
Citation: Zou, Y.; Chen, Z.; Zhu, S.; Li,

Y. NSGA-III-Based Production

Scheduling Optimization Algorithm

for Pressure Sensor Calibration

Workshop. Electronics 2024, 13, 2844.

https://doi.org/10.3390/

electronics13142844

Academic Editors: Jitao Li, Xu Fang,

Chao Deng, Shankar A. Deka

and Heling Yuan

Received: 27 June 2024

Revised: 11 July 2024

Accepted: 15 July 2024

Published: 19 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

NSGA-III-Based Production Scheduling Optimization
Algorithm for Pressure Sensor Calibration Workshop
Ying Zou , Zuguo Chen *, Shangyang Zhu and Yingcong Li

The School of Information and Electrical Engineering, Hunan University of Science and Technology,
Xiangtan 411201, China; 21010401001@mail.hnust.edu.cn (Y.Z.); 23020401004@mail.hnust.edu.cn (S.Z.);
23010401019@mail.hnust.edu.cn (Y.L.)
* Correspondence: zg.chen@hnust.edu.cn

Abstract: Although the NSGA-III algorithm is able to find the global optimal solution and has a good
effect on the workshop scheduling optimization, the limitations in population diversity, convergence
ability and local optimal solutions make it not applicable to certain situations. Thus, an improved
NSGA-III workshop scheduling optimization algorithm is proposed in this work. It aims to address
these limitations of the NSGA-III algorithm in processing workshop scheduling optimization. To
solve the problem of individual elimination in the traditional NSGA-III algorithm, chaotic mapping
is introduced in the improved NSGA-III algorithm to generate new offspring individuals and add the
selected winning individuals to the offspring population as the parent population for the next iteration.
The proposed algorithm was applied to a pressure sensor calibration workshop. A comparison with
the traditional NSGA-III algorithm was conducted through a simulation analysis. The results show
that the proposed algorithm can obtain a better convergence performance, improve the optimization
ability and avoid falling into local optimal solutions.

Keywords: improved NSGA-III algorithm; chaotic mapping; scheduling optimization; pressure
sensor calibration workshop

1. Introduction

With the development of automatic control technology and advanced sensor technol-
ogy in manufacturing industry [1,2], effective production scheduling has become a key
point for the efficient operation of the manufacturing industry in recent year. Production
scheduling plays a key role in workshop management, as it may affect the execution of pro-
duction plans, the utilization of equipment and the flow of material. Thus, a well-devised
scheduling plan is essential for proficient workshop operations [3]. However, production
scheduling is a typical optimization problem with complexity, multiple objectives [4–6] and
constraints [7], which makes it difficult to obtain satisfactory performance by controlling the
efficiency, cost, resource utilization and performance with intelligent scheduling strategies.

To address the above-mentioned challenges, a number of algorithms and planning
models have been proposed to realize production scheduling. In [8], a decomposition-
based multi-objective artificial bee colony algorithm is proposed to deal with multi-objective
scheduling problems while considering stability and efficiency. Considering machine break-
downs and maintenance, particle swarm optimization was employed to deal with dynamic
issues for multi-agent systems in [9]. Deep reinforcement learning was introduced to deal
with scheduling problems for flexible job shops by taking completion time, energy conser-
vation and total costs into consideration [10,11]. In [12], a rescheduling method is proposed
for flexible job shops. It combines right-shift rescheduling and complete rescheduling to
manage unexpected machine failures. In addition, it establishes three stability indicators to
maintain consistency pre- and post-rescheduling. In [13], a backtracking search algorithm
with a crossover feature is proposed to improve the boost search capability and avoid

Electronics 2024, 13, 2844. https://doi.org/10.3390/electronics13142844 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13142844
https://doi.org/10.3390/electronics13142844
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1410-1449
https://doi.org/10.3390/electronics13142844
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13142844?type=check_update&version=1


Electronics 2024, 13, 2844 2 of 12

premature convergence in dynamic scheduling environments. In [14], a multi-objective
quantum-inspired seagull optimization algorithm was developed to optimize the conver-
gence and distribution of the solution. Furthermore, considering preventive maintenance
and transportation, it combines genetic algorithms and differential evolution to address
flexible job shop scheduling and augment the search effectiveness of genetic algorithms [15].
Compared with the above-mentioned algorithms, the NSGA (non-dominated sorting ge-
netic algorithm) has shown a better multi-objective optimization ability, as it maintains
diversity and balances the solution set through non-dominated sorting and crowding
distance measures, which makes it applicable for various optimization problems [16,17].

Therefore, extensive research has been conducted on numerous production scheduling
issues utilizing the NSGA. In [18], competitive mechanisms were employed in NSGA-II.
Furthermore, it utilized random mutation strategies and crossover methods tailored for
processes and machines to promote the generation of new populations. In [19], NSGA-
II was modified to address a low-carbon flexible job shop model, which demonstrates
rapid convergence to local optimal Pareto solutions. In [20], a fuzzy membership function
was introduced into NSGA-II for multi-objective optimization, which facilitates optimal
trade-off solutions from the Pareto front. In taking working overtime into consideration,
an improved NSGA-II is proposed for multi-objective job shop scheduling in [21]. In the
proposed algorithm, an adaptive mechanism was developed to sustain global convergence
stability and apply a local search process to enhance utilization. In [22], a combination of
automatically constructed parallel algorithms is employed to promote the optimization
performance of NSGA-II. Moreover, a detailed comparison of and NSGA-III is conducted
in [23], showing that the solution accuracy and solution distribution of NSGA-III are better
than those of NSGA-II. Thus, a modified NSGA-III that combines reinforcement learning
is proposed in [24]. It employs dual Q-learning with an improved ε-greedy strategy to
adaptively adjust the key parameters of NSGA-III. In [25], the limitation of the global search
capability of NSGA-III is addressed by introducing cooperative evolutionary algorithms. In
the proposed method, it utilizes the competition and cooperation among group members
to enhance the convergence and search capabilities. However, this results in a heavier
computation cost compared to using the traditional methods.

Motivated by the above discussion, an improved NSGA-III algorithm is proposed in
this work to realize production scheduling optimization for a pressure sensor calibration
workshop. In the proposed algorithm, a chaos mapping mechanism is introduced to
prevent the traditional NSGA-III algorithm from settling into local optima. Technically, it
combines and modifies genes in eliminated individuals and adds superior individuals to
the offspring population for subsequent iterations, which enriches population diversity
and mitigates the local optimum problem. The contributions of this work are summarized
as follows:

1. A chaos mapping mechanism is introduced into the NSGA-III framework to enrich
the parent population in subsequent generations.

2. The enhanced NSGA-III algorithm is applied to address the scheduling problem for
pressure sensor calibration workshops.

3. The proposed algorithm takes multiple objectives, machine switching time reduction,
total processing time minimization and excess product reduction into consideration
for instance simulation.

The remainder of this paper is structured as follows. In Section 2, the model of the
scheduling problem is presented. In Section 3, the proposed enhanced NSGA-III algorithm
is described in detail. The effectiveness of the proposed algorithm is analyzed in Section 4.
Conclusions and future work are given in Section 5.

2. Problem Description and Model Construction
2.1. Problem Description and Constraint Analysis

The problem of pressure sensor calibration production workshop scheduling can be
generally described as follows: there are a types of products, which are processed through
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the assembly line, and there are only b brackets in the assembly line for each round of
processing. Each bracket can install six products at most, or not install any products. The b
brackets correspond to b processing machines in the flow shop processing. Each processing
machine needs different processing times for different types of products, and the maximum
number of products processed per round is also different.

After analyzing the objective conditions and constraint conditions in the actual produc-
tion scheduling process, an ideal production model is established to achieve the industry
versatility of production scheduling. Workshop constraints and related assumptions are
given below:

1. Different products cannot be placed on the same trestle at the same time.
2. In this work, equipment failures are not considered. If the product is processed within

a given certain period of time, the process task is completed.
3. There exist some cases where a certain machine cannot process certain products; for

example, machine b1 cannot process product a1 or a2.
4. In considering the situation that neighboring machines are placed closely and the

sizes of products to be produced not being uniform, there exists a constraint such that
product a1 cannot be processed after product a2(a1, a2 ∈ a).

2.2. Description of Workshop Specific Production Problems

In the product-making process, let Cmax be the maximum completion time of the
entire schedule (the time required from the first workpiece to the last workpiece to finish
processing). And the shortest total processing time to process n products is defined as
min{Cmax}. Since the switching of processing machines and their trestles requires manual
adjustment, it is necessary to reduce switching times. Thus, the objective function min{D}
is established for minimizing the switching times. While satisfying the processing output,
the processing of surplus products is reduced as much as possible, and an objective function
for the surplus products is represented by the resource utilization rate max{R}.

min{Cmax} = min

(
max

m

∑
t=1

ci

)
(1)

min{D} = min

(
j

∑
j=1

K

∑
k=1

SWjk

)
(2)

max{R} = max

∑m
i=1 ∑K

k=1 Tik

∑J
j=1 Tj

 (3)

Here, ci represents the completion time of the i-th batch, SWjk is the number of product
changes in the k-th process on the j-th production line, Tik is the running time of the k-th
process in the i-th batch, and Tj is the j-th production line at the end of the production time.

3. Design of Improved NSGA-III Algorithm
3.1. Introduction of the Traditional NSGA-III Algorithm

In 1994, the NSGA algorithm was first proposed [26]. Subsequently, to address the
shortcomings of the NSGA algorithm, such as time complexity and the inability to quantify
shared parameters, the NSGA-II algorithm was proposed [27]. In NSGA-II, crowding
distance is used to select individuals at the same non-dominated level. Thus, to improve
the NSGA-II algorithm, NSGA-III adopts an individual selection method based on reference
points [28].

As shown in Figure 1, the operations of NSGA-III algorithm include population initial-
ization, reference point generation, calculating the fitness value of each individual in the
parent population, crossover and mutation to generate offspring from the population, calcu-
lating individual fitness values, combining the parent population and progeny population
and rapid combination for non-dominated sorting through the choice of a reference point
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operation with N better individual choices for the next generation of the population, as well
as judging whether the maximum number of iterations is satisfied. If the maximum number
of iterations is reached, the algorithm is terminated; if not, the quick non-dominated sorting
of the population is processed to produce offspring populations. The algorithm is repeated
according to the above steps.

Figure 1. Flowchart of traditional NSGA-III algorithm.

3.2. The Genetic Algorithm Based on Chaotic Non-Dominated Sorting

In order to avoid falling into the local optimal solution prematurely and make the off-
spring population diversified, the improved NSGA-III algorithm is proposed to chaotically
map the eliminated chromosome population to generate new individuals and select the
best offspring individuals from the new individuals.

In chaotic mapping, logistic mapping is used to describe the changes of the population,
as shown below:

Xn+1 = Xn × µ × (1 − Xn), µ ∈ [0, 4], X ∈ [0, 1] (4)

where µ is the logistic parameter, Xn is a parent chromosome, and Xn+1 is the new chromo-
some individual obtained through chaotic calculation.

In the improved NSGA-III algorithm, the eliminated chromosome population is chaot-
ically mapped to generate new individuals, and the superior offspring individuals are
selected from the new individuals. The process of the improved generation of new offspring
using chaotic maps for eliminated populations is shown in Figure 2.
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Figure 2. Improved NSGA-III algorithm principle based on chaotic mapping.

3.3. The Design Process of Improved NSGA-III Algorithm
3.3.1. Population Coding

In this work, the production information needs to be preprocessed. According to the
production characteristics, the types and numbers of products arranged in the flow shop
are taken as genes on the chromosomes. The chromosome model is given below:

Fa(T) =


T11 T12 · · · T1a
T21 T22 · · · T2a

...
...

...
Tb1 Tb2 · · · Tba


(b×a)

(5)

Gb(N) =


N11 N12 · · · N1a
N21 N22 · · · N2a

...
...

...
Nb1 Nb2 · · · Nba


(b×a)

(6)

where T represents the time, N represents the number of products, Tba represents the time
taken by the b-th pressure sensor to process type a products, and Nba represents the number
of the b-th pressure sensor processing type a products.

3.3.2. Population Initialization

In terms of the production scheduling of the pressure sensor calibration workshop, the
characteristics of diverse resource allocation and limited production capacity are considered.
In this work, a random generation method is used to generate the initial population to
ensure the diversity of the population. In this case, we can make sure that the generated
scheduling plan will not exceed the production capacity of the machines or workers.

3.3.3. Selection Operation

As for selection operation, it performs non-dominated sorting on the new population,
categorizing individuals within the population into different non-dominated levels based
on their performance in the objective space. Then, it uses reference point sorting for the
same non-dominated level, selects one or more representative reference points and sorts
individuals based on their distance or similarity to these reference points. In this case,
it not only ensures the diversity of the population but also increases the sharpness of
the population.
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3.3.4. Crossover Operation

Crossover operation refers to the pairwise pairing of selected parents, and the chromo-
somes of parents exchange genes in a certain way. According to the characteristics of actual
production problems, the multi-point crossover method is introduced to set two or more
crossover points in the chromosomes of parents and then perform partial gene exchange by
means of interval exchange, as shown in Figure 3.

Figure 3. Multi-point crossover.

3.3.5. Mutation Operation

In this study, the random mutation method is used to realize the mutation operation
as shown in Figure 4. This method replaces a parent population with the probability of
mutation and randomly assigns the value of a certain or several loci on its chromosome, or
it uniformly selects and replaces the genes in the range of the entire gene sequence within a
certain range gene value.

Figure 4. Schematic of uniform variation.

3.3.6. Chaotic Mapping

In this study, a chaos mapping method is utilized to generate a new population from
individuals that have been eliminated. The eliminated individuals are the inputs of the
chaos mapping. And new trait values are generated by the logistic mapping. These new
trait values are then employed to construct new individuals. The newly created individuals
are evaluated, and the superior ones are selected and incorporated into the population. An
example of the logistic mapping is presented in Figure 5.

Figure 5. An example of logistic chaotic mapping.

3.4. The Steps and Flowchart of the Improved NSGA-III Algorithm

The steps of the improved NSGA-III algorithm are expressed in detail below. And the
flow chart of the improved NSGA-III algorithm is shown in Figure 6.
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Figure 6. Flowchart of the improved NSGA-III algorithm.

Step 1: The basic parameters of the proposed algorithm include the population size N,
the number of iterations genmax and the preprocessing product parameters. The crossover
ratio is set as 0.9, and the mutation ratio is set as 0.1.

Step 2: The initial parent population of N individuals is generated, subject to the
constraints, and the number of population iterations is initialized as t = 1.

Step 3: According to the crossover and mutation ratio, the initial progeny population
of N individuals is obtained.

Step 4: Combine the initial parent population and the initial offspring population to
form a new population with 2N individuals.

Step 5: Perform a non-dominated ranking of the new group. If two individuals do not
dominate each other, they will be placed in the same non-dominated layer.

Step 6: The new population is constructed from the first non-dominated layer to
the Nth layer. The creation of partial-progeny individuals stops when the number of
partial-progeny individuals is equal to N or larger than N for the first time. The number of
individuals of some offspring is defined as St. If St is larger than N, the last non-dominated
layer is retained, and the individuals in the last non-dominated layer are eliminated based
on the target spatial reference point such that the number of individuals in some offspring
is equal to N.

In this step, N represents the number of populations, and the value is determined by
tuning parameters. Here, the traditional NSGA-III algorithm is used to solve the problem.
Through adjusting the parameters, it can be found that when N exceeds a certain threshold,
the final result remains unchanged. In order to ensure the running time of the program, the
smallest threshold is set as N.
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Step 7: A new population is generated through the chaotic mapping of the eliminated
2N − N = N individuals, and N1 is obtained by adjusting the parameters. This step aims
to adjust the parameters on the basis of determining the number N of the population. The
main adjustment parameter basis is the following: when the N1 value exceeds a certain
threshold, the winning individuals obtained by the screening remain unchanged). Winning
progeny individuals are selected from the new population.

Step 8: The N partial offspring individuals and the N1 superior offspring individuals
are combined to form a true-offspring population with N + N1 individuals, which is the
parent population for the next iteration. The obtained true-progeny population is sorted in
a non-dominated manner, and the set of individuals in the first non-dominated layer is the
optimal solution set obtained in this iteration.

Step 9: The algorithm ends when the maximum number of iterations of the population
is reached. If t < genmax, then t = t + 1; otherwise, it jumps out of the loop. In this way, it
can obtain the global optimal solution.

4. An Example of the Improved NSGA-III Algorithm

In this study, a simulation study was conducted using Python 3.7 on a computer with
a 2.20 GHz CPU and 8 G of memory. Actual workshop scheduling data of a company were
used for simulation analysis. In the simulation experiment, the convergence performances
of the traditional NSGA-III, the traditional NSGA-II and the improved NSGA-III algorithms
were compared. The hyperparameters were defined as follows: the number of populations
N, the number of winning individuals N1, the cross ratio 0.9, the mutation ratio 0.1 and the
maximum number of iterations 100. The reported value is the result after 100 iterations,
and the result remained the same for each test. In Figure 7, (a), (d) and (h) represent the
convergence performance of objective function 1 (given in Equation (1)), objective function
2 (given in Equation (2)) and objective function 3 (given in Equation (3)) with the traditional
NSGA-III algorithm, respectively; (b), (e) and (g) represent the convergence performance of
objective function 1, objective function 2 and objective function 3 with traditional NSGA-II
algorithm, respectively; (c), (f) and (i) represent the convergence performance of objective
function 1, objective function 2 and objective function 3 with the improved NSGA-III
algorithm based on the chaotic mapping, respectively.

It can be seen from Figure 7 that with the traditional NSGA-III algorithm, objective
function 1 converges to 1 at 16 iterations, objective function 2 converges to 700 at about
5 iterations, and objective function 3 converges to 33 at about 11 iterations. With the
traditional NSGA-II algorithm, objective function 1 converges to 1 at about 1 iteration,
objective function 2 converges to 700 at about 4 iterations, and objective function 3 converges
to 33 at about 10 iterations. With the improved genetic algorithm, objective function
1 converges to 1 at about 10 iterations, objective function 2 converges to 663 at about
90 iterations, and objective function 3 converges to 24 at about 39 iterations. From the above
observations, it can be concluded that with the improved NSGA-III algorithm, objective
function 1 converges to 1, objective function 2 converges to 663, and objective function 3
converges to 24. This indicates that the proposed method yields the shortest processing
time, the fewest transitions, and the minimum number of excess product processings. This
implies that the proposed method meets the optimization requirements under different
objectives and provides better optimization results than other methods.
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(a) NSGA-III (b) NSGA-II (c) Improved NSGA-III

(d) NSGA-IIII (e) NSGA-II (f) Improved NSGA-III

(g) NSGA-III (h) NSGA-II (i) Improved NSGA-III

Figure 7. Convergence performances of the algorithms.

In the simulation experiment, the chaotic mapping was used for the eliminated pop-
ulation to obtain a new population, and the winning population selected from the new
population was merged into the offspring population and regarded as the parent pop-
ulation for the next iteration. This requires the consideration of whether the winning
group obtained by the chaotic mapping is better than the offspring population. Thus, the
difference between the optimal fitness of the winning group and the optimal fitness in the
offspring population is defined as the contribution of the winning group. The result is
shown in Figure 8, where (a) represents optimal objective function 1 in the winning group
minus optimal objective function 1 in the offspring population; (b) represents optimal ob-
jective function 2 in the winning group minus optimal objective function 2 in the offspring
population; (c) represents optimal objective function 3 in the winning group minus optimal
objective function 3 in the offspring population.

(a) Objective function 1 (b) Objective function 2 (c) Objective function 3

Figure 8. Contribution of the winning group.
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The winning offspring individuals obtained through screening the eliminated popula-
tion through chaotic mapping are illustrated in Figure 8. It can be seen that the winning
population can contribute better solutions to a single objective function in most iterations.
It can be concluded that the improved NSGA-III algorithm based on chaotic mapping
provides more individuals to obtain the global optimal solution. In this way, it ensures the
diversity of the offspring population during the convergence process and the avoidance of
falling into the local optimal solution.

To obtain clear insight on the changing trend of the optimal solution in the convergence
process of the algorithm, the optimal solution was recorded every 20 iterations in the process
of 100 iterations. In Figure 9, the optimal solution of the traditional NSGA-III, NSGA-II
and the improved NSGA-III algorithms in the convergence process are shown in (a), (b)
and (c), respectively.

(a) NSGA-III

(b) NSGA-II

(c) Improved NSGA-III

Figure 9. The optimal solutions.
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It can be seen from Figure 9 that the improved NSGA-III algorithm can obtain more
optimal solutions and distribute more evenly in the target space, compared with the other
two algorithms. Note that the traditional NSGA-III and NSGA-II iterative algorithms tend
to fall into the local optimal solution prematurely in the iterative process. Furthermore, the
solutions of the improved NSGA-III algorithm show more obvious stratification between
different iterations than the other two algorithms. Meanwhile, the distribution of solutions
in the target space is more uniform. And the obtained solutions are better than those
of other two algorithms. Therefore, it can be concluded that the improved NSGA-III
algorithm proposed in this work can achieve satisfactory performance in the field of
production scheduling.

5. Conclusions

In this paper, the NSGA-III algorithm and its application in the production scheduling
of a pressure sensor calibration workshop is studied. In considering the limitations of the
traditional NSGA-III algorithm, the superior offspring individuals were selected through
the chaotic mapping of the eliminated population in this work. In this way, the quality of
the population is improved, and the diversity of the population is ensured. Meanwhile, this
avoids the problem that the traditional NSGA-III algorithm may fall into the local optimal
solution. The simulation results show that the improved NSGA-III algorithm can achieve
better performances in convergence and the diversity of the population than the traditional
algorithms. Furthermore, it can reduce production costs and improve production efficiency
in the actual scheduling process.

Although the improved NSGA-III algorithm proposed in this work is a good solution
to the problem of easily falling into local optimal solutions, its scheduling results still
need further improvement for large-scale production scheduling problems and more
target optimization problems. Thus, parallel computing technologies may be employed
to accelerate the execution speed of the algorithm and enhance its capability to handle
large-scale problems in our future work. Furthermore, it is also worthy to explore the
application of chaos mapping in other evolutionary algorithms.
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