cell.

Figure 1. Structure of 1D-CNN.

2.2. Long Short-Term Memory (LSTM) Neural Network

LSTM is improved by a recurrent neural network that adds a forget gate. It can not
only solve the “vanishing gradient” problem in the training process but also self-learn
long-term dependencies. This method is highly suitable for predicting 1D time series and
has been adopted in many applications. The basic cell is presented in Figure 2.

Figure 2. Basic cell of LSTM network.

The cell of the LSTM network is composed of three gates: the input gate, the forget
gate, and the output gate. The forget gate includes input variable xt, state memory unit
St−1, and intermediate output ht−1. In the input gate, vector preservation in the memory
unit is co-determined by the results of the sigma and tanh functions with the same input
(xt). Output ht is computed by using the updated St and output ot. Their computational
equations are as follows:

ft = σ(W f xxt + W f hht−1 + b f ) (3)
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it = σ(Wixxt + Wihht−1 + bi) (4)

gt = ϕ(Wgxxt + Wghht−1 + bg) (5)

it = σ(Woxxt + Wohht−1 + bo) (6)

St = gt ⊙ it + St−1 ⊙ ft (7)

ht = ϕ(St)⊙ ot (8)

where ft, it, gt, ot, ht, and St are the states of the forget gate, input gate, output gate,
intermediate output, and state unit, respectively. W f x, W f h, Wix, Wih, Wgx, Wgh, Wox, and
Woh are the weight matrices of the corresponding gates multiplied by input data xt and
intermediate output ht−1, b f , bi, bg, and bo are the bias terms of the corresponding gates,
⊙ indicates that the items of the vector are bitwise multiplied, σ represents the function
sigmoid(), and ϕ is the function tanh().

2.3. Bidirectional LSTM

Because the data are transmitted in one direction, the LSTM model only captures his-
torical information [42]. To overcome this problem, Schmidhuber and Sepp Hochreiter et al.
proposed a two-directional LSTM network in 1997, which is an extended form of traditional
LSTM. BiLSTM contains forward and backward LSTM networks [43], and its structure
is shown in Figure 3. The forward LSTM processes the input sequence in the forward
order, while the backward one processes the input sequence in the reverse order. They are
combined to obtain more complete context information; thus, BiLSTM can better capture
bidirectional semantic dependencies [44]. At time t, the hidden state of BiLSTM consists
of two states: forward h f

t and backward hb
t . Thus, the hidden output of BiLSTM, which

contains the forward and backward outputs, is denoted by Ht. The detailed formulas are
defined as follows:

h f
t = LSTM f (ht−1, xt, ct−1), t ∈ [1, T], (9)

hb
t = LSTMb(ht−1, xt, ct−1), t ∈ [1, T], (10)

Ht = [h f
t , hb

t ] (11)

Figure 3. Structure of BiLSTM.

2.4. Multi-Head Attention Mechanism

Because the number of sunspots is very large, important information in the data has
a loss probability in the model training process [45]. A multi-head attention mechanism
(MHAM) was here embedded into the model, as it can effectively mine the features of
the long-distance data that are relevant to the time series [46]. Its structure is shown in
Figure 4. The MHAM can transform the output of BiLSTM into three same-dimensional
input matrices, Q (Query), K (key), and V (Value), whose dimension size is dk, according to
three different mappings. The three output matrices are computed as follows:
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Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (12)

where dk, which is used to enlarge the weights and is normalized to [0, 1] by using softmax,
is the characteristic dimension of each key.

Figure 4. Structure of the multi-head attention mechanism.

To improve the ability to capture long-distance dependencies, the MHAM divides the
data sequence into several sub-sequences and uses each head to compute the attention
weights of all sub-sequences according to formula (13). Next, the results of h heads are
spliced together for the multi-heads. Each head is concatenated, and the final result is
obtained by using linear transformation.

headi = Attention(QWQ
i , KWK

i , VWV
i ) (13)

where WQ
i , WK

i , and WV
i represent the weight matrices of Q, K, and V, respectively.

Head = MultiHead(Q, K, V) = Concat(head1, · · · , headh)Wo (14)

where Wo is the weight of the linear transformation, headi is the ith head in the multi-head
module, and the function Concat() is the splice operator. MultiHead(Q, K, V) is the final
output, and it can learn more feature information from different spaces.

2.5. Prediction Model

Because SSN data form a classical chaotic time series, they may contain complex
features that are difficult to fully extract with only one technique. To improve predictive
accuracy in different aspects, including feature extraction and the relationship between
SNNs, we made full use of the advantages of the CNN for extracting key features, the BiL-
STM model for processing time series by simultaneously considering historical information
and hidden states at each timepoint, and the MHAM for using multiple sets of attention
weights. Thus, as presented in this section, we developed a hybrid model called the 1D-
CNN-BiLSTM-MHAM model to improve SSN predictive accuracy. Our model can be
divided into two parts: deep feature extraction based on the CNN layer and time-series
forecasting based on the BiLSTM and MHAH layers. Our model consists of six layers:
the input layer, the CNN layer, the BiLSTM layer, the multi-head attention layer, the fully
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connected (dense) layer, and the output layer. The structure of the model is presented in
Figure 5. To predict longer-term values, a recursive multi-step forecasting technique was
used to obtain values for the next 5 and 7 months, which correspond to the blue and red
boxes, respectively.

Figure 5. The structure of our algorithm.

2.6. Evaluation Indicators

To measure the predictive accuracy of our model, we calculated six evaluation indi-
cators, namely, mean square error (MSE), root mean square error (RMSE), mean absolute
error (MAE), mean absolute percentage error (MAPE), symmetric mean absolute percentage
error (SMAPE), and correlation coefficient (Corr), based on the prediction results and the
true values. The formulas of these indicators are listed in Equations (15)–(19). When these
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indicators, except Corr, are small, the model has better predictive ability, and if Corr is close
to 1, the model has better performance.

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2 (15)

MAE =
1
n
|(ŷi − yi)| (16)

MAPE =
1
n

n

∑
i=1

| ŷi − yi
yi

| × 100% (17)

SMAPE =
100%

n

n

∑
i=1

|ŷi − yi|
(|ŷi|+ |yi|)/2

(18)

Corr =
∑n

i=1(yi − y)(ŷi − ŷi)√
∑n

i=1(yi − y)2
√

∑n
i (ŷi − ŷi))

2
, (19)

where y and ŷ are the true data and the prediction results, respectively. The mean values of
y and ŷ are y and ŷ, respectively; n is the length of the data, and i is the index.

3. Data and Experimental Settings
3.1. Data Description and Preprocessing

We downloaded SSN data from the SIDC website (URL: “https://www.sidc.be/silso/
home”, accessed on 1 May 2022) in CSV format. The file contained 3279 samples, with many
zero values before the year 1811. Therefore, we selected the time scope of the monthly mean
total sunspot number starting from January 1811 and ending in March 2022. The statistical
features, including the maximum and minimum values and the standard deviation (Std),
are listed in Table 1. The table shows that the minimum was 0.2 and the maximum was 285.
Thus, we normalized the data with Formula (20) before inputting them into our model.

x′ =
x − Minimum

Maximum − Minimum
(20)

Table 1. Statistical description of dataset.

Dataset Time Period Type Size Std Minimum Maximum

Sunspots 1811.1–2022.3 Monthly 2535 48.37 0.2 285

To facilitate network training, the data were split in chronological order into a training
set (1632 records from January 1811 to December 1946), a validation set (408 records from
January 1947 to December 1980), and a testing set (495 records from January 1981 to March
2022). The ratio of the training set to the testing set was 8:2. The training set was used to
preprocess the model to determine the optimal hyperparameters, the validation set was
used to monitor the hyperparameter tuning process, and the testing set was used to assess
the performance of each trained prediction model.

3.2. The Parameter Settings of the Model

Because our method is a hybrid model, the parameters of different modules may
influence its predictive accuracy. Therefore, parameter setting is also an important task. We
set the different parameters, such as the number of epochs, the number of convolutional
kernels, the number of neurons in BiLSTM, and the convolutional step size, as follows:
first, we set different numbers of neurons, including 16, 32, 64, and 128, in the BiLSTM
model and used it on its own to predict the data; then, we chose similar settings for the
number of convolutional kernels to be combined with BiLSTM. The corresponding RMSE

https://www.sidc.be/silso/home
https://www.sidc.be/silso/home
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and MAE values are listed in Table 2. Next, the convolution steps were assigned values of 1,
2, and 3; then, the RMSE and MAE values were computed. We found that the accuracy was
higher with one convolution step. The detailed parameter settings of the different models
are listed in Table 3.

Table 2. Predictive accuracy in terms of RMSE and MAE corresponding to numbers of BiLSTM
neurons and convolutional kernels in CNN-BiLSTM.

Number
Neural Cell in BiLSTM Convolutional Kernel

in CNN-BiLSTM

RMSE MAE RMSE MAE

16 3.12 2.72 2.1 1.65

32 3.75 1.54 3.75 2.83

64 3.38 1.35 1.64 1.19

128 2.57 1.21 4.01 3.21

Table 3. Detailed parameter settings of different models.

Parameter CNN BiLSTM CNN-BiLSTM CNN-BiLSTM-MHAM

LR 0.001 0.001 0.001 0.001

Epochs 350 350 350 350

Batch size 64 64 64 64

Drop ratio - - 0.2 0.2

Convolutional kernels 64 - 64 64

Step size 1 - 1 1

Number of neurons in BiLSTM 128 128 128 128

Optimizer Adam Adam Adam Adam

4. Simulation Results and Discussion
4.1. Analysis of Predictive Error

Figure 6 shows our prediction results (red line) and the original data (black line). We
can see from the figure that the two curves are relatively close, but there are some obvious
differences in some places, especially around large fluctuations. To observe the discrepancy
between the prediction results (ŷ) and the original data (y), the formula y − ŷ was used to
calculate the predictive error (PE), as shown in Figure 7. Many error values were found
to be near the centerline (y = 0), and the number of predictive errors greater than 0 was
relatively large. If the PE is larger than 0, it means that the prediction result may be ahead
of schedule. In contrast, there was a lag in the prediction results. We also found that the
lag error was larger than the predictive error because the minimum and maximum of the
amplitudes (y-axis) were close to −8 and 6, respectively. Figure 8 shows the statistical
results of the PE. The PEs relative to the different scopes of [−8, −1), [−1, 0), [0, 1], and (1, 6]
were 118, 76, 123, and 186, respectively. The number of non-negative PEs (309 samples)
was greater than that of negative PEs (194 samples).
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Figure 6. Comparison of original data (black line) and prediction results (red line).

Figure 7. Errors between original data and prediction results.

Figure 8. Histogram of errors between original data and prediction results.

4.2. Comparison and Analysis of Different Methods

To demonstrate that our algorithm has significant accuracy in predicting SSNs, ARIMA,
CNN, BiLSTM, and CNN-BiLSTM were selected for comparison with our algorithm,
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and their prediction results and the original data are shown in Figure 9. From the fig-
ure, we can see that the results of the single-method CNN (blue line) are quite distant
from the original data (black line). The results of CNN-BiLSTM (green line) are close to
the original data in the comparison methods. In general, in terms of distance from the true
value, the models are ordered as CNN, BiLSTM, ARIMA, CNN-BiLSTM, and our algorithm
from worst to best results.

Figure 9. Our algorithm compared with ARIMA, CNN, BiLSTM, and CNN-BiLSTM.

Five indicators were selected to objectively evaluate these algorithms, and their results
are listed in Table 4. For single-method algorithms, the RMSE, MAE, MAPE, and SMAPE
were 3.93, 2.86, 12.13%, and 9.81 for ARIMA; 13.43, 11.05, 51.08%, and 28.84 for the CNN;
and 5.35, 4.04, 8.93%, and 8.51 for BiLSTM, respectively. Compared with those of the CNN,
the results of the ARIMA and BiLSTM models showed a large improvement. Furthermore,
the RMSE and MAE of the combined CNN and BiLSTM model decreased by more than
0.89 and 0.44, respectively. However, the SMAPE values of BiLSTM and CNN-BiLSTM
were very close, and the correlation coefficient increased by approximately 0.0021. For the
first four indexes, our algorithm showed values that were lower by 1.07, 0.85, 4.85%, and
3.4, respectively. For the Corr index, our algorithm achieved a value of 0.9996, which was
better than that of the others. Therefore, we can see that all the modules play a role in
our algorithm.

Table 4. Performance comparison of ARIMA, CNN, BiLSTM, CNN-BiLSTM, and CNN-BiLSTM-MHAM.

Method RMSE MAE MAPE SMAPE Corr

ARIMA 3.93 2.86 12.13% 9.81 0.9858

CNN 13.43 11.05 51.08% 28.84 0.9802

BiLSTM 5.35 4.04 8.93% 8.51 0.9970

CNN-BiLSTM 3.14 2.42 10.54% 8.59 0.9991

CNN-BiLSTM-MHAM (ours) 2.07 1.57 5.69% 5.11 0.9996

4.3. Comparison with Previous Studies

We employed methods from several previous studies for comparison with our al-
gorithm to demonstrate the advantages of our method. Two types of algorithms were
compared, including single-method algorithms and hybrid algorithms. The former in-
cluded informer ([29]) and stacked LSTM with two stacked 50 LSTM units [47]. We further
considered the hybrid algorithms XGBoost-DL [38] and EMD-LSTM-AM [35]. We down-
loaded the codes of informer and XGBoost-DL from GitHub (https://github.com/yd1008/
ts_ensemble_sunspot, accessed on 5 December 2023) and used the original models’ param-
eters, except when updating the dataset. Table 5 lists the results of the previous studies and
our study. Informer produced a larger error, and LSTM was better than informer because
of the stacking of multilayer LSTM cells. The hybrid XGBoost-DL algorithm was better

https://github.com/yd1008/ts_ensemble_sunspot
https://github.com/yd1008/ts_ensemble_sunspot
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than the informer method, and EMD-LSTM-AM outperformed the other three algorithms,
which was attributed to the fact that it adopts the EMD method to decompose the chaotic
sunspot series and reduce their complexity. Because we used a CNN to extract the deep
features of sunspots and combined the CNN and BiLSTM with the MHAM module, our
method had better performance. The RMSE and MAE values of EMD-LSTM-AM were 3.6
and 4.5, respectively, and those of our algorithm were 2.07 and 1.57, respectively. Compared
with these algorithms, our method achieved reductions in RMSE and MAE of more than
1.53 and 2.93, respectively.

Table 5. Comparison with other studies based on performance indicators.

Method RMSE MAE

ARIMA 3.93 2.86

Informer 29.1 22.56

Stacked LSTM 13.38 9.57

XGBoost-DL 24.5 18.34

EMD-LSTM-AM 3.6 4.5

CNN-BiLSTM-MHAM 2.07 1.57

4.4. Short-Term Forecasting

We predicted SSNs for 1, 5, and 7 months into the future to validate the network’s
generalization ability. Figure 10 shows the results of the 1-month (black line), 5-month
(blue line), and 7-month (green line) predictions and the original data (black line). As the
prediction time increased, the prediction results became increasingly different from the
original values. We can note that these lines exhibit differences in some places, especially
around fluctuations.

Table 6 lists the results of the three evaluation indicators. The RMSE and MAE values
for the 1-month, 5-month, and 7-month predictions were 2.07 and 1.57, 2.89 and 2.15, and
3.39 and 2.63, respectively. We found that the two indices showed increases of 0.82 and 0.58
between the 1- and 5-month predictions and of 0.5 and 0.48 between the 5- and 7-month
predictions, respectively. The Corr value decreased by 0.0015 between the 1- and 5-month
predictions and by 0.0003 between the 5- and 7-month predictions. The table shows that
the 1-month predictive accuracy is better than that for the other time windows.

Figure 10. The comparison of the ground truth (original) and the multi-step prediction results of
our algorithm.
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Table 6. The prediction results of the multi-step prediction for 1, 5, and 7 months.

Multi-Step (Months) RMSE MAE Corr

1 2.07 1.57 0.9996

5 2.89 2.15 0.9981

7 3.39 2.63 0.9978

5. Conclusions

Given its ultimate aim of predicting the sunspot number, our prediction model was
considered from different perspectives:

(1) We experimented with different numbers of convolutional kernels for the 1D-CNN to
extract features at different scales and with different numbers of neurons for BiLSTM.
We found that the optimal parameters for 1D-CNN and BiLSTM are 64 kernels and
128 neurons, respectively.

(2) GRU is structurally simple compared with LSTM, and while they perform similarly on
many tasks, when the dataset is large, LSTM has better performance. Compared with
LSTM, BiLSTM can effectively utilize the forward and backward feature information
of the dataset, thus improving the predictive accuracy in general.

(3) With a standard attention mechanism, we only compute a weighted context vector to
represent the information of the sunspot number. With an MHAM, we use multiple
sets of attention weights, where each set of weights can learn different types of
semantic information and produce a context vector. Finally, these context vectors
are concatenated, and a linear transformation is applied to produce the final output.
Thus, an MHAM can learn the relationships among data and be used to extract more
efficient information for improving the predictive accuracy.

Based on the above analysis, a hybrid model was developed. Common evaluation
indicators were used to measure the performances of different models. In this study, our
algorithm was compared with classical and recently published models. The experiments
showed that the developed model is superior in terms of accuracy and precision for
predicting sunspot numbers. Sunspot activity has a great impact on human activities,
especially in the field of aerospace communication and daily information communication. It
is crucial to construct a method that is accurate, fast, and lightweight for sunspot prediction.
In further work, the structure of the model will continue to be optimized to make the
model more lightweight and reduce computational resources. New mechanisms will be
introduced to improve accuracy in sunspot prediction.
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the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Arlt, R.; Vaquero, J.M. Historical sunspot records. Living Rev. Sol. Phys. 2020, 17, 1. [CrossRef]
2. Li, G.; Ma, X.; Yang, H. A Hybrid Model for Forecasting Sunspots Time Series Based on Variational Mode Decomposition and

Backpropagation Neural Network Improved by Firefly Algorithm. Comput. Intell. Neurosci. 2018, 3713410. [CrossRef]
3. Maitra, A.; Saha, U.; Adhikari, A. Solar control on the cloud liquid water content and integrated water vapor associated with

monsoon rainfall over India. J. Atmos. Sol.-Terr. Phys. 2014, 121, 157–167. [CrossRef]
4. Bhowmik, P.; Nandy, D. Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental

conditions. Nat. Commun. 2018, 9, 5209. [CrossRef] [PubMed]

http://doi.org/10.1007/s41116-020-0023-y
http://dx.doi.org/10.1155/2018/3713410
http://dx.doi.org/10.1016/j.jastp.2014.06.010
http://dx.doi.org/10.1038/s41467-018-07690-0
http://www.ncbi.nlm.nih.gov/pubmed/30523260


Electronics 2024, 13, 2804 14 of 15

5. Upton, L.A.; Hathaway, D.H. An updated solar cycle 25 prediction with AFT: The modern minimum. Geophys. Res. Lett. 2018,
45, 8091–8095. [CrossRef]

6. Abdel-Rahman, H.; Marzouk, B. Statistical method to predict the sunspots number. NRIAG J. Astron. Geophys. 2018, 7, 175–179.
[CrossRef]

7. Tabassum, A.; Rabbani, M.; Omar, S.B. An Approach to Study on MA, ES, AR for Sunspot Number (SN) prediction and to forecast
SN with seasonal variations along with trend component of time series analysis using Moving Average (MA) and Exponential
Smoothing (ES). In Advances in Electrical and Computer Technologies: Select Proceedings of ICAECT 2019; Springer: Singapore, 2020;
pp. 373–386. [CrossRef]

8. Song, H.; Tan, C.; Jing, J.; Wang, H.; Yurchyshyn, V.; Abramenko, V. Statistical assessment of photospheric magnetic features in
imminent solar flare predictions. Sol. Phys. 2009, 254, 101–125. [CrossRef]

9. Volobuev, D.; Makarenko, N. Forecast of the decadal average sunspot number. Sol. Phys. 2008, 249, 121–133. [CrossRef]
10. Zaffar, A.; Abbas, S.; Ansari, M.R.K. Model estimation and prediction of sunspots cycles through AR-GARCH models. Indian J.

Phys. 2022, 96, 1895–1903. [CrossRef]
11. Brajša, R.; Wöhl, H.; Hanslmeier, A.; Verbanac, G.; Ruždjak, D.; Cliver, E.; Svalgaard, L.; Roth, M. On solar cycle predictions and

reconstructions. Astron. Astrophys. 2009, 496, 855–861. [CrossRef]
12. Borisova, D.; Kostadinova, G.; Petkov, G.; Dospatliev, L.; Ivanova, M.; Dermendzhieva, D.; Beev, G. Assessment of CH4 and CO2

Emissions from a Gas Collection System of a Regional Non-Hazardous Waste Landfill, Harmanli, Bulgaria, Using the Interrupted
Time Series ARMA Model. Atmosphere 2023, 14, 1089. [CrossRef]

13. Box, G. Box and Jenkins: Time series analysis, forecasting and control. In A Very British Affair: Six Britons and the Development of
Time Series Analysis during the 20th Century; Springer: London, UK, 2013; pp. 161–215. [CrossRef]

14. Jie, T. Application of the Grey Topological Theory in the Prediction of Yearly Mean Sunspot Numbers. Chin. Astron. Astrophys.
2015, 39, 45–53. [CrossRef]

15. Sabarinath, A.; Anilkumar, A. Sunspot cycle prediction using multivariate regression and binary mixture of Laplace distribution
model. J. Earth Syst. Sci. 2018, 127, 84. [CrossRef]

16. Wheatland, M. A Bayesian approach to solar flare prediction. Astrophys. J. 2004, 609, 1134. [CrossRef]
17. Yu, Y.; van Dyk, D.A.; Kashyap, V.L.; Young, C.A. A Bayesian analysis of the correlations among sunspot cycles. Sol. Phys. 2012,

281, 847–862. [CrossRef]
18. Peng, L.; Yan, H.; Yang, Z. Prediction on sunspot activity based on fuzzy information granulation and support vector machine.

Aip Conf. Proc. 2018, 1955, 040152. [CrossRef]
19. Abd, M.A.; Majed, S.F.; Zharkova, V. Automated classification of sunspot groups with support vector machines. In Technological

Developments in Networking, Education and Automation; Springer: Dordrecht, The Netherlands, 2010; pp. 321–325. [CrossRef]
20. Siagian, R.C.; Alfaris, L.; Ahmad, G.N.; Laeiq, N.; Muhammad, A.C.; Nyuswantoro, U.I.; Nasution, B. Relationship between Solar

Flux and Sunspot Activity Using Several Regression Models. J. Ilmu Fis. 2023, 15, 146–165. [CrossRef]
21. Chattopadhyay, G.; Chattopadhyay, S. Monthly sunspot number time series analysis and its modeling through autoregressive

artificial neural network. Eur. Phys. J. Plus 2012, 127, 43. [CrossRef]
22. Samin, R.E.; Kasmani, R.M.; Khamis, A.; Isa, S. Forecasting sunspot numbers with recurrent neural networks (rnn) using’sunspot

neural forecaster’system. In Proceedings of the 2010 Second International Conference on Advances in Computing, Control, and
Telecommunication Technologies, Jakarta, Indonesia, 2–3 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 10–14. [CrossRef]

23. Prasad, A.; Roy, S.; Sarkar, A.; Chandra Panja, S.; Narayan Patra, S. Prediction of solar cycle 25 using deep learning based long
short-term memory forecasting technique. Adv. Space Res. 2022, 69, 798–813. [CrossRef]

24. Zhu, H.; Chen, H.; Zhu, W.; He, M. Predicting Solar cycle 25 using an optimized long short-term memory model based on
sunspot area data. Adv. Space Res. 2023, 71, 3521–3531. [CrossRef]

25. Kumar, A.; Kumar, V. Stacked 1D Convolutional LSTM (sConvLSTM1D) Model for Effective Prediction of Sunspot Time Series.
Sol. Phys. 2023, 298, 121. [CrossRef]

26. Dai, S.; Liu, Y.; Meng, J. Sunspot forecast using Temporal Convolutional Neural (TCN) network based on phase space recon-
struction. In Proceedings of the 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021;
pp. 2895–2900. [CrossRef]

27. Arfianti, U.I.; Novitasari, D.C.R.; Widodo, N.; Hafiyusholeh, M.; Utami, W.D. Sunspot Number Prediction Using Gated Recurrent
Unit (GRU) Algorithm. Indones. J. Comput. Cybern. Syst. 2021, 15, 141–152. [CrossRef]

28. Abduallah, Y.; Wang, J.T.; Wang, H.; Xu, Y. Operational prediction of solar flares using a transformer-based framework. Sci. Rep.
2023, 13, 13665. [CrossRef] [PubMed]

29. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long
Sequence Time-Series Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021;
pp. 11106–11115. [CrossRef]

30. Hu, A.; Rodriguez, A. A Hybrid CNN-LSTM Model for Predicting Solar Cycle 25. J. Stud. Res. 2023, 12, 121. [CrossRef]
31. Yang, J.; Liu, S.; Xuan, S.; Chen, H. A Hybrid Model Based on CEEMDAN-GRU and Error Compensation for Predicting Sunspot

Numbers. Electronics 2024, 13, 1904. [CrossRef]
32. Pontoh, R.S.; Toharudin, T.; Ruchjana, B.N.; Gumelar, F.; Putri, F.A.; Agisya, M.N.; Caraka, R.E. Jakarta pandemic to endemic

transition: Forecasting COVID-19 using NNAR and LSTM. Appl. Sci. 2022, 12, 5771. [CrossRef]

http://dx.doi.org/10.1029/2018GL078387
http://dx.doi.org/10.1016/j.nrjag.2018.08.001
http://dx.doi.org/10.1007/978-981-15-5558-9_34
http://dx.doi.org/10.1007/s11207-008-9288-3
http://dx.doi.org/10.1007/s11207-008-9167-y
http://dx.doi.org/10.1007/s12648-021-02135-9
http://dx.doi.org/10.1051/0004-6361:200810862
http://dx.doi.org/10.3390/atmos14071089
http://dx.doi.org/10.1057/9781137291264
http://dx.doi.org/10.1016/j.chinastron.2015.01.002
http://dx.doi.org/10.1007/s12040-018-0987-3
http://dx.doi.org/10.1086/421261
http://dx.doi.org/10.1007/s11207-012-0090-x
http://dx.doi.org/10.1063/1.5033816
http://dx.doi.org/10.1007/978-90-481-9151-2_56
http://dx.doi.org/10.25077/jif.15.2.146-165.2023
http://dx.doi.org/10.1140/epjp/i2012-12043-9
http://dx.doi.org/10.1109/ACT.2010.50
http://dx.doi.org/10.1016/j.asr.2021.10.047
http://dx.doi.org/10.1016/j.asr.2023.01.042
http://dx.doi.org/10.1007/s11207-023-02209-3
http://dx.doi.org/10.1109/CCDC52312.2021.9601484
http://dx.doi.org/10.22146/ijccs.63676
http://dx.doi.org/10.1038/s41598-023-40884-1
http://www.ncbi.nlm.nih.gov/pubmed/37607960
http://dx.doi.org/10.1609/aaai.v35i12.17325
http://dx.doi.org/10.47611/jsrhs.v12i1.3996
http://dx.doi.org/10.3390/electronics13101904
http://dx.doi.org/10.3390/app12125771


Electronics 2024, 13, 2804 15 of 15

33. Li, Q.; Wan, M.; Zeng, S.G.; Zheng, S.; Deng, L.H. Predicting the 25th solar cycle using deep learning methods based on sunspot
area data. Res. Astron. Astrophys. 2021, 21, 184. [CrossRef]

34. Lee, T. EMD and LSTM hybrid deep learning model for predicting sunspot number time series with a cyclic pattern. Sol. Phys.
2020, 295, 82. [CrossRef]

35. Yang, J.; Fu, N.; Chen, H. The Sunspot Number Forecasting Using a Hybridization Model of EMD, LSTM and Attention
Mechanism. IEEJ Trans. Electr. Electron. Eng. 2023, 18, 1791–1798. [CrossRef]

36. Kumar, B.; Sunil; Yadav, N. A novel hybrid model combining beta+SARMA and LSTM for time series forecasting. Appl. Soft
Comput. 2023, 134, 110019. [CrossRef]

37. Kumar, A.; Kumar, V. Forecast of solar cycle 25 based on Hybrid CNN-Bidirectional-GRU (CNN-BiGRU) model and Novel
Gradient Residual Correction (GRC) technique. Adv. Space Res. 2024, 73, 4342–4362. [CrossRef]

38. Dang, Y.; Chen, Z.; Li, H.; Shu, H. A Comparative Study of non-deep Learning, Deep Learning, and Ensemble Learning Methods
for Sunspot Number Prediction. Appl. Artif. Intell. 2022, 36, 2074129. [CrossRef]

39. Sirisha, U.M.; Belavagi, M.C.; Attigeri, G. Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting:
A Comparison. IEEE Access 2022, 10, 124715–124727. [CrossRef]

40. Li, J.; Wang, X.; Tu, Z.; Lyu, M.R. On the diversity of multi-head attention. Neurocomputing 2021, 454, 14–24. [CrossRef]
41. Zhao, J.; Mao, X.; Chen, L. Speech emotion recognition using deep 1D & 2D CNN LSTM networks. Biomed. Signal Process. Control

2019, 47, 312–323. [CrossRef]
42. Smagulova, K.; James, A.P. A survey on LSTM memristive neural network architectures and applications. Eur. Phys. J. Spec. Top.

2019, 228, 2313–2324. [CrossRef]
43. Mouakher, A.; Inoubli, W.; Ounoughi, C.; Ko, A. Expect: EXplainable prediction model for energy ConsumpTion. Mathematics

2022, 10, 248. [CrossRef]
44. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
45. Ma, C.; Dai, G.; Zhou, J. Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM_BILSTM

method. IEEE Trans. Intell. Transp. Syst. 2021, 23, 5615–5624. [CrossRef]
46. Reza, S.; Ferreira, M.C.; Machado, J.J.M.; Tavares, J.M.R. A multi-head attention-based transformer model for traffic flow

forecasting with a comparative analysis to recurrent neural networks. Expert Syst. Appl. 2022, 202, 117275. [CrossRef]
47. Moustafa, S.S.R.; Khodairy, S.S. Comparison of different predictive models and their effectiveness in sunspot number prediction.

Phys. Scr. 2023, 98, 045022. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1088/1674-4527/21/7/184
http://dx.doi.org/10.1007/s11207-020-01653-9
http://dx.doi.org/10.1002/tee.23908
http://dx.doi.org/10.1016/j.asoc.2023.110019
http://dx.doi.org/10.1016/j.asr.2024.01.019
http://dx.doi.org/10.1080/08839514.2022.2074129
http://dx.doi.org/10.1109/ACCESS.2022.3224938
http://dx.doi.org/10.1016/j.neucom.2021.04.038
http://dx.doi.org/10.1016/j.bspc.2018.08.035
http://dx.doi.org/10.1140/epjst/e2019-900046-x
http://dx.doi.org/10.3390/math10020248
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1109/TITS.2021.3055258
http://dx.doi.org/10.1016/j.eswa.2022.117275
http://dx.doi.org/10.1088/1402-4896/acc21a

	Introduction
	Methodology
	One-Dimensional Convolutional Network
	Long Short-Term Memory (LSTM) Neural Network
	Bidirectional LSTM
	Multi-Head Attention Mechanism
	Prediction Model
	Evaluation Indicators

	Data and Experimental Settings
	Data Description and Preprocessing
	The Parameter Settings of the Model

	Simulation Results and Discussion
	Analysis of Predictive Error
	Comparison and Analysis of Different Methods
	Comparison with Previous Studies
	Short-Term Forecasting 

	Conclusions
	References

