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Abstract: Metasurface absorbers have shown significant potential in stealth applications due to their
adaptability and capacity to reduce the backscattering of electromagnetic (EM) waves. Nevertheless,
due to the materials used in the terahertz (THz) range, simultaneously achieving excellent stealth
performance in ultrawideband remains an important and difficult challenge to overcome. In this
study, an ultrawideband absorber is proposed based on indium tin oxide (ITO) and polyethylene-
terephthalate (PET), with a structure thickness of only 0.16λ. ITO sheets are utilized to achieve
broad-spectrum, optical transparency and flexibility of the metasurface. The results show that
absorption higher than 90% can be achieved in the frequency band ranging from 1.75 to 5 THz
under normal TE and TM polarizations, which covers a wide THz band. The structure is insensitive
to polarization angles and exhibits 97% relative bandwidth above 90% efficiency up to an oblique
incident angle of 60◦. To further validate the efficiency of the absorption performance, the radar cross-
section (RCS) reduction investigation was performed on both planar and conformal configurations.
The findings show that under normal incidence EM waves, both flat and curved surfaces can achieve
RCS reduction of over 10 dB, covering an extremely wide frequency range of 1.75 to 5 THz. The
metasurface presented in this study exhibits significant potential for use in several THz applications,
including flexible electronic devices and stealth aircraft windows.

Keywords: absorber; radar cross-section (RCS) reduction; flexible; transparent; terahertz

1. Introduction

In the field of modern radar and communication systems, the efforts to reduce electro-
magnetic (EM) interference have resulted in the creation of inventive technologies with the
goal of mitigating interference and enhancing overall system performance [1]. Metasurfaces
(MSs) have emerged as novel solutions among these technologies, providing unprecedented
versatility and functionality [2,3]. Subwavelength meta-atoms, organized in periodic or
quasi-periodic configurations, have significantly transformed the control and manipulation
of radiation. MSs have found extensive utilization in various applications, specifically in
the field of stealth technology, with the main objective of minimizing radar cross-section
(RCS), to prevent the target from being detected [4]. There are two techniques to perform
RCS reduction through MSs: (i) diffusion and (ii) absorption. The first approach scatters the
reflected EM waves away from the direction of the source using coding MSs that works on
the principle of phase discontinuity [5]. Another approach for RCS reduction is absorbing
the incident energy [6,7]. In the realm of EM waves, Landy et al. introduced the concept of a
perfect metasurface absorber (PMA) that uses split-ring resonators to attain an absorptivity
of 99% at a given frequency [8]. Subsequently, several PMAs have been developed and
analyzed, including the visible [9], microwave regions [10], and terahertz regions [11,12].
However, a significant drawback of most MSAs is their confined bandwidth, which poses
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challenges for their real-world implementation. To overcome these limitations, there are
two primary methods. The first approach refers to the occurrence of several absorption
peaks that are due to the arrangement of multilayered structures [13,14] or the existence of
many resonators on a single layer [15]. However, it suffers the shortcomings in adaptability,
transparency, and high pricing. The second approach involves enhancing the resistance
of a periodic conductive design to achieve the added advantage of dissipating energy by
the use of lumped resistors [16,17], employing resistive inks [18] or utilization of resistive
films [19,20]. By loading lumped resistors, it can lead to a parasitic effect at high frequencies
and increase processing issues. On the other hand, resistive films offer several benefits,
including low cost, ease of production, and great flexibility. Also, resistive sheets, such
as indium tin oxide (ITO), have the unique feature of enabling both transparency and
flexibility [21].

The potential of resistive films as THz absorbers has led to an increase in research
and development of broadband absorbers in recent years. For the frequency range of
0.4–1 THz, Junjie et al. created a transparent and flexible absorber using an ITO-PVC
structure that was more than 80% efficient [22]. However, the structure lacks oblique
stability due to higher thickness. Adding to that, Jinming et al. created an ITO-based
meta-absorber capable of absorbing a wide range of frequencies from 0.4 to 1.3 THz,
with an average absorption of 80% [23]. Wei Ying integrated different absorbers into a
hybrid flexible array and successfully reduced RCS ranging from 0.55 to 0.7 THz [24].
Furthermore, Xin Yan presented a broadband flexible absorber with wide-angle stability
and RCS reduction characteristics [25]. Nevertheless, the low efficiency and complex
patterns result in a substantial rise in the effort required to manufacture and implement
these structures in real-world scenarios. Moreover, ITO-based THz metasurface absorbers’
capability to reduce RCS is rarely studied in the available research.

Based on ITO-PET, this study presents a polarization-insensitive absorber in the THz
regime that has a low profile, is optically transparent, flexible, and has a wide absorption
bandwidth. The working mechanism of the meta-absorber and the impact of various
structural parameters on the properties of the metasurface are analyzed. Additionally,
a high efficiency of above 90◦ is maintained across the entire absorptivity range, with
oblique incidence angles of 60◦. The proposed structure is novel in the following ways:
(i) The utilization of a simple single element consisting of a slot in the ITO sheet to achieve
absorption over a broadband (fractional bandwidth, FBW = 97%). (ii) The proposed
structure exhibits a wide frequency range for reducing the RCS by 10 dB, spanning from
1.75 THz to 5 THz. Furthermore, the performance of the structure has shown resistance on
curved surfaces.

2. Design and Simulation Setup

To achieve absorption and polarization insensitivity, it is necessary to create structures
that are symmetric in design. Figure 1a illustrates the schematics of a suggested absorber,
together with the symmetric structure of its meta-atom. Additionally, the progressive
formation of the meta-atom is depicted in Figure 1b–d and labeled as steps 1, 2, and
3, respectively. Regions in yellow and blue represent PET and ITO layers, respectively.
The meta-atom exhibits a sandwich-like configuration, comprising three layers with a
periodicity of P = 55 µm. The top surface consists of a patterned ITO resonator, which is
printed onto a flexible PET substrate. The gaps between the ITO pattern are w = 8 µm,
l = 30 µm, s = 24 µm, and g = 6 µm. The ground plane, on the other hand, is a continuous
ITO layer with a sheet resistance of 80 ohm/square and a thickness of 20 nm. The PET
sheet has a loss tangent of 0.06 and a relative permittivity of 3.0 with a thickness “h” of
15 µm. The commercially available optically transparent ITO-PET films were utilized in the
design. The CST Studio Suite 2020 was used with a frequency domain solver to create the
design of atom structures and simulate their EM characteristics using unit cell boundary
conditions and Floquet port.
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Figure 1. (a) Schematics of a proposed absorber and its meta-atom configuration. (b–d) Design
evaluation of a meta-atom.

3. Results and Analysis
3.1. Absorption Characteristics

The absorption characteristics of a suggested configuration can be obtained by analyz-
ing the reflection and transmission of EM signals. Thus, the absorption can be determined
as follows [26]:

A(ω) = 1 − R(ω)− T(ω) = 1 − |S11|2 − |S21|2 (1)

Here, the absorptivity is denoted by A(ω), whereas the reflectivity and transmittance
are denoted by R(ω) = S2

11 and T(ω) = S2
21, respectively. The S2

11 is considered as the
result of both co-polarized and cross-polarized components. The co-polarized component
result is obtained when both the incident and reflected EM wave are either TE-polarized
or TM-polarized. In contrast, the cross-polarized component value is acquired when the
incoming wave is polarized in the TE mode and the reflected wave is polarized in the
TM mode, or vice versa. Using continuous ITO film as the bottom layer results in zero
transmittance T(ω) for the design. Consequently, we can simplify Equation (1) as follows:

A(ω) = 1 − R(ω) = 1 − |S11|2 (2)

The simulated results of absorption and reflection for TE and TM modes under normal
incidence waves are shown in Figure 2a. The TE polarization is a representation of an
incident wave that has the orientation of its electric field along the y-direction. On the
other hand, the TM polarization has the electric field oriented along the x-direction. The
results indicate the same response for TE and TM modes, where reflection coefficient
remains below 0.3 dB across a broad frequency range of 1.75 THz to 5 THz, while the
absorptivity exceeds 90%. At 2.36 and 4.09 THz, the peak absorption values are 99% and
100%, respectively. Moreover, the performance of a proposed design is validated in HFSS
software. The simulated results from both software packages show good agreement, as seen
in Figure 2b. The slight difference between the simulated results of CST and HFSS is due to
the different numerical techniques employed by the two software. Both the results cover
the desired bandwidth of 1.75 THz to 5 THz. Adding to that, the absorption properties for
the design sequence of the suggested structure are illustrated in Figure 2c. As we move
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towards the final step of the design process, the absorption bandwidth increases in an
orderly manner.
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3.2. Absorption Characteristics

Impedance matching is a crucial factor in determining absorption behavior. The
impedance of a meta-absorber depends upon its effective permittivity and permeability.
The calculated normalized input impedance (Zin) of the proposed design, which includes
an ITO ground layer, can be derived from the simulated S-parameters as follows:

Zin =

√
µ

ε
=

√√√√ (1 + S11)
2

(1 − S11)
2 (3)

The maximum absorption will occur when the normalized impedance of the absorber
is equal to the free-space impedance. In other words, when the real part of the normalized
impedance (Z′) is close to 1 and the imaginary part (Z′′) is close to 0, maximum absorption
will occur. The plot in Figure 3a displays the normalized input impedance of the proposed
meta-absorber. It indicates that the real part of the normalized input impedance is nearly 1
and the imaginary part is approximately 0 within the frequency range of 1.75 THz to 5 THz.
This observation aligns with the principles of impedance matching theory. In order to gain
a deeper understanding of the absorption mechanism for this structure, the surface current
distributions at 4.09 THz resonant frequency are examined in Figure 3b,c. The resonances
are produced by either the electric or magnetic resonance of a given structure. When the
surface current distribution on the top pattern and bottom ground is parallel, then electric
resonance will be generated. On the other hand, when the current is induced on the top and
bottom layers in the opposite direction, then magnetic resonance will occur. At 4.09 THz,
the top layer surface currents are opposite to those on the ground, generating magnetic
resonance, which agrees with the absorption operating principle [27].
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3.3. Equivalent Circuit Model

The comprehensive analysis of the broadband response of a suggested absorber can be
explained by employing an equivalent circuit, which can be modeled using a transmission
line method (TLM). The absorber structure does not consist of metal, and the resistive
property is provided by the ITO resonators. The impedance being offered by the PET layer
can be represented by Zc = Z0/

√
ε, which is terminated by the bottom ITO layer “Rg”. The

equation presented can be used to compute the impedance at the input terminal of the
transmission line [24]:

Z1 = Zc
Rg + jZc tan(βh)
Zc + jRg tan(βh)

(4)

Here, Zc, β, and h are characteristic impedance, phase constant, and thickness of PET
dielectric substrate, respectively. The upper layer of ITO can be represented as a series
configuration consisting of resistance R, inductance L, and capacitance C. On the other hand,
the lower layer of ITO can be defined as the equivalent resistance Rg. ZR represents the
impedance provided by the resonance circuit. The total input impedance can be calculated
as Zin = ZR||Z1. Finally, the calculation of the reflection coefficient can be determined
as follows:

Γ =
Zin − Zo

Zin + Zo
(5)

The equivalent circuit model of the proposed absorber is developed and simulated
using Keysight’s advanced design system (ADS) simulation tool, shown in Figure 4a. The
values of components are as follows: R = 15 Ω, L = 0.035 nH, and C = 0.00075 pF. Figure 4b
illustrates the S11 of the equivalent circuit and CST software. It is noted that both tools
show similar S11 characteristics (resonating at 2.36 and 4.09 THz), which further increases
confidence that the proposed design will perform as expected in a real-world setting.
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4. Effect of Model Parameters on Absorption Parameters
4.1. ITO Sheet Resistance

The impact of the ITO sheet resistance (R) on the MS absorption spectrum is seen in
Figure 5a. An optimal ITO resistance results in a better absorption bandwidth due to the
impedance matching, as seen in the figure. However, a further increase in sheet resistance
greater than the optimal value will affect the impedance mismatch, resulting in efficiency
decreasing at the first resonant peak. Therefore, the aforementioned analysis findings
suggest that the absorption efficiency and bandwidth can be controlled by modifying the
resistance of ITO sheets.
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4.2. Substrate Height

The impact of different thicknesses of the dielectric layer on the absorption properties
was also examined, as depicted in Figure 5b. It is a crucial factor in developing absorbers
as it determines the conformability and the low-profile characteristics of the proposed
structure. It is observed that increasing or decreasing the thickness from the optimal value
will badly affect the efficiency as well as operating bandwidth. This is due to the height
of the substrate influencing the effective refractive index experienced by the EM waves
interacting with the MS. Therefore, the PET having a thickness of 15 µm is selected for
designing the absorber presented in this work as it provides near-unity absorption in a
broad frequency spectrum.

4.3. Geometric Parameters of ITO Pattern

An analysis is conducted on the impact of the geometric parameters (l, w, s, and
g) of the ITO pattern layer on the absorption efficiency and bandwidth. This analysis is
illustrated in Figure 5c–f. As depicted in Figure 5c, the absorption bandwidth increases
while efficiency gradually drops as the value of l increases. Therefore, the optimum value
for l, considering both efficiency and working bandwidth, is 30 µm. Figure 5d demonstrates
that for w < 8 µm, there is a drop in the absorption bandwidth. When the w > 8 µm, the
efficiency decreases as the bandwidth increases. The main reason behind the variations in
absorption spectrum due to change in length and width of the resistive structure is because
the resistive pattern changes the distribution of the electric and magnetic fields within
the unit cell. This redistribution affects the local resonant conditions, leading to a shift in
resonant frequency. In Figure 5e,f, altering the values of “s” and “g” will have minimal
impact, despite a modest change in the frequency band. The analysis conducted above
reveals that the most favorable values for l, w, s, and g are 30, 8, 24, and 6 µm, respectively.

5. Angular Stability

In real-world applications, EM waves strike the surface of the structure at various
angles. An optimal absorber should effectively absorb EM radiation regardless of the
polarization angle or incidence angle. Hence, we conducted a sequence of numerical
simulations to evaluate the performance of the suggested structure under different po-
larizations and oblique incidence angles. Figure 6a illustrates the absorption spectra of
a suggested meta-absorber. It is evident that the absorption of the varying polarization
angles (ϕ) ranging from 0 to 90◦ is constant. The structure exhibits polarization angle
insensitivity as a result of its symmetric nature along the x and y-axes. Next, absorptivity
spectra under different oblique incidences are depicted in Figure 6b. It can be observed that
the absorption efficiency remains consistently above 90% at incident angles ranging from
0 to 60◦, and the absorption bandwidth remains almost unchanged. The result demon-
strates that the suggested design exhibits excellent absorption capabilities and maintains a
steady operating bandwidth even at large angles.
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6. Radar Cross-Section (RCS) Analysis of Planar and Curved Structure

Analyzing the reduction in RCS can be used to assess the absorption capabilities of
a structure. Therefore, in order to evaluate RCS suppression capability for planar and
conformal configuration with convex bending angle (ψ), a meta-atom array with a finite
size of 5 × 7 is created, as shown in Figure 7. For comparison, a copper plate with a
thickness of 0.035 µm and an electric conductivity of 5.8 × 107 S/m is designed to be
similar in shape and size to the proposed absorber. During the full-wave simulation in
CST software, a plane wave with open boundary conditions is applied to the surface of
the structure.
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Figure 8a depicts the simulated monostatic RCS of the plain copper sheet and RCS of
a plain MS under normal incident EM wave. It is observed that the RCS of an MS is found
to be substantially lower than that of the flat copper sheet. Furthermore, Figure 8b shows
the RCS reduction for planar and conformal configuration. Between 1.75 THz and 5 THz, a
reduction of more than 10 dB is observed when the surface bending angle (ψ) is 0◦. Adding
to that, it is noticeable that a curved surface (ψ = 90◦) can still keep the RCS reduction
above 10 dB within the specified frequency range. Note that the simulated findings can
be validated through measurements in real conditions by using a fiber-coupled THz time-
domain spectroscopy system in a reflection mode [25]. A major feature of this system is that
the THz emission and detection are arranged in the optical guide, respectively. The angle
between them can be adjusted by rotating the two optical guides. A copper mirror with the
same size can be used as the reference to normalize the power reflectance of the sample.
Table 1 compares the proposed structure with some of the recently published works. As can
be seen from this table, the proposed structure is superior to previous structures in terms of
flexibility, low profile, broad bandwidth, and insensitivity to wide incident wave angles.
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flat and curved structures.

Table 1. Comparison with reported state−of−the−art work.

Ref. No. of Layers Frequency (GHz) Bandwidth (%) Angular Stability (◦) Flexible RCS Reduction

[14] 2 1.97−4.63 81 − No No

[22] 1 0.4−1.04 88 40 Yes No

[23] 1 0.2−1.0 133 − No No

[24] 1 0.55−0.7 24 30 Yes Yes

[25] 1 0.8−1.5 60 50 Yes Yes

This work 1 1.75−5.0 97 60 Yes Yes

7. Conclusions

This research presents a low-profile MS that effectively absorbs ultrawideband signals
in the THz frequency range. Numerical simulations reveal that a combination of an
ITO reflective backplane, a PET layer, and an ITO resistive layer can achieve absorption
efficiencies of above 90% from 1.75 THz to 5 THz. The absorber’s stable response is achieved
over a wide frequency range of 97% regardless of the polarization, due to its symmetric
geometry, whereas absorptivity of more than 90% is realized in the abovementioned
frequency band under oblique incidents up to 60◦. In addition, this study thoroughly
examines the structure’s monostatic RCS reduction capability and observes that it can offer
over 10 dB RCS reduction in both planar and conformal designs. This approach holds
significant potential in various applications, including radar arrays, windows for stealth
aircraft, and rooms designed for EM shielding.
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