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Abstract: Pneumonia has long been a significant concern in global public health. With the advance-
ment of convolutional neural networks (CNNs), new technological methods have emerged to address
this challenge. However, the application of CNNs to pneumonia diagnosis still faces several critical
issues. First, the datasets used for training models often suffer from insufficient sample sizes and im-
balanced class distributions, leading to reduced classification performance. Second, although CNNs
can automatically extract features and make decisions from complex image data, their interpretability
is relatively poor, limiting their widespread use in clinical diagnosis to some extent. To address these
issues, a novel weighted cross-entropy loss function is proposed, which calculates weights via an
inverse proportion exponential function to handle data imbalance more efficiently. Additionally, we
employ a transfer learning approach that combines pretrained CNN model parameter fine-tuning
to improve classification performance. Finally, we introduce the gradient-weighted class activation
mapping method to enhance the interpretability of the model’s decisions by visualizing the image
regions of focus. The experimental results indicate that our proposed approach significantly enhances
CNN performance in pneumonia diagnosis tasks. Among the four selected models, the accuracy
rates improved to over 90%, and visualized results were provided.

Keywords: pneumonia diagnosis; convolutional neural network; cross-entropy

1. Introduction

Pneumonia is a common infectious disease that affects the respiratory system and
poses a significant threat to humanity. The outbreak of the novel coronavirus (COVID-19)
in 2019 has further heightened global awareness of the dangers posed by pneumonia [1].
Traditionally, pneumonia diagnosis has relied primarily on the observation and judgment of
medical experts. However, this diagnostic approach is both time-consuming and susceptible
to subjective factors, increasing the risk of misdiagnosis. Moreover, this method demands
substantial medical human resources, limiting its feasibility for widespread application [2].

In recent years, with the rapid advancement of machine learning and deep learning
technologies, these techniques have become crucial in many areas of modern society. From
web search and social network content filtering to recommendation systems on e-commerce
websites [3,4], their applications in consumer products such as cameras and smartphones
have also become increasingly widespread [5]. Additionally, deep learning has been
applied in the industrial sector to assist with anomaly detection [6] and fault diagnosis [7,8].
Machine learning systems are used to identify objects in images; transcribe speech to text;
match news, posts, or products to user interests; and select relevant search results [9,10].
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Notably, computer vision technology has demonstrated significant advantages in image
recognition and analysis [11], and convolutional neural networks (CNNs) have emerged as
a prominent technology in medical imaging [12]. The success of CNNs in image recognition
has provided new insights and methods for medical image analysis, making the use of
CNNs for pneumonia image diagnosis a popular research topic [13,14].

This study aims to increase the automation and accuracy of pneumonia diagnosis
through the application of CNNs, thereby reducing the reliance on medical human re-
sources and improving diagnostic efficiency. This is of significant practical importance
for alleviating the burden on healthcare systems and enhancing pneumonia treatment
outcomes. However, despite the substantial potential of CNNs in image recognition, their
application in medical image diagnosis still faces challenges related to data imbalance and
insufficient model interpretability [15,16]. To address these issues, this study proposes a
weighted cross-entropy loss function based on an inverse proportional exponential func-
tion (IPEF) to address the imbalanced dataset problem. Additionally, we employ transfer
learning (TL) techniques to optimize pretrained models, thereby enhancing their perfor-
mance in pneumonia diagnosis tasks. To improve model interpretability, we introduce
gradient-weighted class activation mapping (Grad-CAM) technology [17], which provides
more reliable clinical decision support. The experimental results demonstrate that the
methods proposed in this study effectively improve pneumonia diagnosis accuracy and
model interpretability. This offers new research perspectives for medical image analysis
and provides accurate and reliable support for future clinical applications.

In summary, the main innovations and contributions of this study are as follows: (a) A
novel weighted cross-entropy loss function is proposed, which calculates weights via an
IPEF to address the issue of imbalanced datasets more effectively. (b) This study adopts
a TL approach, incorporating pretrained CNN model parameter fine-tuning to enhance
classification performance. (c) By introducing the Grad-CAM method, this study achieves
visualization of the regions in the images that the model focuses on, thereby enhancing the
interpretability of CNN model decisions.

The remainder of this paper is structured as follows: Section 2 reviews related work
pertinent to this study. Section 3 provides a detailed description of the CNN architecture, TL,
and weighted cross-entropy loss function. Section 4 elaborates on the dataset, experimental
setup, evaluation metrics, and analysis of the experimental results. Finally, Section 5 offers
conclusions and directions for future work.

2. Related Work

In the early stages of medical image processing, basic techniques such as thresholding,
region growing, and edge tracking were primarily used. While these methods remain
effective in general cases, their performance is often limited when handling complex
medical images [18]. With the increase in computational power and the emergence of big
data, machine learning has entered a new phase. In this phase, statistical learning and
neural networks have attracted increasing attention, leading to the development of various
models that have been successfully applied across different fields [19–24].

Since Vapnik and others proposed the support vector machine (SVM) in 1963, it has be-
come a powerful tool for pattern recognition and classification problems [25]. For example,
Osareh et al. developed an automated system based on gene microarray data for robust
and reliable cancer diagnosis [26]. Through carefully designed feature extraction methods,
this system effectively distinguishes between malignant and benign tumors. Additionally,
Yahyaoui et al. proposed a decision support system based on SVM and adaptive SVM
algorithms to address chest disease diagnosis [27]. This system can be used to diagnose
pneumonia and accurately classify chronic obstructive pulmonary disease, significantly im-
proving diagnostic accuracy. Despite the good performance of SVM-based medical image
classification systems in specific applications, they face several challenges. First, training
an SVM involves solving a large quadratic programming problem, with computational
complexity and memory requirements proportional to the square of the number of training



Electronics 2024, 13, 2929 3 of 21

samples. This makes the training process extremely slow and sometimes infeasible with
limited computational resources when dealing with large datasets. Second, the kernel
function choice is crucial for SVM performance, but tuning and selecting appropriate kernel
parameters for large datasets is a complex and time-consuming process. Additionally,
traditional SVM optimization algorithms, such as sequential minimal optimization, may
not be efficient for large-scale datasets. Although some optimized variants exist, these often
require trade-offs between accuracy and computational efficiency [28].

In 2001, Breiman first introduced the random forest algorithm [29], an ensemble
learning method composed of multiple decision trees. The output of a random forest is
a combination of the outputs from each individual tree. In medical image classification,
random forests are favored by researchers because of their excellent classification perfor-
mance, ability to handle high-dimensional data, and robustness to noise in the training
data. For example, Anthimopoulos et al. proposed a random-forest-based scheme for
classifying interstitial lung disease patterns in high-resolution CT images [30]. Their results
demonstrated the effectiveness of the method in handling complex medical image data.
Additionally, Bhattacharjee et al. introduced a hybrid approach that combines an optimized
random forest classifier with a K-means visualization algorithm for lung cancer diagno-
sis [31], significantly improving classification performance and diagnostic accuracy. Despite
the various advantages of the random forest algorithm in medical image classification, there
are several drawbacks. First, the interpretability of random forest models is relatively poor.
Since the model comprises multiple decision trees, the overall decision-making process
is not as straightforward or easily understandable as that of a single decision tree. In the
medical field, model interpretability is especially crucial, as doctors and clinical practi-
tioners must clearly understand how the model makes its predictions. Second, random
forests have numerous hyperparameters that must be tuned, such as the number and depth
of the trees and the minimum number of samples required for a node split. Finding the
optimal combination of parameters often requires extensive time for experimentation and
cross-validation.

The introduction of CNNs has marked a new era in medical image classification.
CNN technology has been widely applied in medical image classification related to lung
diseases. In 2017, Esteva et al. utilized CNNs to classify skin cancer [32], developing
a deep CNN model to identify various skin lesions, including malignant melanomas
and benign nevi. They trained the model on a large dataset of skin images, employed
the pretrained GoogLeNet Inception v3 architecture, and trained it on a dataset of over
120,000 images representing more than 2000 different diseases. The study results indicated
that the performance of the model in multiclass classification tasks was competitive with
that of 21 experienced dermatologists. Rajpurkar et al. developed the CheXNet model [33],
a deep-learning-based CNN model designed to analyze chest X-ray images for pneumonia
detection. CheXNet is based on the DenseNet121 architecture, which improves feature
utilization efficiency and reduces model parameters through its dense connectivity. The
model was trained on the ChestX-ray14 dataset, which contains over 100,000 X-ray images
labeled with 14 different chest diseases. By learning from a large quantity of labeled data,
CheXNet successfully mastered the complex visual patterns necessary to distinguish pneu-
monia from other chest diseases. The performance of CheXNet in identifying pneumonia
even surpassed the average level of radiologists, demonstrating the powerful potential of
CNNs in medical image classification and emphasizing the significant value of deep learn-
ing technologies in assisting medical diagnosis. Despite the exceptional performance of
CNNs in medical image classification, several challenges remain in their application [34,35].
For example, CNNs are highly dependent on large quantities of labeled data. However,
acquiring sufficient and balanced data is often challenging, which can lead to suboptimal
performance of the trained CNN models. Additionally, CNN models are typically consid-
ered “black box” models, with a lack of transparency in their decision-making processes.
This opacity can be problematic in medical decisions that require high interpretability.
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3. Methodology

In this section, we focus on explaining the methods and related theories proposed
in this study, including classical CNN models, the proposed weighted cross-entropy loss
function, TL, and Grad-CAM visualization technology.

3.1. Convolutional Neural Network

CNNs are a class of feedforward neural networks that include convolutional compu-
tations and have a deep architecture. They are among the representative algorithms in
the field of deep learning. CNNs have been widely applied in image processing and com-
puter vision, particularly in tasks such as object detection, image classification, and image
segmentation. Their primary feature is the ability to automatically and adaptively learn
local features of images and to combine and abstract these local features into higher-level
global features. The basic structure of a CNN includes an input layer, convolutional layers,
activation layers, pooling layers, and fully connected layers.

3.1.1. Input Layer

In a CNN, the input layer is responsible for receiving raw data and passing them on
to subsequent layers. The CNN input layer typically represents images or other multidi-
mensional data. The number of nodes in the input layer is determined by the dimensions
of the input data. For example, each pixel in an RGB image may have three channels (red,
green, blue), so the number of nodes in the input layer is the number of pixels in the image
multiplied by the number of channels. Specifically, the input layer passes the raw data to
the neural network in the form of matrices or tensors. In image recognition tasks, the input
layer receives image pixel values. Data preprocessing is usually required before the input
layer. For image data, these preprocessing steps include scaling, normalization, or other
image enhancement techniques. The input layer acts as a bridge in CNNs, connecting the
raw data to the subsequent feature extraction process and ensuring that the data can be
efficiently processed and learned.

3.1.2. Convolution Layer

The convolutional layer is one of the core CNN components; it is used to process
images and multidimensional data. The convolutional layer extracts features from the input
data through the convolution operation, enabling the network to capture spatial structures
and patterns effectively. This is achieved by applying filters that slide over the input data,
performing local perception. Each convolutional kernel learns different features, such as
edges, textures, or higher-level features. The convolution kernel slides over the input data,
performing convolution operations at each position to generate an output. Multiple feature
maps can be formed via multiple convolutional kernels, each corresponding to the features
learned by one convolutional kernel. The stride of the convolution kernel determines the
step size at which the kernel moves over the input data. Additionally, padding is used to
maintain consistent dimensions between the input and output and to prevent information
loss at the edges. A larger stride can reduce the size of the output feature map and improve
computational efficiency but may result in some information loss. For example, assume
that the input is a 5 × 5 matrix, with padding set to 1 and stride set to 2. The process of a
single convolutional kernel performing convolution on this input is illustrated in Figure 1.



Electronics 2024, 13, 2929 5 of 21

0 0 0 0 0 0 0

0 1 0 2 2 2 0

0 1 2 1 2 2 0

0 1 1 1 2 2 0

0 2 0 2 2 2 0

0 1 0 0 2 1 0

0 0 0 0 0 0 0

0 1 0

1 -1 1

-1 -1 -1

× -1=

Input
（7×7×1）

Filter
(3×3×1)

Output
(3×3×1)

Figure 1. Convolutional layer.

3.1.3. Activation Layer

In a CNN, the activation layer is a crucial component. Its primary role is to introduce
nonlinearity, allowing the neural network to fit and solve complex problems better. The
activation layer typically follows the convolutional layer and applies a nonlinear function,
known as the activation function, to the output of the convolutional layer. This function
maps the input from the neurons to the output. Common activation functions include
the sigmoid function, rectified linear unit (ReLU) function, and hyperbolic tangent (tanh)
function.

• The sigmoid activation function is a commonly used function in neural networks.
The mathematical expression of the sigmoid function is shown in Equation (1). The
most notable characteristic of the sigmoid function is that its output is bounded and
lies between 0 and 1. This makes it particularly important in the output layer when
dealing with binary classification problems. Additionally, the sigmoid function is
continuously differentiable, which is a crucial property for optimization algorithms
such as gradient descent.

F(x) =
1

1 + e−x . (1)

• The ReLU activation function is a simple yet effective nonlinear function; its mathe-
matical expression is shown in Equation (2). The ReLU function remains linear for
positive values and outputs zero for negative values. This nonlinear transformation
helps introduce nonlinear characteristics into the network, enabling it to learn more
complex functional relationships.

ReLU(x) = max(0, x). (2)

• The mathematical expression of the tanh activation function is shown in Equation (3).
It maps any real number to the range (−1, 1). The advantage of the tanh function is
that its output is centered at approximately 0, which often results in a faster learning
process. However, similar to the sigmoid function, the gradient of the tanh function
approaches 0 when the input values are large or small. This can lead to the vanishing
gradient problem, making it difficult for the neural network to learn and update its
weights.

tanh(x) =
ex − e−x

ex + e−x . (3)
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3.1.4. Pooling Layer

The pooling layer effectively improves the computational efficiency of the model
and makes it more robust to positional changes by reducing the data dimensions and the
number of parameters. Pooling operations aggregate the local regions of the input data,
reducing the spatial dimensions of the data. Max and average pooling are two common
pooling operations, as illustrated in Figure 2. Max pooling selects the maximum value
from the local region of each pooling window as the output. This helps retain the most
significant features in the image or feature map. Average pooling takes the average value
of the local region within each pooling window as the output. It smooths the input data
and reduces the sensitivity to local noise.

1 0 2 3

5 6 7 8

1 2 8 7

7 6 8 9

6 8

7 9

3 5

4 8

Max Pooling

Average Pooling

Figure 2. Feature pooling operation in the same color.

3.1.5. Fully Connected Layer

The fully connected layer is typically placed at the end of the network and is respon-
sible for integrating the features extracted by the previous layers to produce the final
prediction. The working principle of the fully connected layer is straightforward: each
neuron is connected to all the neurons in the preceding layer. It performs a weighted sum
of the outputs from the neurons of the previous layer, adds a bias term, and then passes the
result through an activation function to produce the output. This process essentially learns
the global relationships between the input features. This contrasts with the local focus of
the convolutional and pooling layers; the introduction of fully connected layers enables
the neural network to perform higher-level pattern recognition by learning global features.
In a CNN, the convolutional and pooling layers primarily learn local features from the
input, whereas the fully connected layer integrates these local features to produce the final
prediction. This hierarchical structure allows CNNs to better capture the hierarchical and
abstract representations of features when processing complex input data.

3.2. Loss Function

The loss function is used to measure the difference between the model output and the
true labels. Its purpose is to optimize the model parameters by minimizing the loss function
and improving the fit of the model to the training data and its performance on unseen
data. The choice of loss function is crucial for the performance and training outcomes
of the model. Cross-entropy loss is commonly used in image segmentation tasks. For
imbalanced image classification, we propose the use of a weighted cross-entropy that is
calculated via an inverse proportion exponential function to perform an auxiliary diagnosis
of pneumonia.
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Improved Weighted Cross-Entropy

The cross-entropy loss function is employed to measure the difference between the
predicted probability distribution of the model and the true probability distribution. For bi-
nary classification problems, the mathematical expression of the cross-entropy loss function
is shown in Equation (4).

L =
1
N ∑

i
Li =

1
N ∑

i
−[yi · log(pi) + (1 − yi) log(1 − pi)], (4)

where yi represents the true label of sample i and pi represents the probability that sample
i is predicted as the positive class. For multiclass classification problems, the formula is
defined as follows.

L =
1
N ∑

i
Li = − 1

N ∑
i

M

∑
c=1

yic log(pic), (5)

where M represents the number of different classes in the samples. yic denotes the true
class of sample i, and pic represents the predicted probability of belonging to class c. In
practical applications, we often encounter the data imbalance problem, where the number
of samples in some classes significantly exceeds that in others. In such scenarios, the use of
a conventional cross-entropy loss function may cause the model to focus excessively on
classes with more samples while neglecting those with fewer samples. This occurs because
the model aims to minimize the total loss during training, and the total loss is the sum of
losses for all samples. Consequently, classes with more samples have a greater influence on
the total loss. To address data imbalance, we introduce the weighted cross-entropy loss
function. By applying weights to different classes, we can adjust the loss function to a
weighted form. A binary classification problem is defined as follows:

L =
1
N ∑

i
Li =

1
N ∑

i
−[w1 · yi log(pi) + w2 · (1 − yi) log(1 − pi)], (6)

where the weights w1 and w2 are the weights for the two classes in the binary classification
problem. For multiclass classification problems, the formula for the weighted cross-entropy
loss function is as follows:

L =
1
N ∑

i
Li = − 1

N ∑
i

M

∑
c=1

wc · yic log(pic), (7)

where wc is the weight assigned to the c-th class in the multiclass classification problem.
Introducing weighted cross-entropy loss and setting appropriate weights helps address
data imbalance. However, determining the optimal weights has always been challenging
for researchers. To address this problem, we propose a method to calculate the weights in
the weighted cross-entropy loss function via an IPEF. The calculation formula is as follows:

wc = bias + (1 − bias) · e−α·sizec , (8)

where bias is a bias term used to prevent the weights of high-frequency classes from
dropping to zero. The calculation method for the parameter α is defined as follows:

α =
base
size

, (9)

where base is the decay rate of the function, which affects the shape of the curve. The
function curve tends to become concave as base increases; conversely, as base decreases,
the curve becomes increasingly smooth. size represents the total number of samples in
the entire dataset. We can dynamically adjust the weights for imbalanced data scenarios
via the IPEF, thereby effectively improving the classification performance of the model on
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imbalanced data. Figure 3 shows that the function maintains its basic shape across various
data scales for different parameters, demonstrating good generalizability.
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Figure 3. Inverse proportional exponential function with different parameters.

3.3. Transfer Learning

TL, a significant paradigm in machine learning, enables models to apply knowledge
from one domain to other related, but different, domains. This concept is inspired by the
way in which humans learn. We can shorten the model training time, reduce the need for
large amounts of labeled data, and enhance the robustness of the model when the data
distribution changes by transferring knowledge learned from one task. There are four main
approaches to TL: sample-based, model-based, feature-based, and relation-based transfer.
TL is widely applied in tasks such as visual object recognition [36], text classification [37],
and speech recognition [38]. In computer vision, pretrained CNNs can be used on new
image datasets.

TL addresses the issue of small sample datasets by performing similarity matching
between source data and target domain data. Once the conditions are met, the transfer
operation is completed. During the matching process, to reduce the distribution difference
between the source dataset and the target domain dataset, the maximum mean discrepancy
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(MMD) is used primarily to measure the distribution distance between samples. It is
defined as follows:

MMD(A, B) =

∥∥∥∥∥ 1
m

m

∑
i=1

H(ai)−
1
n

n

∑
j=1

H
(
bj
)∥∥∥∥∥

2

, (10)

where ai and bj are two samples, m and n denote the sample sizes, and H is a function
that maps the original variables into the reproducing kernel Hilbert space. If the MMD is
sufficiently small, the distributions are considered approximately the same. Conversely, if
the MMD is large, there is a significant distribution difference between the two. Through
the fine-tuning method, models can quickly learn fine-grained features specific to the
task [39]. In natural language processing, TL allows large language models such as GPT
and bidirectional encoder representations from transformers (BERT) to perform well on
specific downstream tasks [40]. In machine learning, TL also plays a role in improving
learning efficiency and performance in situations where data are scarce [41].

3.4. Grad-CAM

In deep learning, interpretability and visualization techniques are crucial for under-
standing the decision-making process of models. Grad-CAM is a widely used visualization
technique for convolutional neural networks. It generates heatmaps to highlight the salient
regions in the input image that are important for predicting a specific class, thereby pro-
viding an intuitive explanation of the decision process of the model [42]. The basic idea of
Grad-CAM is to use the gradient information of the predicted class to compute weights and
generate the corresponding class activation map. Specifically, Grad-CAM first calculates the
gradient of the target class with respect to the feature maps of the last convolutional layer
through backpropagation. Then, by performing global average pooling on these gradients,
the weights for each feature map are obtained. Finally, these weights are used to compute
a weighted sum of the feature maps, followed by applying the ReLU activation function
to generate a heatmap of the same size as the input image. The detailed implementation
process is shown in Figure 4.

c

ReLU

W₁ W₂ W₃ W₄

Σ

Rectified Conv
Feature Maps

FC Layers

Pneumonia
Input

Grad-CAM

…

Backprop till Conv

y

CNN

Figure 4. The detailed implementation process of Grad-CAM (Different colors correspond to different
weights).
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Grad-CAM helps researchers understand and interpret the CNN decision-making
process and serves as a diagnostic tool to identify potential issues and weaknesses in the
specific decisions of the model. For instance, in medical image analysis, Grad-CAM can
assist doctors in locating and interpreting lesion areas, increasing trust in AI diagnostic
results [43]. Through these analyses and visualizations, we can gain a deeper understanding
of the behavior of the model, ensuring interpretability and reliability in clinical applications.
This, in turn, enhances the effectiveness of AI models in actual medical diagnostics.

4. Experimental Studies
4.1. Dataset Description and Processing

The dataset used in this experiment was the COVID-19 radiography database [43,44].
This dataset was created by a team of researchers from Qatar University and Dhaka
University in Bangladesh, along with collaborators and doctors from Pakistan and Malaysia.
The dataset contains chest X-ray images (CXRs) of COVID-19-positive patients, normal
lungs, and other pneumonia infections. The dataset was released in stages: the first version
included 219 COVID-19 images, 1341 normal images, and 1345 viral pneumonia CXR
images. In the first update, the number of images in the COVID-19 category increased
to 1200. In the second version, the database was expanded to 3616 COVID-19-positive
cases, 10,192 normal cases, 6012 non-COVID-19 lung infection (lung opacity) cases, and
1345 pneumonia images. The detailed distribution of each dataset is shown in Table 1.

Table 1. Detailed distribution of the dataset.

Training Set Validation Set Test Set Total

COVID-19 2351 555 710 3616
Lung opacity 3915 937 1160 6012

Normal 6478 1160 2071 10,192
Pneumonia 801 252 292 1345

To process the aforementioned dataset, we employed a series of data augmentation
techniques to increase the quality of the training data and optimize model performance.
These techniques have been proven by various studies to effectively improve the general-
ization ability and accuracy of models. The specific steps are as follows:

• Resizing: Random size cropping is performed on the images, followed by resizing
them to 224 × 224 pixels. This provides a consistent data foundation and enhances the
robustness of the model to different perspectives and scales through the randomness
of cropping (see Figure 5a). Random cropping is a basic data augmentation method
that has been widely used [45].

• Rotation and translation: Random rotation and translation are applied to simulate
changes in shooting angles in real-world scenarios, improving the applicability and
accuracy of the model (see Figure 5b,c). Studies have shown that random rotation and
translation significantly enhance the performance of the model in handling data with
different shooting angles [46].

• CLAHE image enhancement: Contrast-limited adaptive histogram equalization
(CLAHE) is used to improve image contrast, which is particularly suitable for CXR
images, significantly enhancing image quality and better supporting model train-
ing (see Figure 5d). This method has been widely validated as effective in medical
imaging [47].

• Data normalization: The three channels of the RGB images were normalized to mean
values of 0.485, 0.456, and 0.406 and standard deviations of 0.229, 0.224, and 0.225.
These parameters are considered effective normalization parameters in deep learning
practice. Each channel of the data is normalized via these parameters, as expressed in
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Equation (6). Equation (11), ensures a uniform distribution of the data, promoting the
stability of neural network training [48].

Channelnormalized =
Channeloriginal − mean

std
. (11)

(a)‘Randomly resize cropped (b) Randomly rotated (c) Randomly translated (d) CLAHE enhanced

Figure 5. Image augmentation.

4.2. Experimental Setup and Parameter Settings

All algorithms in this study were implemented via Python. All the experiments were
conducted on a personal PC with the following configuration: 13th Gen Intel(R) Core(TM)
i7-13770F, 2.10 GHz CPU, and 32 GB of RAM. An NVIDIA GeForce RTX 4060 laptop
GPU was used as the graphics accelerator. The software environment for running the
experiments was PyTorch 2.1.

To conduct a more detailed and comprehensive validation of the performance of our
method across different models and perform a comparative analysis, we selected four
classic models with varying parameter sizes: AlexNet [49], VGG16 [50], GoogLeNet [51],
and ResNet18 [52]. These models have a significant influence on deep learning, and each
possesses unique structures and advantages, providing a multidimensional performance
evaluation for our study:

• AlexNet is a milestone in deep learning, and its major contribution lies in achieving
exceptional classification performance on the ImageNet dataset through a deep convo-
lutional neural network. The core structure of AlexNet includes five convolutional
layers and three fully connected layers. It introduces the ReLU activation function
to accelerate training and uses dropout techniques to prevent overfitting. Addition-
ally, AlexNet was the first model to use GPUs for large-scale parallel computing,
significantly increasing the training speed.

• VGG16 increases network depth by using multiple stacked 3 × 3 small convolutional
kernels to extract high-level feature representations. VGG16 consists of 13 convolu-
tional layers and three fully connected layers. Although the deeper structure increased
the computational load, it demonstrated excellent performance on the ImageNet
dataset. Its simple and uniform design makes it easy to transfer to other visual tasks.

• GoogLeNet (Inception V1) maintains relatively low computational complexity while
capturing multiscale information through the inception module. The inception module
fuses features of different scales through parallel convolution and pooling operations,
better representing both local and global information in images. GoogLeNet has
shown high efficiency and superior image classification performance across various
computational platforms.

• ResNet18 is a member of the residual network family with 18 layers. Its core idea is
to address the vanishing gradient and degradation problems in deep networks by
introducing residual blocks. Residual blocks use skip connections to pass informa-
tion directly between layers, ensuring effective gradient propagation. This makes it
possible to train very deep networks.
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We made corresponding adjustments to the structures of the aforementioned four
models to accommodate the experimental requirements better. We replaced their original
final fully connected layer (FC1000) with a fully connected layer (FC4) that matches the
four-class classification requirement. This adjustment makes the models more suitable
for data classification needs and provides a more accurate performance evaluation while
preserving the model features. During training, we set the hyperparameters as follows:
(a) The number of epochs was set to 30. The selection of 30 epochs ensured that the
models had sufficient learning time on the dataset. (b) The batch size was set to 16, which
helps balance computational efficiency and memory usage, making the training process
more stable and efficient. (c) The initial learning rate was set to 0.01, with a decay to 50%
of the original value every 5 epochs. This helps achieve rapid convergence in the early
stages while fine-tuning the model parameters in later stages, thereby improving the final
model accuracy.

For the parameter settings in the IPEF used to calculate the weights in the weighted
cross-entropy loss function, we set the base to 6. This value adjusts the size of α, adapting
the calculated weights to the differences in the class distribution of the dataset. When the
base value is larger, the value of α is relatively smaller, and the rate of change in weights
with class size is slower, preventing drastic changes in weights. This ensures that the model
trains more smoothly and stably when handling different class samples. The bias was set
to 0.1 to ensure that even if the number of samples in a particular class sizec was zero or
very small, the minimum weight wc remained near 0.1. This avoided making the classifier
overly sensitive to small sample classes while ignoring larger sample classes.

4.3. Evaluation Metrics

A confusion matrix is a summary tool that presents prediction results in tabular format.
As Figure 6 shows, TP (true positive) and TN (true negative) denote the number of samples
correctly predicted as positive and negative classes, respectively, and FP (false positive)
and FN (false negative) represent the number of samples incorrectly predicted as positive
and negative classes, respectively. It details the prediction accuracy for each class. This
visual representation allows us to clearly identify the misclassifications made by the model,
specifically which classes are easily misidentified as other classes by the model. This tool is
crucial for analyzing and improving the classification performance of the model.

TP FP

FN TN

Positive Negative

Po
si
tiv
e

N
eg
at
iv
e

Actual

Pr
ed
ic
te
d

Figure 6. Confusion matrix.
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For classification problems, the accuracy based on the confusion matrix can be defined
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (12)

The receiver operating characteristic (ROC) curve is used to demonstrate the perfor-
mance of a classifier under various classification threshold conditions. The true positive
rate (TPR) and false positive rate (FPR) are calculated as shown in Equations (13) and (14).
By plotting the relationship between the TPR and FPR at different thresholds, the ROC
curve effectively evaluates and compares the performances of different classifiers.

TPR =
TP

TP + FP
, (13)

FPR =
FP

FP + TN
, (14)

where TP, TN, FP, and FN represent the number of samples predicted by the model. An
efficient classifier can accurately identify all positive and negative cases, maximizing the
TPR while minimizing the FPR, thereby demonstrating its strong classification capability
and high prediction accuracy.

The area under the curve (AUC) represents the area under the ROC curve and ranges
from 0 to 1. A higher AUC indicates better classifier performance. Therefore, the AUC
reflects the ability of the classifier to distinguish between positive and negative cases.
A higher AUC typically indicates that the model has better classification performance,
providing more accurate positive predictions and correctly rejecting negative cases. In
practice, the AUC is widely used as a simple and robust performance evaluation metric to
compare different classifiers and select the optimal model.

4.4. Performance Comparison

To verify the effectiveness and reliability of our proposed IPEWF, as well as to as-
sess the impact of incorporating TL on model performance, we divided the comparative
experiments into two parts. The first part involves a performance evaluation analysis of
the four CNN models via the traditional loss function and the IPEWF. The second part
discusses and evaluates whether the performance of the CNNs can be further improved by
combining the TL with the IPEWF.

4.4.1. Performance Comparison on Improved Cross-Entropy Loss Function

In this section, we select the four models described in Section 4.2 for comparative
experiments. We conducted a comparative analysis between models using the conventional
cross-entropy loss function and those using the inverse proportional exponential weighted
cross-entropy loss function (IPEWF). As Table 2 shows, the accuracy of AlexNet (IPEWF)
is 77.69%, which is an improvement of 1.41% compared with that of AlexNet when the
conventional cross-entropy loss function (76.28%) is used. The accuracy of VGG16 (IPEWF)
is 84.38%, an improvement of 2.22% compared with VGG16 when the conventional cross-
entropy loss function (82.16%) is used. The accuracy of ResNet18 (IPEWF) is 85.40%, an
improvement of 1.52% compared with ResNet18 when the conventional cross-entropy loss
function (83.88%) is used. The accuracy of GoogLeNet (IPEWF) is 89.60%, an improvement
of 1.20% compared with that of GoogLeNet when the conventional cross-entropy loss
function (88.40%) is used. The accuracy of these models—AlexNet, VGG16, ResNet18, and
GoogLeNet—improved to varying degrees after the IPEWF was adopted. This finding
indicates that the IPEWF is effective in addressing data imbalance and can improve the
overall performance of the models.
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Table 2. Accuracy of models using the IPEWF.

AlexNet AlexNet (IPEWF) VGG16 VGG16 (IPEWF)

Parameters 5.70 × 107 1.34 × 108

Accuracy 76.28% 77.69% 82.16% 84.38%

ResNet18 ResNet18 (IPEWF) GoogLeNet GoogLeNet (IPEWF)

Parameters 1.12 × 107 9.94 × 106

Accuracy 83.88% 85.40% 88.40% 89.60%

To evaluate the performance of various models comprehensively, we conducted a
detailed analysis of the confusion matrices for each model. The confusion matrix reflects
the number of correct classifications and clearly shows the misclassification situations for
each class across different models. Figure 7 displays the classification results for the VGG16,
AlexNet, ResNet18, and GoogLeNet models, along with their improved versions using
the IPEWF. Figure 7a,b show the results of the VGG16 model and its IPEWF-improved
version. The results indicate that the overall accuracy of the VGG16 model improved after
applying IPEWF; however, its performance on small sample classes decreased. Figure 7c,d
display the sample distributions of AlexNet and its IPEWF version. The IPEWF-improved
AlexNet model maintained stable performance on large sample classes while showing some
performance improvement on small sample classes. Figure 7e,f illustrate the confusion
matrices for ResNet18 and its IPEWF version. The results demonstrate that the IPEWF-
improved ResNet18 model significantly improved for small sample classes. Figure 7g,h
show the predicted sample distributions for GoogLeNet and its IPEWF version. The
results reveal that the IPEWF-improved GoogLeNet model maintains the classification
performance on small sample classes and significantly improves the performance on large
sample classes. In summary, although the IPEWF method did not perform well in terms
of sensitivity to small samples in the VGG16 model, it performed well in the other three
models. Additionally, the overall accuracy of all four models improved, indicating that our
method has certain advantages in enhancing the overall model performance.

4.4.2. Performance Comparison on TL

To further enhance model performance, we combined the IPEWF, which performed
well in the previous section, with TL techniques. We continue to use AlexNet, VGG16,
ResNet18, and GoogLeNet as our research objects. Table 3 shows that the accuracy of
AlexNet (IPEWF+transfer) reached 90.36%, an improvement of 12.67% compared with
that of AlexNet (IPEWF) (77.69%). The accuracy of VGG16 (IPEWF+transfer) was 93.97%,
an increase of 9.59% compared with the 84.38% accuracy of VGG16 (IPEWF). ResNet18
(IPEWF+transfer) achieved an accuracy of 94.14%, an improvement of 8.74% over ResNet18
(IPEWF)’s 85.40%. The accuracy of GoogLeNet (IPEWF+transfer) was 92.58%, an increase
of 2.98% compared with that of GoogLeNet (IPEWF), which was 89.60%. These results
indicate that incorporating TL techniques led to a significant improvement in the accuracy
of all four models, further demonstrating the significant role of TL in enhancing model
accuracy in this study.

Table 3. Accuracy of models using the IPEWF.

AlexNet (IPEWF) AlexNet (IPEWF + Transfer) VGG16 (IPEWF) VGG16 (IPEWF + Transfer)

Parameters 5.70 × 107 1.34 × 108

Accuracy 77.69% 90.36% 84.38% 93.97%

ResNet18 (IPEWF) ResNet18 (IPEWF + Transfer) GoogLeNet (IPEWF) GoogLeNet (IPEWF + Transfer)

Parameters 1.12 × 107 9.94 × 106

Accuracy 85.40% 94.14% 89.60% 92.58%
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Figure 7. The distribution of confusion matrices across the four sample datasets and the changes after
applying IPEWF.

We continued to analyze the confusion matrices for the four models. By comparing
Figure 8a,b, we find that the performance of the VGG16 (IPEWF+transfer) model, which
combines the IPEWF method and TL techniques, improved significantly. Specifically, the
number of correct classifications in the small sample class of pneumonia patients increased
from 238 to 271. For the COVID-19 class, the number of correct classifications also increased
significantly, from 590 to 670. Additionally, the correct classification numbers for the
other two classes also showed substantial improvement. A comparison of Figure 8c,d
reveals that the AlexNet (IPEWF + Transfer) model, which applies the IPEWF method
combined with the TL technique, also has positive effects. The classification accuracy of
the model improved significantly for both small and large sample classes. Comparing
Figure 8e,f, the ResNet18 (IPEWF + Transfer) model, which incorporates TL techniques
based on the IPEWF method, showed improved performance in most classes, although
the correct classification number for the pneumonia class slightly decreased. However, it
demonstrated better performance in other classes. A comparison of Figure 8g,h reveals
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that the GoogLeNet (IPEWF + Transfer) model, which combines the IPEWF method and
TL techniques, yields some differences in the confusion matrix. Although the correct
classification number for the lung opacity class decreased slightly from 1087 to 1085, this
minor performance loss is acceptable considering the overall performance improvement.
More importantly, the correct classifications for the pneumonia class increased from 234
to 267, those for the COVID-19 class increased from 662 to 667, and those for the normal
class increased from 1810 to 1888. In summary, by combining the IPEWF method and
TL techniques, the classification performance of all four models significantly improved,
especially in terms of accuracy for critical classes. This further validates the effectiveness of
this approach in enhancing the overall performance of the models.

To further validate the effectiveness of our method, we specifically focused on the
recognition ability of models improved by the IEWLF method and those improved by the
TL method. By comparing the ROC curves of the various models under the combined
methods, we can assess the classification performance of the models more intuitively. After
the TL technique was applied, the AUC values for the COVID-19, lung opacity, normal, and
pneumonia classes improved significantly. Figure 9 displays the ROC curves of the four
models based on different strategies. The AUC results in Table 4 show that by combining the
IEWLF method and TL techniques, we significantly improved the classification performance
of the four models, especially in terms of the recognition ability for critical classes. These
results further validate the effectiveness and potential of the proposed method.

Table 4. Accuracy of models using the IPEWF.

COVID-19 Lung Opacity Normal Viral Pneumonia

VGG16 (IPEWF) 0.966 0.945 0.950 0.996
VGG16 (IPEWF + Transfer) 0.998 0.989 0.989 0.999

AlexNet (IPEWF) 0.921 0.915 0.898 0.994
AlexNet (IPEWF + Transfer) 0.991 0.976 0.976 0.998

ResNet18 (IPEWF) 0.972 0.950 0.953 0.996
ResNet18 (IPEWF + Transfer) 0.998 0.986 0.985 0.999

GoogLeNet (IPEWF) 0.989 0.972 0.974 0.998
GoogLeNet (IPEWF + Transfer) 0.997 0.984 0.984 0.999

Finally, we selected the best-performing model in the experiment for interpretability
analysis. Figure 10a shows the Grad-CAM activation heatmaps for the VGG16 (IPEWF +
Transfer) model. These heatmaps highlight the key areas in the original image, providing
intuitive aid for understanding the decision-making process of the model. The left side
of each subfigure shows the original X-ray image of the detection target, the middle side
shows the Grad-CAM activation heatmap, revealing the specific image regions the model
relies on during prediction, and the right side presents the composite image overlaying
these key regions on the original image, emphasizing the areas the model considers highly
relevant to the predicted class. Similarly, Figure 10b–d display the Grad-CAM activa-
tion heatmaps for the AlexNet (IPEWF + Transfer), ResNet18 (IPEWF + Transfer), and
GoogLeNet (IPEWF + Transfer) models, respectively. By analyzing these heatmaps, we
can see that the models effectively recognize lesion areas, demonstrating the correspon-
dence between the features learned by the models and the key diagnostic regions in actual
medical images. This interpretability analysis provides a strong visual basis for evaluating
algorithm performance and offers a valuable tool for assisting doctors in diagnosis. By
observing these heatmaps, doctors can better understand the basis of the model predictions,
thereby increasing their trust in the diagnostic results of the model. This approach, which
combines advanced algorithms and visualization techniques, has the potential to play a
significant role in practical clinical applications. These visualization results enhance our
understanding of the decision-making process and further validate the practicality and
effectiveness of the proposed method in medical imaging diagnosis.
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Figure 8. The distribution of confusion matrices across the four sample datasets and the changes after
applying IPEWF combined with TL.
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Figure 9. The distribution of confusion matrices across the four sample datasets and the changes after
applying IPEWF combined with TL.
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Figure 10. Grad-CAM for four models.

5. Conclusions

This paper explores an automated diagnostic method for pneumonia that uses con-
volutional neural networks (CNNs). By applying CNNs, we enhanced the automation
and accuracy of pneumonia diagnosis, reduced the reliance on medical resources, and
improved diagnostic efficiency. However, CNNs face challenges in medical image diag-
nosis because of performance degradation caused by insufficient and imbalanced data, as
well as poor model interpretability. To address these challenges, we designed a weighted
cross-entropy loss function based on an inverse proportional exponential function and
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optimized the models by incorporating transfer learning techniques to address the issue
of imbalanced datasets. Additionally, we introduced gradient-weighted class activation
mapping (Grad-CAM) technology to enhance model interpretability, providing more trust-
worthy decision support for clinical applications. The experimental results indicate that the
proposed method significantly improved both the performance and interpretability of the
models, with the accuracy of the four classic models increasing to over 90%. In this study,
we identified a limitation due to the homogeneity of the dataset used, which may affect the
generalizability of the models when applied to broader and more diverse data. In future
work, we will use more diverse datasets for training and further optimize model perfor-
mance. Additionally, while the inversely proportional exponential weighted cross-entropy
loss function can partially address the issue of imbalanced training data, determining the
most suitable parameter ratios still requires further experiments and validation.
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