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Abstract: In order to solve the problem whereby the original DWA algorithm cannot balance safety
and velocity due to fixed parameters in complex environments with many obstacles, an improved
dynamic window approach (DWA) of local obstacle avoidance for robots is proposed. Firstly, to
assure the path selection stationarity and enhance the navigation ability of inspection robot, the
velocity cost function of the original DWA was improved and the distance cost function of the target
point was added. Then, the distances among the inspection robot, observed obstacles, and target
points were input into a fuzzy control module, and the fuzzy weights of the velocity and distance cost
functions were obtained, by which the motion of the inspection robot can continuously self-adjust and
adapt to the unknown environment. Finally, several simulations and experiments were conducted.
The results show that the improved DWA algorithm can effectively improve the obstacle avoidance
ability of inspection robots in complex environments. The path can be more reasonably selected and
the safety of inspection robots can be enhanced, while the safe distance, path length, and the number
of samples can also be optimized by the improved DWA compared to the original DWA.

Keywords: local path planning; DWA; fuzzy control; obstacle avoidance

1. Introduction

Path planning is one of the key technologies for autonomous navigation of robots [1,2].
When facing a complex working environment, it is difficult to obtain complete spatial
information, and robots are required to have stronger path planning and obstacle avoidance
capabilities [3,4]. Therefore, it is of significance and practical value to study robot path
planning algorithm [5,6].

Path planning algorithms are usually classified into global and local path planning
based on the environmental information acquired. Frequently used global path planning
algorithms include A*, fast random search tree (RRT), and various intelligent algorithms
such as GA [7-9]. These algorithms usually require all known spatial map information
and are difficult to apply in real-time complex environments. Local path planning is
commonly used in unknown environments, where robots need real-time information about
environmental obstacles based on sensors such as LIDAR and cameras [10,11] and feasible
paths can be effectively planned. Commonly used local planning algorithms include
artificial potential field (APF) [12] and Time Elastic Band (TEB) [13]. APF takes the target
point as a gravitational source, obstacles as a repulsive source, and the resultant force to
calculate the robot’s motion direction and posture. The real-time performance of APF is
very good for local obstacle avoidance, but prone to falling into local optima [14]. TEB
treats the given initial path as a deformable elastic band, can change the path locally based
on the position and shape of obstacles, and the global path can be replanned. The dynamic
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window approach (DWA) [15] algorithm samples linear and angular velocity in the velocity
space with dynamic constraints, then generates candidate paths according to the kinematic
model of the robot and evaluates the candidate paths by a cost function. The optimal path
with the maximum cost function value is selected from the candidate paths as the path of
the robot in the next motion stage. However, there exists some application problems in
complex and dense obstacle environments for DWA:

(1) Robots may approach obstacles during traveling. When encountering pedestrians
or moving objects, the safety and humanization of the robots may be reduced and
collisions occur.

(2) The weights of the DWA cost function are usually fixed, and cannot adapt to the
complex obstacle environment, resulting in poor obstacle avoidance performance.

To address the above issues, Ballesteros et al. [16] proposed an improved DWA,
which evaluates the mobile robot by considering the free-space relationship between its
dimensions and the obstacles. However, the method is prone to fall into a local optimum.
Therefore, Wei B, et al. [17] proposed a new DWA based on environmental perception,
which can guide the robot to travel to an unobstructed area before arriving at the target point
by setting local target points and solve the problem of local minimum values. However, the
setting of local target points in this algorithm is not the optimal distance from the final target
point, so there are still unreasonable factors in path selection. Chang L, et al. [18] proposed
a novel algorithm adaptively adjusting DWA parameters online by combining Q-learning
into training aiming to address the above problem. On other hand, DWA requires model
training before use and the actual planning efficiency for unexpected situations is reduced.
Wang YX, et al. [19] designed adaptive rules to dynamically adjust the weights in the DWA
objective function. However, this method only considers the influence of velocity weights
in the cost function, while not the contribution from other cost functions.

However, due to only simulating and evaluating the trajectory of the next step, there is
a lack of foresight and a tendency to fall into local optima, and each time, the path selected
through the cost function is the optimal path for the next step, rather than the global optimal
path. Once the weight of the cost function in the DWA algorithm is determined, it cannot
be dynamically adjusted and cannot adapt to various complex environments. Therefore, an
improved DWA is proposed in this paper. The cost function is optimized and fuzzy control
theory is introduced to dynamically adjust the weights of the cost function to adapt to a
complex obstacle environment so that a robot can quickly and smoothly avoid obstacles
without collision.

2. Theoretical Basis

DWA is one of the practical local path planning methods that was proposed by Fox et al.
based on the correspondence between robot position and velocity [20]. DWA transforms
the position control into velocity control for a robot, taking obstacle avoidance problems as
optimization ones with velocity space constraints. The velocity space of the robot according
to the current state of the robot and the robot motion model is calculated, and it is the
dynamic window mentioned in the name of the algorithm by which the candidate paths
of the mobile robot are calculated in a certain period of time and evaluated through the
cost function. As a result, the optimal path is selected according to the cost function
for path planning. The DWA algorithm generally includes three parts: kinematic model
establishment, velocity space collection, and candidate path evaluation.

(1) Kinematic model establishment

In this process, the motion model of the robot is required to be established for
DWA [21,22]. Usually, the motion model of the robot is built as shown in Figure 1.

In Figure 1, X and Y denote the axes of the world coordinate, and Xrobot and Yrobot
denote the axes of the current motion coordinate of mobile robot. The origin of the world
coordinate system is set as the initial position of the robot. The origin of the current motion
coordinate system is set as the center point of the robot. 8 is the angle between the current
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motion direction and the horizontal direction of the robot. Assuming that the position
coordinate of the robot at moment ¢ is (x(t),y(t)), the position relation equation of the
robot at moment ¢ + At can be written as follows:

x(t+ At) x(t) +o(t) *cos(0(t)) * At
y(t+At) | = |y(t) +o(t) *xcos(O(t)) * At (1)
0(t + At) 0(f) + w(t) = At

where v(t) is the linear velocity of the robot at moment ¢, w(t) is the angular velocity of the
robot, and At is the sampling time step.

4
X

Figure 1. Simplified motion model of DWA robot.

(2) Velocity space collection

From Equation (1), there are many velocity combinations (v, w) in the velocity space
of the robot, but only some of them are consistent with the actual operation of the robot.
Therefore, this paper adopts three kinds of constraints to constrain the velocity used for
sampling in a reasonable range, which are self-velocity limitation, dynamic performance
constraints, and safety constraints.

The self-velocity limit of mobile robot, which is determined from the specification of
the robot, must be satisfied by the velocity combination V;(v, w):

Vs = {(U/ (,U)|U € [vmaXr vmin]/w c [wmaX/wmin]} (2)

where Umax and vy, are the maximum and minimum linear velocities limitation of the robot
and wmax and win are the maximum and minimum angular velocity limitation, respectively.

Due to motor torque performance, the instantaneous linear and angular acceleration
velocities of the robot must be limited in an achievable range within At time. Given the
current linear and angular velocities v(t) and w(t), the velocity limitation by the motor
performance at the next (t + At) moment can be represented as:

Vi={(v,w)|v e [v; — 0L, vr + DiAL], w € [wy — wWiAt, wi + wiAt] } 3)

where v(t) and w(t) are the current linear velocity and angular velocity of the robot and
v and wy are the current maximum linear and angular acceleration of the robot, respectively.

In order to avoid collisions, the robot must be able to stop moving before hitting
an obstacle, where the set of linear and angular velocities can be satisfied and defined
as follows:

v, — {(U,CU)‘U < (2-dist(v, w) .z}t)l/z,w < (2-dist(v, w) -cth)l/z} (4)

where dist(v, w) is the distance between the endpoint of the predicted path and the nearest
obstacle. The collision condition calculates whether the current sampling velocity can be
reduced to 0 before hitting the obstacle according to the distance between the robot and the
obstacle after the path is simulated. If the robot can stop, the velocity is allowed.
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For a mobile robot, velocity space V; can be represented as the intersection of three
constraints, which is the dynamic window in the name of the algorithm:

Vi=VsNVy;NV, (5)

(3) Candidate path evaluation

The robot continuously samples its velocity in velocity space during operation. Ac-
cording to the motion model and velocity space, several candidate paths are generated
in the current motion coordinate and evaluated by the cost function. The cost function
G(v, w) can be constructed as:

G(v,w) = ahead (v, w) + Pdist(v, w) + yvel (v, w) (6)

where head (v, w) denotes the azimuth between the robot head and the target at the end
position of the predicted path. It is the cost of the robot orientation to the target. dist(v, w)
denotes the distance between the endpoint of the predicted path and the nearest obstacle,
vel (v, w) denotes the robot’s traveling velocity, and «,  and vy are weight coefficients. The
optimal path is chosen from candidate paths by maximizing the cost function.

3. Improved DWA Algorithm

In this section, an adaptive DWA based on fuzzy control module is proposed to address
the problems caused by unreasonable path selection, poor obstacle avoidance ability and
low adaptability caused by fixed cost function weights in dense obstacle environments. In
the improved DWA, vel (v, w) of the original DWA was optimized by adding a target point
distance into the cost function to ensure the velocity of the chosen path is stable, which
can enhance the robot’s navigation ability to move towards a target, and the fuzzy control
method was used to adaptively adjust the weights of the cost function to make the robot
adapt the unknown complex environments.

3.1. Cost Function Optimization
3.1.1. Optimize the Velocity Cost Subfunction vel (v, w)

In the original DWA, vel (v, w) considers only the linear velocity within the predicted
path. The higher the linear velocity, the larger the value of vel (v, w), which helps the robot
reach the target point more quickly. However, in order to weaken the drastic velocity
variation due to obstacle avoidance in complex environments, affecting the smoothness as
well as the moving stability of the robot, vel (v, w) should be optimized and was rewritten
in this paper as follows:

vel(v,w)" = v; — I % <|vl_vll|) )

Umax

where [ is the penalty coefficient, v; and v;_; denote the linear velocity of the predicted
path at the current and previous moment, respectively, and vmax is the maximum linear
velocity of the robot.

In Equation (7), a correction function is adopted and a penalty is applied to the rapidly
changing velocity to reduce the vel(v, w)’ value, by which a predicted path with gentle
changes in velocity can be selected to maintain the stability of the robot’s motion.

3.1.2. Introduce Target Deviation Evaluation

A new target deviation cost subfunction goal (v, w) is added. It is used to evaluate
the heading difference and distance between the robot and the target point, where it is
expected that the robot can travel towards the target point and reduce the length of the
predicted paths.
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The goal(v, w) function was defined as follows:
goal(v,w) = k= (1 —dg/d) (8)

where k is the control coefficient, d, is the distance of the current robot from the target point,
and d is the distance from the starting point to the target point. The closer the robot is to
the target points, the higher the value of the goal (v, w).

As shown in Figure 2, two predicted paths are compared with the same velocity. The
distances of path 1 and path 2 from the nearest obstacle are d,; and d,;, and the azimuth
angles with the target point are 6; and 6, respectively. If the original DWA algorithm
is used to evaluate the performance of these two paths, since dy; < do2 and 07 < 6, it
indicates that path 1 has better directivity and path 2 has better security. It is difficult to
determine which path is superior. If introducing goal(v,w) and dg; < dgp, path 1 will
obtain the higher value of the cost function and can bring the robot closer to the target point.

’\ target point
h

obstacle

path 2

Figure 2. Path comparison analysis.

Both head (v, w) and goal (v, w) functions facilitate the navigation of the robot towards
the target point, and the azimuth and distance between the endpoint of the path and the
target point were considered carefully. goal(v,w), a complement to head(v, w), mainly
focuses on the navigation in the latter stages of motion, and goal(v, w) gradually plays a
dominant role when the robot is closer to the obstacles. In contrast, in the pre-motion phase,
navigation mainly relies on head(v, w). The specific method can be realized by adaptively
adjusting the weight 6 through fuzzy control, as in Section 3.2.

Based on the above analysis, the improved prediction path cost function proposed in
this paper was ultimately determined as follows:

G(v,w)" = ahead(v,w) + Bdist(v, w) + yvel (v,w)" + Bgoal (v, w) 9)

3.2. Fuzzy Control Adaptive DWA Algorithm

To solve the problem that the cost function weights of original DWA algorithm are
fixed and cannot be dynamically adjusted, which leaves the robot unable find the target
position or choose a longer path to bypass obstacles, a fuzzy control method was introduced
to adjust the cost function weights adaptively so that the driving path of the robot was
optimized when avoiding obstacles.

The distance d, between the robot and the obstacle and the distance dg between the
robot and the target point are taken as fuzzy control input variables with ranges of [0, 2] m
and [0, 15] m, respectively, defined as close (C), medium (M), and far (F) in fuzzy languages.
B, v and 0 are taken as the fuzzy control outputs, with a range of [0, 2], where § and 6 are
defined as small (S), medium (M), and large (L), and v is defined as extremely small (XS),
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small (S), medium (M), large (L), and extremely large (XL) in fuzzy languages. The input
and output affiliation functions are shown in Figure 3.
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Figure 3. Input-output membership function diagram. (a) Input affiliation functions; (b) output
affiliation functions.

According to the physical significance of the cost function of the DWA algorithm and
considering the actual obstacle avoidance situation of the robot, the following fuzzy rules
are formulated.

(1) When the distance d, between the robot and the nearest obstacle is long and so is
the distance d; between the robot and the target, the robot has higher priority to
drive towards the target at high speed and does not avoid the obstacle urgently,
so the weight of the velocity cost subfunction < increases as the distance increases.
The distance between the robot and the obstacle and the direction of the target are
non-major factors—their weights p and 0 are smaller than 1.

(2) When the distance d, between the robot and the nearest obstacle is short, obstacle
avoidance must be prioritized from the safety point of view. While avoiding obstacles,
it is necessary to slow the robot appropriately to avoid collision accidents. In this case,
the weight of the velocity cost subfunction y decreases as the distance d, decreases,
and § and 0 are larger than 1.

(3) When the distance dy between the robot and the target point is short, the robot should
adjust the driving direction to the target position and the moving speed should
be reduced at the same time, so 0 is increased and 7y is decreased as the distance
dg decreases.

Above all, the fuzzy control idea is that in any case, the safety of the robot must be
ensured. Therefore, it is necessary to prioritize avoiding obstacles and stable driving of the
robot. The fuzzy rules are shown in Table 1.

The three-dimensional diagram of the output is shown in Figure 4. It can be seen
that 8 reaches the maximum value when the robot is very close to the obstacle and far
from the target, and the minimum value when it is far from the obstacle. On the other
hand, 7 reaches the maximum value when it is far from the obstacle and the target, and
the minimum value when the robot is close to the obstacle and the target. Moreover, 0 is
negatively correlated with the size of d, and becomes larger when the robot is closer to the
target point.
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Table 1. Fuzzy rules.

Input Variables Output Variables
do dg p 0 0
C C M XS L
C M L S M
C F L M S
M C M M L
M M M L M
M F M XL S
F C S M L
F M S L M
F F S XL S

75
12.510.0 dg/m s 0.5

125 15  dom
20 150 00 go dg/m 150 20

(@ (b) (0)
Figure 4. Output result three-dimensional diagram. (a) ; (b) v; (c) 6.

4. Simulation Experiments and Result Analysis

To validate the feasibility of introducing fuzzy control module into DWA, several
comparative simulations were conducted between the improved and original DWA in
complex environments. Environmental maps with different obstacle distributions were
established in Python language. In the maps, the black grids represent obstacle areas, while
the white areas can be passed through by robots. “¥” is the starting point at (1, 1) and “x”
is the target point. The parameters of the robot and algorithm are shown in Tables 2 and 3,
and the simulation parameters are set as shown in Table 4.

Table 2. Robot parameters.

Maximum Minimum

Maximum Linear = Minimum Linear Angular Angular Linear Angular
. . . 2 . 07.2
Velocity/(m/s) Velocity/(m/s) Velocity/(°/s) Velocity/(°/s) Acceleration/(m/s”) Acceleration/(°/s”)
1.0 0.0 45 —45 0.2 45

Table 3. Algorithm parameters.

Velocity Angular Velocity Sampling Path Prediction
Resolution/(m/s) Resolution/(°/s) Interval/s Time/s
0.01 0.5 0.1 3.0

Table 4. Experimental parameters.

Starting Point Initial Velocity Initial Angular Initial Heading Direction Angle
Position (m) (m/s) Velocity (°/s) Angle (°) Weight «

12 x 12 1,1 0m/s 0 18 05

Map Size (m)
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4.1. Dense Obstacle Environment

Map 1 shows the simulation environment used to evaluate the obstacle avoidance
ability and the path selection reasonableness of the improved DWA in dense obstacles
compared to the original DWA with different fixed weights. The target point position is set
to (11, 10). The experimental results are shown in Figure 5.

12 12

10 4

12

10 A

Figure 5. Map 1 simulation results. (a) =17, vy =04; (b) =12, vy =13;(c) B =08, v =0.3;
(d) dynamic weight.

Different weights have a great impact on the results of path planning for the original
DWA algorithm. It can be seen from Figure 5a that when the cost function weights are
not set accurately enough, for example, § = 1.7, = 0.4, the robot will stop in front of
the obstacle and cannot reach the target position. When the fixed weight fis 1.2 and 7 is
1.3, although the path can be successfully planned to reach the target point, the frequent
path turning results in the robot not being smooth enough. When the fixed weight § is
0.8 and 7 is 0.3, the path length is reduced, but the minimum safe distance among dense
obstacles is too small, so the security is poor, as shown in the position circled in Figure 5c.
The improved DWA algorithm can make the path length shorter and can successfully guide
the robot through the dense obstacle area. Additionally, the velocity and safe distance
(distance to the nearest obstacle) of the improved DWA are compared with the fixed DWA
(B =0.8, v = 0.3) during the operation of the robot, as shown in Figure 6.

From Figure 6, it can be seen that the improved DWA has longer safe distance as well
as higher overall velocity, while the velocity varies greatly and is not conducive to smooth
operation of the robot by the original DWA. The experimental data are organized as shown
in Table 5.

As can be seen from Table 5, the improved DWA reduced the number of sampling
steps and path length by 35.42% and 1.28%, respectively, and enlarged the minimum safe
distance by 62.08% compared to the fixed weights (8 = 0.8, v = 0.3) by DWA.
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Figure 6. Comparison of velocity and safe distance on Map 1. (a) Velocity of the robot by DWA;
(b) velocity of the robot by improved DWA; (c) safe distance of the robot by DWA; (d) safe distance
of the robot by improved DWA.

Table 5. Map 1 experimental data.

Minimum Safe Distance/m Time Steps/n Path Length/m
B=08v=03 0.24767 624 14.01
B=12,v=13 0.40027 947 14.57
B=17,v=04 / / /
dynamic weight 0.40143 403 13.83

4.2. Complex Obstacle Environment

To evaluate the performance of the improved DWA in complex environments, Map 2
is set with more obstacles of different shapes and sizes. The target point position is set to
(11, 11), and the experimental results are shown in Figure 7.

As shown in Figure 7, when the fixed weights are setto § =13,y =050r g =12,
v = 1.3, the original DWA fails to plan the path due to the inability to bypass the U-shaped
obstacle near the target point. When the fixed weights are set to § = 0.5, v = 0.3, the
planned path is close to obstacles and has bad security. Additionally, the large turning
points also affect the smooth motion of the robot. However, the improved DWA does not
require setting weight values. It can adaptively adjust the weight values based on complex
environments and its own motion state, and plan a smooth and safe path in Map 2.

On the other hand, the velocity and safe distance (distance to the nearest obstacle) of
the improved DWA and original DWA with fixed weights (8 = 0.5, v = 0.3) during operation
are compared, as shown in Figure 8.

From Figure 8§, it can be seen that the improved DWA has a longer safe distance with
less overall speed change and moves more smoothly, while the number of traveling steps
are less. The experimental data of Map 2 are organized as shown in Table 6.
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0 4 6 8 10 1 0 2 4 6 8 10 12
(0 (d)
Figure 7. Map 2 simulation results. (a) =13, y =05 (b) =12, vy =13;(c) B =05, v =0.3;
(d) dynamic weight.
08 0.8
07 0.7

velocity(m/s)
s o = =
g % & %8
velocity(m/s)
o o o o
w &> 0 o

o
o
N}

)
°
=

°
S

. . . - 00
0 100 200 300 400 500 0 50 100 150 200 250 300 350
Time steps/n Time steps/n
(a) (b)
16 16
14 14
12 I
g 10 8 10
@ .2
< o8 T o8
2 2
& &
= =
vy 0.6 v 06
0.4 044
0.2 024
0 50 100 150 200 250 300 350 0 100 200 300 400 500
Time steps/n Time steps/n
(o) (d)

Figure 8. Comparison of velocity and safe distance on Map 2. (a) Velocity of the robot by DWA;
(b) velocity of the robot by improved DWA; (c) safe distance of the robot by DWA; (d) safe distance
of the robot by improved DWA.
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Table 6. Map 2 experimental data.
Minimum Safe Distance/m Time Steps/n Path Length/m
B=13,v=05 / / /
B=12,v=13 / / /
B=051v=03 0.40 458 14.62
dynamic weight 0.45 335 14.44

From Table 6, the improved DWA reduces sampling steps and path length by 26.86%
and 1.23%, respectively, compared to the original DWA with fixed weights (8 = 0.5, ¥ =0.3),
and improves safe distance by 12.5% in Map 2.

4.3. Random Obstacle Environment

To evaluate the ability of the improved algorithm to deal with unknown obstacles,
random obstacle avoidance simulations were conducted.

Figure 9 shows the results of the improved DWA in a random obstacle environment.
The locations of the starting and target points are the same as Figure 7. The red dashed
line in Figure 9a represents the path planned by the improved DWA in the original Map 2
environment without adding random obstacles. To verify the obstacle avoidance ability of
the improved DWA in the random obstacle environment, three randomly shaped obstacles
were added to the planned path, which are shown as blue squares in Figure 9. Figure 9b-d
show the obstacle avoidance process of the improved DWA. It can be seen that the algorithm
proposed in this paper has strong obstacle avoidance ability and a relatively long safe
distance from random obstacles. The safe distances from the obstacles are shown in
Figure 10. It can be seen that the safe distance of the path planned by the algorithm
proposed in this paper remains larger than 0.3 m, which represents good security.

12 12

- X
- . n =l
p
;
/
I'. I
;
/
/
/
/
e W
p

ol P
61 /
'm B
1 ,f
.
.
.
.
.
.

1r ,

10 1 l.

-

|
]

g
"

(c) (d)

Figure 9. Obstacle avoidance results. (a) Add random obstacles; (b) avoid the first random obstacle;
(c) avoid the second random obstacle; (d) avoid the third random obstacle.
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Safety distance/m
o
]

0 50 100 150 200 250 300 350 400
Time steps/n

Figure 10. Safe distance diagram.

Based on the above simulation experiments, it can be concluded that the improved
DWA proposed in this paper can effectively enhance the rationality of path selection
and safe distance in variable obstacle environments, as well as the smoothness and
mobility efficiency.

5. Conclusions

A dynamic weight adjustment DWA has been proposed to address the issues of
irrational path selection, poor security, and large velocity fluctuations in complex and
variable obstacle environments encountered by the original DWA. The proposed algorithm
is improved as follows:

- The velocity cost subfunction of the original DWA is improved so that the path with
gentle speed change among the candidate paths is more likely to be selected and the
robot runs more smoothly.

- The target deviation cost subfunction is added to evaluate the candidate paths, and
the robot’s ability to navigate to the target is enhanced, so the path length is shorter.

- The fuzzy logic algorithm is used to adaptively and dynamically adjust the weight
value of the cost function according to the environmental information, so the robot
can drive to the target point at a higher speed in the area far from the obstacle and can
pass smoothly and safely in the dense obstacle area.

The simulation results show that the improved DWA proposed in this paper can adapt
to a complex obstacle environment. Compared with the original DWA, the velocity, safe
distance, and path length are significantly improved.
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