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Abstract: Vector normalization is an important process in several algorithms. It is used in clas-
sical physical calculations, mathematical techniques, and machine learning, which has witnessed
significant advancements in recent years. Normalization and regularization ensure the stability of
solutions and play an important role in algorithm convergence. Normalization typically refers to
the division of elements by their norm. Division should not be used in algorithmic implementations
because its computational cost is considerably higher than that of multiply-add operations. Based
on this, there is a well-known method referred to as the fast inverse square root (FISR) algorithm in
floating-point calculations (IEEE754). In deeper-level embedded systems that require fast responses
or power efficiency, integer instead of real number arithmetic (floating-point number arithmetic)
should be used to increase speed. Conversely, in deeper-level embedded systems that require fast
responses or power efficiency, integer arithmetic should be used instead of real number arithmetic
(floating-point number arithmetic) to increase speed. Therefore, embedded engineers encounter
problems in instances in which they use integer arithmetic for implementation, but real number
arithmetic is required to compute vectors and other higher-dimensional algebra. There is no con-
ventional normalization algorithm similar to the FISR algorithm for integer arithmetic; however,
the proposed pseudo-normalization achieves vector normalization within a restricted domain using
only multiply—add operations and bit shifts. This allows for fast and robust operations, even for
low-performance MCUs that do not have power-efficient FPUs. As an example, this study demon-
strates the computation of the arctangent (Arctan2 function; atan2(y, x)) with high precision using
only integer multiply—add operations. In this study, we proposed a method of vector normalization
using only integer arithmetic for embedded systems and confirmed its effectiveness by simulation
using Verilog. The research results can contribute to various fields such as signal processing of IMU
sensor data, faster artificial intelligence training, and efficient rendering of computer graphics.

Keywords: approximate computing; low-power arithmetic; integer calculation; fast inverse square
root; embedded system

1. Introduction

In recent years, the rapid development of the Internet-of-Things (IoT) and artificial
intelligence (Al) has led to a rise in the demand for advanced computational processing
for all device types; for example, communication devices, such as mobile terminals and
wearable devices; mobile vehicles, such as self-driving cars and public transportation
systems; data centers for learning Al; all large and small central processing units (CPUs),
graphics processing units, and microcomputers. It is important to reduce the power
consumption of these devices [1-3]. A reduction in the power consumption of mobile
terminals and IoT devices improves their battery life. Furthermore, the power consumption
of data centers has considerably increased owing to the increased use of Al this has become
a bottleneck in Al development [4-7]. Fast computation with low power consumption is
required in all fields of computation [8-12].
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We previously proposed a fast computation algorithm for embedded systems, which
approximates nonlinear elementary functions, such as trigonometric and inverse trigono-
metric, with high accuracy using multiply-add operations [13,14]. This fast computation is
important for the attitude computation of wearable IoT sensors and the attitude control
of drones, which require fast processing and low-power consumption [15]. Division is
crucial for the embedded implementation of algorithms. Although division is one of the
four basic arithmetic operations, its computational cost is substantially higher than that
of a multiply—-add operation. Therefore, various methods have been proposed to achieve
efficient division. Imani et al. propose a configurable approximate divider CADE that
performs floating-point division with controllable precision at runtime [16]. Liu et al. [17]
and Saadat et al. [18] proposed a method based on logarithmic divisors and applied it to
image processing and image compression. Vahdat et al. [19] and Zendegani et al. [20] also
proposed a method to convert division into the product of the reciprocal of the divisor and
applied it to image processing on DSPs and elsewhere.

One method for accelerating the calculations in embedded systems is to use integers
(or fixed-point numbers) instead of floating-point numbers, but this method is incom-
patible with conventional division and normalization algorithms. Therefore, embedded
engineers encounter problems in instances in which they want to use integer arithmetic
for implementation, but real number arithmetic is required to compute vectors and other
higher-dimensional algebra. As a solution to this problem, this study proposes a fixed-
point vector normalization method using only multiply-add and bit-shift operations for
high-speed and power-saving processing in embedded systems. The proposed method
can be easily implemented in hardware, because it operates based only on simple sum-of-
products operations.

In this study, we confirm that the proposed method can be implemented in FPGA, can
only be composed of combinational circuits, and can be executed using hardware with an
electrical delay of at most one clock operation. As will be shown later, there is a trade-off
between the accuracy of the conventional method over the entire definition region and
the efficiency of the proposed method. When the domain is known, the efficiency of our
proposed method is very effective in reducing power consumption.

A limitation of the proposed method is that instead of being very fast and efficient,
it limits the domain over which it can be computed accurately. The proposed method is
referred to as pseudo-normalization, because it is not available for all definition domains.
A domain can be controlled by the number of iterations of the algorithm. As the range of
vectors used in embedded systems is typically known, the algorithm can be used in a broad
range of fields by appropriately designing systems. The proposed algorithm consists of the
fast approximate computation of the inverse function (1/x) and square root function (1/x),
both of which can be used independently.

In addition, for the approximate calculations of trigonometric and inverse trigonomet-
ric functions designed for floating-point numbers, integer transformations are performed
using the fast inverse square root (FISR) algorithm to convert them to fixed-point num-
bers. The acceleration effect of the floating-point computation is limited because of the
optimization of the instruction set and compiler of the CPU and microcontroller. However,
the implementation of fixed-point computations is approximately three times faster than
that of “math.h” on a CPU with an FPU. The proposed algorithm can be used in various
vector normalization applications. An example of accelerating integer transformation using
inverse trigonometric functions is described herein.

2. Method

First, we overview the conventional and proposed normalization algorithms. Subse-
quently, we design an approximate computation of one of the components, the reciprocal,
using the residual correction method. We then design an approximate computation method
for the square root computation, which is another component of the normalization algo-
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rithm. Finally, we combine them to propose pseudo-normalization as a vector normalization
for integer arithmetic (proposed method).

2.1. Conventional and Proposed Methods

It is important to optimize algorithms in IoT systems wherein power efficiency is
required and the amount of computation should be reduced (even by one clock operation).
The low-power Coretex-M0 omits the DIV instruction [21], and in low-spec microcon-
trollers, 45 divisions are implemented in software rather than provided in the instruction
set [22]. Based on this, the FISR algorithm has been developed for IEEE754 floating-
point numbers [23-26]. This algorithm uses the bit structure of IEEE754 to approximate
rapidly 1//x. Additionally, various extension algorithms have been proposed in recent
years [27-29]. The FISR algorithm can be used for floating-point arithmetic in the IEEE754
format and has been implemented in various programming languages. It takes advantage
of the fact that bit shifting the bit structure of a floating-point number results in a value
close to the inverse square root of the original number. It calculates a practical value by
converging the approximate value using Newton’s method.

We have used the FISR algorithm to develop fast computation algorithms for em-
bedded systems; however, it is desirable to develop algorithms with fixed-point numbers
rather than floating-point numbers to increase computational speed [30]. Therefore, we pro-
pose a new vector normalization algorithm for fixed-point numbers that does not require
floating-point number inputs.

In the proposed method, we normalize vectors without using division. If the norm
of the vector (x,y) is r = /x2 + y2, normalization is performed to find (x',y’) = (%, ).
Herein, we can consider normalization if we can compute the function I(r), i.e., the in-
verse of the norm 1 ~ I(r) within a domain of a function by applying a multiply-add
operation on r. As division is required to create I(r) in any domain, we consider pseudo-
normalization as an approximation restricted to the domain of the function. The next
section describes the design of the algorithm. First, we develop a low-cost approximation
algorithm for each real number using the proposed residual correction method [31]. This
method can be used to obtain a highly accurate approximate function within a defined
region using only multiply—add operations. We then modify the algorithm for use to
fixed-point numbers.

2.2. Optimal Reciprocal Approximation

The first formulation of the normalization problem is to search for I(r) such that
rI(r) = 1 in a specific domain of the function, 7,,;;, < 7 < 7ma. For approximate com-
putations, I(r) should be an approximate function such that the error is globally smaller
within the domain of definition rather than being strictly accurate. We propose the residual
correction method to search for such approximate functions and realize highly accurate
approximate trigonometric and arctangent functions. In a previously proposed residual
correction method, a simple approximation was considered and its residuals were evalu-
ated to create a residual correction function. A highly accurate approximate function was
then obtained by removing the residuals. However, owing to the strong nonlinearity of the
normalization targeted here, multiplicative residual correction is preferred over additive
residual correction.

We consider a Taylor expansion at approximately r = 1, which is suitable as a simple ap-
proximate function. rI; (r) ~ 1 has a wider domain compared with r without normalization.

Lr)=2-r 1)

We also consider a function that corrects this residual. As additive residual correction
results in a constant equation, we use multiplicative residual correction to search for f,.(r)
that minimizes the residual of 7I;(r) = rI;(r) fyc(r) — 1. For function shaping, a downward
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convex quadratic function centered at » = 1 is a candidate for f,.(r), and it must satisfy
fre(1) = 1. The following are possible candidates for this function,

fre(r) = (1 - ”)2 +1 2)

Therefore, I; () has the following form,

L(r) = h(r)fielr) = @=7) (1= +1) ©)

The result corrected by this function is shown in Figure 1 as the second expansion
of the domain of definition by the residual correction method. Without normalization
(I(r) = 1), itis evident that only rI(r) ~ 1 satisfies r ~ 1. However, with the first expansion
of the domain of definition, the domain that satisfies rI; (r) ~ 1 expands to approximately
0.9 < r < 1.1. After the second expansion, the domain that satisfies 7[;(r) ~ 1 expands to
approximately 0.7 < r < 1.3. This second approximation can have a broader definition
domain compared with the approximate formula obtained using a Taylor expansion of the
same order.

Further expansion of the domain using the residual correction method increases the
computational cost owing to the strong nonlinearity of the original function; however,
the error reduction effect is negligible. Therefore, we consider expanding the domain of
definition by iteratively applying this approximate function. The application of I;(r) once
and its modification to ¥ — rI,(r) is a more ideal state from the norm’s perspective with a
reduced error. As shown in Figure 1b, this improvement can be obtained at all points except
the endpoints of the 0 < r < 2 region. Therefore, we consider the repeated application of
I)(r) as follows:

r'=rh(r) @
7" =10 = r[b0) - B(rh(n) | = () ®)
= L(r) = L(r) - L(r")
1O =L = r[B() - B(hM)  BEROLILE))] =B ©
= I(r) = L(r) - L(r') - L(r")
() = () - B B BOP) B () = f{’z () @

The number of primes indicates the number of iterations. Although the formula
for the expansion looks complicated, it is simply an iterative process associated with the
application of I(r), which can ultimately be considered as a function of r. The effect of
this reiteration is shown in Figure 2. Two iterations of " expand the domain of definition
to 0.25 < r < 1.75, and three iterations of "’ expand the domain to 0.07 < r < 1.93,
thus covering almost the entire area. With a good approximate function and convergence
by iteration, we obtain a highly accurate estimation formula for 1/r. The increase in
computational cost owing to iterative calculations is described in Section 4.
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Normalization result: r1(r)

Normalization result: rI(r)

2.00 2.00
—— Normalization target —— Absolute error of norm without normalization
1.75 4+ —— Without normalization 1.75 9~ = Absolute error of 1st domain expansion
—— 1st domain expansion —— Absolute error of 2nd domain expansion (DE2)
1.50 17 —— 2nd domain expansion (DE2) f 1.50 1
1.254 % 1.25 4
L00 i 1 5 1.004 Available domain range
. ‘ gL
0.75 ﬁ—ﬁl ; ‘; 0.75
1D 7 i WhE
Funetion 1 '%
shaping I“—‘—"= 2
0.50 < 0.50
Available domain range
0.25 4 0.25 4
0.00 T T T T T i 0.00 T T T T T T T
000 025 050 075 100 125 150 L75 200 000 025 050 075 100 125 150 L75 200
Input: norm r Input: norm r
(a) (b)
Figure 1. Inverse norm approximation using residual correction method. (a) Domain expansion effect
of function shaping. (b) Error reduction using function shaping.
2.00 10 1
=  Without normalization [ Targe‘[ of inverse norm: 1/7'
175 77— 1st domain expansion —_ ——— st domain expansion: I, (r)
—— 2nd dom. expansion (DE2) ;_:“, 84 44 . I
L5091 — Two iteration of DE2 é 2nd dom. expansion (DE2): I(r)
L2s L — Three iteration of 2DE2 g —— Two iteration of DE2: I'3(r)
’ E 6] —— Three iteration of DE2: I”,(r)
L0041 ! ;| 1 1 =
' i 48 i g
0.75 : \ I[q—h} Function ™ ‘ : %
’ ' i shaping Iteratior{ E
0.50 1/ o =
.5 1 =
1 :_. 4
0.25 / Domain expansion
0.00 T ; T T T T T { 0 T T T T T T T
000 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200
Input: norm r Input: norm r
(a) (b)

Figure 2. Pseudo-normalization using inverse norm approximation and its iterations. (a) Normaliza-
tion effects of domain expansion and iteration. (b) Estimation results of inverse norm.

2.3. Square Root Approximation

To find the norm of a vector, the sum of squares (r> = x? + y?) of each element can
be directly calculated using a multiply—add operation, but the square root is required for
normalization. Therefore, we consider the approximate function of the square root, which
isr? —r.

To determine the approximate function using the residual correction method, we first
consider a simple candidate approximate function. The function design uses 2V multiples
for all but the constant terms, based on an embedded implementation. This can be obtained
as the following linear expression using the Taylor expansion around r = 1.

r fu(r?) = %(r2+1) (8)



Electronics 2024, 13, 2955

6 of 15

Estimated square root: fy, (rg)

4.0

We obtain the blue dots and solid green line in Figure 3a by evaluating the residuals of
the simple approximate function f;¢(r?). The search for residual correction functions leads
to the following candidate functions,

1

frt(f’z) —r =l ™ f?’Cf(rz) = %(0.51’2)2 — 3—2 (9)

Thus, the second approximation is as follows:

P foal?) = falr?) = en = fal(?) = 5 (057 + 55

oL (10)

This is a more reduced residual in the » > 1 region compared with the fourth-order
Taylor expansion. Although higher-order Taylor expansions are required to reduce errors
over the entire region, the residuals are minimized by restricting the region. The coefficients
are adjusted to powers of 2 for the subsequent calculations.

3.54

3.0+

254

2,01

Y
Target of square root: r =V 72 @  Target of square root: v'r

Squared norm as input:r”
Ist approximation f,— (r*)

2nd approximation f —(r?)

2.00

1751 —— 2nd approximation: f=(r)

1.50 A == Domain expanded: f —pz(r)

Domain

1.25 1 expansion

1.00 1

0.75 Residual error of

2nd approximation

Approximated square root: f (1)

1
|
|
I
I
|
:
|
L
|

L0 0.50 1
Residual error of
] lomain expansion . .
0.5 . . 025178 oot crpans Available domain range
Available domain range :
0.0 += T T T T T 0.00 T T T T T T T
0.00 0.75 1.00 1.25 1.50 L.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 L.50 1.75 2.00
Target norm r Input: r
(@ (b)

Figure 3. Pseudo-normalization using inverse norm approximation and its iterations. (a) Design of ap-
proximate function for square root. (b) Approximated result of square root and its domain expansion.

2.4. Pseudo-Normalization for Integer

In the previous sections, we showed that the inverse and square roots can be ap-
proximated using only a finite number of multiply—add operations. We convert these to
fixed-point calculations, and consider fast normalization using an integer. We convert
floating-point r to fixed-point z. For the fixed-point representation, M = 2N is defined
asr = 1, where N = 7 and M = 128 is used as the base. First, the inverse is computed
as follows:

Lah() =@ -2+
~( ) (-5
_ %(2N+l _Z>{K2N_Z> >>Nr+1}
gcx M; ~ h(z) = (256 - 2){[(128 - 2) > 7" +1

= (256 - 2){[(128 — 2" > 7| +128} > 7 (11)
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where the operation >> denotes a right arithmetic shift. The reciprocal is likely to be small.
In particular, integer expressions are not possible in this domain. Therefore, the value is
expressed in the upper bits of a fixed-point number; hence, it is defined as I>(z) = M?/z
(=M/r). For normalization, the bit width is adjusted by bit shifting after multiplying the
number to be normalized by the reciprocal estimate. For example, if (x;,y;) is an original
vector, it can be normalized to x, = (£)M = x; (MTZ > N) = ([x;I2(z)] > N). Here, this
equation and Equation (11) adjust the position of the bit shift. Although the computation of
real numbers does not cause a drop-of-digit problem, integer multiplication and bit shifting
change the bit width. Thus, the product is adjusted such that it is placed before bit shifting.

The square root can be computed using a multiply—add operation and bit-shift opera-
tor, as shown by the following equation:

1 1 1
2 2 2\2
=~ = — 1 —_ = . _
1= fra(rt) = 5 (7 +1) = 2 (05%)" + &
A4
2 25" 273
z2 z4 2441
- 2N-+1 + 23N+5 + 25-N
Sz fup(2?) = (22> 8) — (2* > 26) + 68
= (22> 8) — (22> 8)2 > 10 + 68 (12)

These are used to construct a pseudo-normalization algorithm. For any input vector of
integers, the square of its norm is computed (Figure 4) using a simple multiply—add opera-
tion. The norm is then obtained by the approximate function fy(z2) of the square root. Fi-

nally, the reciprocal approximate function Ié") (z) provides the final normalized coefficients.

Pseudo-normalization

Integer vector Squared norm Estimated norm Nolrmallzatlon factor Normalized
i yid: z =x +yl 7 ® fra(0) — < Ii" (fro (7)) Integer vector
% X (X0, ¥o),
norm
2432 norm
zZi = [xif +y;
i i TYi z, =2V

Figure 4. Pseudo-normalization algorithm for integer vector normalization using only multiply—add
and bit-shift operations.

3. Results and Discussion

First, we show how the proposed algorithm works on an actual FPGA device, based on
simulations and experiments. Considerations regarding computation time and efficiency
are then discussed. Finally, as an example of the proposed method, an angle measurement
by the IMU is demonstrated. The IMU angle measurement is one of the applications
suitable for the proposed method, because it uses acceleration vectors and geomagnetic
vectors, and the approximate length of the vectors is known and nonzero.

3.1. Results

The behavior of the proposed algorithm was examined based on simulations. First,
the effect of the number of normalization iterations n was investigated experimentally; the
results are shown in Figure 5. For practical purposes, one or two iterations are sufficient
for expanding the domain of definition. However, if the range of the input norm is broad,
more iterations can be used to extend the definition domain.
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I(fua(22))

I2(fn2(22))

150 150
125 = 125 =
100 = 100 %
75 < 75 =
50 = 50 ~
25 25
0 0

200 200

(c) (d)

Figure 5. Effect of the number of iterations on normalization (blue plane represents the target value
of normalization). (a) No iterations. (b) One iteration. (c) Two iterations. (d) Three iterations.

Subsequently, we describe the proposed normalization algorithm in Verilog, which is
a hardware description language, and examine its computability for embedded systems.
The basic circuit of the proposed algorithm in Verilog is shown in Figure 6. In addition,
the inverse and root functions are shown in Figures 7 and 8 as the basic modules. These
bit-widths and constants are slightly adjusted to simplify the Verilog’s diagram, but do
not affect the calculated results. The simulated operation is shown in Figure 9. In the
simulation, (x;,y;) is generated by assuming 6 = /4, and the magnitude of the inputs
is changed from 0 to 200. The simulation results show that the output vector (x,,v,) is
almost constant in the range of the input magnitude [24,166]. Normalization is performed

to cancel the variation in z;.

E—F

Input © x . . :

Input - y - - m i —
Calculate : Estimate : Vz2 Estimate : j—_z Normalize : (%o, ) o (i L)
72 =x% 4+ yz (Approx. of square root) (Approx. o finvefse) 0r Vo vz V22,

Figure 6. Overview of circuit example of proposed algorithm (no iteration) using Verilog (visualiza-
tion created using https:/ /digitaljs.tilk.eu (accessed on 14 May 2024)) [32].
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e i L M
6 B

rr_in

ssubstest.sv:8511 r_out
Input example s Output example
2 _
z° =16,129 $mulstest.sv:859 z =127

Figure 7. Basic function for approximation of square root.

E— (s ) :
- r tem 15, 15 8, 8
,

$substest_inverse_rev.svi12$5 $iulgtest_inverse_rev.sv:14$10 r

¢
Input example 16 1 e, . e 25 6 Output example
z =127 teme 7 I,(z) = 127
$substest_inverse_rev.sv:13$@ulstest_inverse_rev.sv:1457 ShdiStest Interca revsyii4s0 ( [ZIZ(Z)] >N~ M)

Figure 8. Basic function for approximation of inverse.
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Append| insert | Replace | 7] ol

Figure 9. Simulation outcome for integer vector normalization based on the use of the proposed
algorithm (three iterations).

Finally, the proposed algorithm was implemented on an actual FPGA device to eval-
uate its computational feasibility and speed. The FPGA used was the DE0O-nano (man-
ufactured by Terasic Inc., Hsinchu, Taiwan), an evaluation board for INTEL's Cyclone
IV. The Verilog HDL source was the same as that used in the aforementioned simula-
tion. Figure 10a shows the results. The experimental results show that the expression
128/+/2 ~ 91 = (01011101); can be calculated. Figure 10b also shows the timing of the
instant when a specific bit on the input becomes “1” and the instant at which a specific bit
on the output becomes “1”. The FPGA used in this study is 50 MHz (sampling time 20 ns);
this means that our algorithm can compute with only the electrical delay is less than one
cycle. The proposed algorithm can be implemented using only combinational circuits, and
does not require pipeline processing like sequential circuits, so it can be processed within
one cycle in embedded circuits (such as FPGAs). Efficient computation with combinational
circuits has been the subject of active research in recent years, including work on binary
tree-based dividers, such as those proposed in [33]. A comparison with other similar vector
normalization algorithms is shown in Table 1. Note that other similar algorithms are imple-
mented as sequential circuits rather than combinational circuits; therefore, the evaluation
methods are different. As the conventional algorithms require approximately 20 cycles,
implementation in the same FPGA requires a computation time which is approximately
equal to 400 ns. Our algorithm, which can be implemented using only combinational
circuits for embedded circuits such as FPGAs, is very fast.
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Figure 10. Implementation to FPGA and calculation speed evaluation. (a) Experimental implementa-
tion on FPGA. (b) Latency evaluation between input and output.

Table 1. Comparison of calculated speeds of similar algorithms.

Calculation Speed Circuit Type Value Type
Proposed method 7.1ns Combinational Fixed point
(Less than 1 cycle)

INTEL's IP . . .
(INV_SQRT) [34] 26 cycles Sequential Floating point
PROVEN [35] 36 cycles Sequential Fixed point

POL [36] 13 cycles Sequential Floating point

Based on these results, accuracy and computation speed of the proposed algorithm
and the proposed algorithm application will be discussed in subsequent sections.

3.2. Calculation Speed and Accuracy

As shown in the design phase, the approximation algorithm for the root computation
is accurate for real numbers close to r = 1. However, the error increases as the numbers
deviate from r = 1. This is because the highly nonlinear root function is approximated by a
linear polynomial with residual correction, and further residual correction to reduce the
error increases the computational cost. Therefore, it is desirable to utilize the system in
fields where a limit of application can be ensured.

The accuracy of the inverse approximate function I,(-) increases with the number
of iterations. Although shown in the design phase of product representation, this can be
rewritten as follows: the repeated application of I, is a recursive structure, and a recurrence
relation can be computed.

hix) = 2-7)
B(x) = 2 0)((1 - xP +1) = h(x)2 - () = h() L (1)
() = [ T@ = xL(), lo =1 (13)
k=0

This recurrence relation is equivalent to Newton’s method for 1/x and is ensured
to converge. In addition, compared with the Taylor expansion of 1/x, the following
equation holds.

n 2" -1

hi(®) = [[@ xL(x) = ¥ (~1) (- D} (14)

k=0 k=0
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In other words, (n + 1) iterations in the approximate function coincide with the Taylor
expansion up to k = 2" — 1 odd orders. This implies that the iterative computation of the
proposed method is analytically equal to the original function in n — co. Additionally,
the proposed multiplicative expansion can be computed with O(n), whereas O(2") is
required to achieve the same accuracy in the Taylor expansion, which significantly reduces
the computational cost. Although the proposed method cannot yield Taylor expansion
approximations up to even orders because 1/x is an odd function, the form of the proposed
method that does not deal with even orders is the preferred expansion basis. The amount
of computations and the corresponding error order are summarized in Table 2.

Table 2. Comparison of calculation cost for Taylor expansion and product approximation.

Taylor Expansion Product Approximation
Error 2" —1 Addition Multiplication n Addition Multiplication
O(x?) 1 2 0 1 1 0
O(x®) 2 3 1 - - -
O(x*) 3 4 2 2 2 2
O(x®) 7 8 6 3 3 4
o(x?") 2" —1 2" 2" -2 n n 2n—2

Using higher-order Taylor expansions as candidates for the residual correction function
is one approach, but this approach will likely violate the concept of the residual correction
method, which is the search of a simple correction function for efficient computation.
However, the fact that the search results agree with the Taylor expansion results is a
basis for asserting the validity of the correction function. Currently, the search for the
correction function is conducted both empirically and heuristically, but the analytical
agreement implies a degree of similarity with the original function, which could be one of
the indicators of the search.

3.3. Further Extension of Domain of Definition

Certain applications require broad definition domains. The domain of definition can
be expanded by increasing the number of iterations; however, a large number of iterations
reduces computational efficiency. Therefore, we expand the domain using another method.
First, accuracy decreases when the norm is small. Therefore, when the norm is smaller than
a certain value (zy,), the domain expansion as an analogy to the domain expansion based
on the double-angle formulas of trigonometric functions [13] is as follows:

Lt 2y [ RUa(?)  if2 =2
@) = { SLTE L 2k otherwie "

For N = 7, zy, = 97 is experimentally confirmed to be appropriate in terms of
continuity and domain expansion. This effect is shown in Figure 11a. Although I(z) is
used here, the domain of definition can be further expanded close to z = 0 by repeating
I>(z), as shown in Figure 11b. Furthermore, we note that this is also true for large norms.
This is because the norm is estimated to be smaller in the first iteration, even when it is
large; as a result, the iterative computation is effective when the norm is large or small.
This process extends the available input range to approximately [4,173].
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Figure 11. Pseudo-normalization using inverse norm approximation and its iteration. (a) Domain
expansion with input condition. (b) Effects of the number of iterations on condition.

3.4. Application: Computing atan2 Function Using Integer Arithmetic

We have proposed the low-cost and fast approximate computation of trigonometric
and inverse trigonometric functions for small embedded devices for the motion measure-
ment of robots and humans. The algorithm is designed using a multiply-add operation.
However, the prerequisite is that the input vector (sensor output) must be normalized
using the FISR algorithm. The FISR algorithm is used for floating-point numbers, which
limits its ability to perform processing in integer calculation cases that are ideal for em-
bedded devices. The proposed method applies the FISR algorithm to integers to solve
this problem. For this purpose, integer transformations are performed on previously pro-
posed trigonometric and inverse trigonometric functions (atan2). As shown in the results,
a limitation of the proposed method is that the error becomes larger at the edge of the
definition region. However, in the IMU sensor signal processing application considered
here, such as the gravity acceleration and geomagnetic vectors, the norm as the basis of the
frame matrix is not zero, but has a certain magnitude, and the objective is to normalize it.
Therefore, it is a suitable target as an application example for the proposed method. The
structure of the equation remains the same, and an integer conversion with N = 7 yields
the following results:

si(¢) = (180 — [¢]) > 6

Second approx. of sine function: o sip(¢) =29(440 — [si(¢)])si(¢p) > 14
Second approx. of cosine function:  : cjp(¢) = 512(90 — |¢])
First approx. of atan2 function: ¢ = at2;(y, x) = 41(283(127 — x)sgn(y) + xy) > 14

Second approx. of atan2 function: ¢ = at2;p(y,x) = P1 + ((x(sia(P1) +1) —yein(¢1)))

This encodes the angle as an intuitively understandable integer from —180 to 180 de-
grees. The process flow of this calculation is shown in Figure 12. The details of the algorithm
are the same as those provided in [13], except that the input and output are integers. Even
if all approximations are made using integers (Figure 13a), the estimation error is within the
quantization error, because it is less than or equal to 1°, although the resolution is increased
for evaluation. The results with floating-point numbers, which have been reported in a
previous publication [13], are shown in Figure 13b. The maximum error in the floating-
point calculation was about 0.001 rad (=0.05°), while the integer conversion resulted in an
error approximately equal to 1 degree. This calculation is approximately three times faster
than that of “math.h”, even when it is performed on a CPU with an FPU. Therefore, fast
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calculations can be expected even if a microcontroller without an FPU or compiler with
low optimization capability is used.

Integer 1stapprox.
of sine si(¢)

Integer 1st approx. N Integer 2nd approx.

(0. Yo) ¥ of Atan2 ¢, "| ofssine si(g) cosine ci(¢) |

Integer 2nd approx.
of Atan2 ¢, — ¢2

1

Figure 12. Fast calculation of atan2 using integer inputs.
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Figure 13. Accuracy comparison between integer and floating point approximations. (a) Accu-
racy responses of integer atan2 approximations. (b) Accuracy responses of floating-point atan2
approximations [13].

We applied integer pseudo-normalization as a preprocessor for a previously devel-
oped algorithm. However, it can be applied to various preprocessors that require fast
normalization. For example, the proposed algorithm may be effective when performing a
large number of calculations on GPUs, such as computing normal vectors for computer
graphics and normalization for machine learning. Especially in the field of machine learn-
ing, implementation techniques on FPGAs are important for efficient learning and edge
Al [37]. Normalization, division, and square roots are basic elements used to calibrate
various calculations. We are currently discussing their application to the field of machine
learning. In future work, we will work on the improvement of the efficiency of machine
learning implementation by applying the proposed method.

4. Conclusions

We propose pseudo-normalization as a vector normalization method for fixed-point
numbers that used only multiply-add operations and bit shifts. Pseudo-normalization consists
of the approximate fast computation of 1/x and /x, which can also be used independently.

The approximate fast computation of 1/x can be expanded by # iterations, and it is
analytically equivalent to the original function at n — co. The proposed multiplicative
approximation method converges more efficiently than the series approximation method.
Thus, only one or more iterations are required to create a sufficiently broad domain of
definition for embedded systems. To verify the feasibility of implementing the algorithm in
a FPGA, the algorithm is verified using Verilog and simulations. As an example of applying
the proposed algorithm, we confirm that the previously developed fast computation of
inverse trigonometric functions can be combined with the proposed algorithm to perform
fast and accurate approximate computation by integer transformation.
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Future studies will include the construction of a high-speed sensor signal processing
system using an actual FPGA device and its application to high-precision human motion
measurement with high-temporal resolution. In addition, we will develop a fast compu-
tation method for nonlinear elementary functions, such as exponential and logarithmic
functions, using the residual correction method. By developing an environment in which
these basic operations can be efficiently processed in hardware, we will work to realize
large-scale advanced technologies such as machine learning on edge devices.
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