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Abstract: At the present stage, the field of detecting vegetable pests and diseases is in dire need of the
integration of computer vision technologies. However, the deployment of efficient and lightweight
object-detection models on edge devices in vegetable cultivation environments is a key issue. To
address the limitations of current target-detection models, we propose a novel lightweight object-
detection model based on YOLOv8n while maintaining high accuracy. In this paper, (1) we propose
a new neck structure, Focus Multi-scale Feature Diffusion Interaction (FMDI), and inject it into the
YOLOv8n architecture, which performs multi-scale fusion across hierarchical features and improves
the accuracy of pest target detection. (2) We propose a new efficient Multi-core Focused Network
(MFN) for extracting features of different scales and capturing local contextual information, which
optimizes the processing power of feature information. (3) We incorporate the novel and efficient
Universal Inverted Bottleneck (UIB) block to replace the original bottleneck block, which effectively
simplifies the structure of the block and achieves the lightweight model. Finally, the performance
of YOLO-FMDI is evaluated through a large number of ablation and comparison experiments.
Notably, compared with the original YOLOv8n, our model reduces the parameters, GFLOPs, and
model size by 18.2%, 6.1%, and 15.9%, respectively, improving the mean average precision (mAP50)
by 1.2%. These findings emphasize the excellent performance of our proposed model for tomato
pest and disease detection, which provides a lightweight and high-precision solution for vegetable
cultivation applications.

Keywords: object detection; deep learning; YOLOv8; FMDI; MFN; UIB; tomato pests and diseases

1. Introduction

The increasing prevalence of computer vision technology in agriculture has made
the detection of pests and diseases in vegetable crops essential for enhancing agricultural
productivity and ensuring crop health. During tomato cultivation, tomatoes are mainly
attacked by four pests: leaf blight, leaf curl, septoria leaf spot, and verticillium wilt. Nowa-
days, tomato cultivation is mostly carried out in greenhouses. The high-humidity and
high-temperature environment in greenhouses provides favorable conditions for the sur-
vival of pests and diseases. This leads to prolonged harm cycles, making it very challenging
to prevent and treat these issues. Consequently, the yield and quality of tomatoes are
seriously affected. Traditionally, the detection of these pests and diseases in tomatoes relied
on manual inspection, which is a time-consuming and labor-intensive process. In recent
years, deep learning-based object-detection models have shown tremendous potential in
automating this detection process. Among them, the YOLO (You Only Look Once) family
models have attracted much attention due to both their real-time detection ability and high
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accuracy [1–5]. The latest iteration, YOLOv8 [6], continues this trend of excellence, further
improving efficiency and accuracy across various detection tasks [7].

Despite impressive strides in object-detection technology, implementing these systems
on edge devices within vegetable cultivation environments remains a formidable task. The
primary hurdles stem from the limited processing power and energy constraints typical
of edge computing hardware. This necessitates the development of lightweight, resource-
efficient models. While current YOLO iterations demonstrate impressive capabilities,
their substantial processing requirements and size make them ill-suited for deployment
in resource-limited environments [8–10]. This creates a pressing demand for solutions
that balance high detection precision with a streamlined architecture suitable for edge
computing. Such advancements are crucial for the swift and accurate detection of pests
and diseases, which significantly influence crop productivity and quality [11–13].

Researchers have investigated diverse strategies to enhance the efficiency and preci-
sion of object-detection systems. These efforts include refining network structures through
novel layer designs and modules [14], as well as exploiting multi-scale feature extraction
methods [15,16]. However, such advancements often result in heightened model intricacy
and computational requirements. Recent endeavors to boost YOLOv8’s capabilities have
explored the integration of attention-based mechanisms [17], and feature pyramid archi-
tectures [13] and knowledge transfer techniques [18]. Despite these improvements, there
remains a need for further optimization to achieve an ideal balance between computational
efficiency and detection accuracy. In especially specific applications of detecting pests
and diseases such as tomato leaf blight, leaf curl, septoria leaf spot, and verticillium wilt
there is a strong need for a real-time target-detection model that is lightweight and highly
accurate. Therefore, our study aims to bridge this gap by innovatively modifying the
YOLOv8 architecture [19,20].

In this paper, we propose a novel lightweight object-detection model, YOLO-FMDI, based
on YOLOv8n, to address the aforementioned challenges. Our contributions are threefold:

(1) We propose a novel neck structure called the Focus Multi-scale Feature Diffusion
Interaction (FMDI), which enables cross-level multi-scale feature diffusion and fusion,
significantly enhancing the accuracy of pest and disease detection.

(2) We propose the Multi-core Focused Network (MFN), an efficient network structure
that focuses on capturing context information at different scales and optimizing feature
processing capabilities.

(3) We incorporate the newly proposed Universal Inverted Bottleneck (UIB) [21]
module, replacing the original bottleneck module to optimize the C2F network architecture,
reducing model complexity and further achieving a lightweight model.

Through extensive ablation and comparative experiments, we validate the superior
performance of YOLO-FMDI. Compared with the original YOLOv8n, our model reduces
parameters by 18.2%, GFLOPs by 6.1%, and model size by 15.9%, while increasing the
mAP50 by 1.2%. We hope that the proposal of YOLO-FMDI will facilitate research in the
field of vegetable pest and disease detection.

2. Related Work
2.1. You Only Look Once V8 (YOLOv8)

Among real-time object-detection frameworks, the YOLO series stands out as a pio-
neer. Its fundamental approach reframes object detection as a regression task, enabling
simultaneous prediction of object class and position in a single network traverse [1]. Since
its inception, this series has undergone continuous refinement to improve both speed and
accuracy, evolving through iterations from YOLOv1 to the current YOLOv8 [2–6]. As
depicted in Figure 1A, YOLOv8 incorporates advanced optimization strategies into its
architecture, such as the Cross Stage Partial (CSP) [6] framework and an enhanced Feature
Pyramid Network (FPN) [6], further enhancing its detection capabilities.
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YOLO-FMDI. Among them, (a) the model backbone, (b) the model neck part, and (c) the model 
detection output part. 
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presents an interesting and complex challenge. By integrating a collection of parallel 
multi-core deep convolutional layers [8], alongside lightweight UIB [21] and ADown [22] 
lightweight techniques, we can dramatically reduce the computational requirements of 
the model while maintaining or even improving its accuracy. This approach provides val-
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2.2. Depthwise Separable Convolution 
The deep learning community has embraced depth-wise convolutions [8] as a means 

to optimize computational efficiency and parameter count without compromising model 
effectiveness in recent years. Originally introduced in the MobileNet series, these convo-
lutions quickly became a cornerstone of efficient neural network design [8]. Unlike con-
ventional approaches, depth-wise convolutions operate independently on each input 
channel, substantially reducing computational requirements [8]. This technique has 
proven particularly effective in architectures like MobileNet [9] and EfficientNet [11], 
where it is often paired with pointwise (1 × 1) convolutions to relationships between chan-
nels. This depth-wise separable convolution approach has facilitated the development of 
models that are well suited for use on resource-constrained edge devices. YOLOv8 incor-
porates multi-scale feature fusion and processing within its neck network to enhance ob-
ject-recognition capabilities [3]. However, the current implementation relies on standard 
convolution operations, leading to substantial computational overhead and offering 

Figure 1. (A) The network architecture of the original YOLOv8 [6]. (B) The overall architecture of
YOLO-FMDI. Among them, (a) the model backbone, (b) the model neck part, and (c) the model
detection output part.

The pursuit of a streamlined version of the high-performance YOLOv8 base model
presents an interesting and complex challenge. By integrating a collection of parallel
multi-core deep convolutional layers [8], alongside lightweight UIB [21] and ADown [22]
lightweight techniques, we can dramatically reduce the computational requirements of the
model while maintaining or even improving its accuracy. This approach provides valuable
insights for implementing these models on resource-constrained devices.

2.2. Depthwise Separable Convolution

The deep learning community has embraced depth-wise convolutions [8] as a means
to optimize computational efficiency and parameter count without compromising model
effectiveness in recent years. Originally introduced in the MobileNet series, these con-
volutions quickly became a cornerstone of efficient neural network design [8]. Unlike
conventional approaches, depth-wise convolutions operate independently on each input
channel, substantially reducing computational requirements [8]. This technique has proven
particularly effective in architectures like MobileNet [9] and EfficientNet [11], where it is
often paired with pointwise (1 × 1) convolutions to relationships between channels. This
depth-wise separable convolution approach has facilitated the development of models that
are well suited for use on resource-constrained edge devices. YOLOv8 incorporates multi-
scale feature fusion and processing within its neck network to enhance object-recognition
capabilities [3]. However, the current implementation relies on standard convolution op-
erations, leading to substantial computational overhead and offering opportunities for
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optimization in feature fusion processes. To address this, we propose integrating a set of
parallel depth-wise convolutions with diverse kernel sizes and residual connections into
YOLOv8’s neck network. These parallel branches, each with distinct receptive fields, effec-
tively capture multi-scale features, aiming to boost the feature extraction and integration
capabilities of the model and thereby improve the accuracy of detection. Furthermore, since
their introduction in ResNet [23], residual connections have been widely recognized for
their ability to facilitate gradient flow during training, mitigating the vanishing gradient
issue and enabling the effective training of deeper architectures. By combining depth-wise
convolutions with residual connections, we aim to further improve feature integration and
extraction while maintaining computational efficiency.

2.3. Universal Inverted Bottleneck

The Universal Inverted Bottleneck (UIB) [21] represents a recent innovation in lightweight
network architecture, designed to improve efficiency across various computer vision tasks,
including object detection and image classification. UIB’s key advantage lies in its adaptabil-
ity, allowing for model optimization without complex search procedures, thus significantly
reducing computational requirements. In contrast, conventional bottleneck structures,
such as those in ResNet [23] and MobileNetV2 [9], utilize fixed channel expansion ra-
tios, which may prove inefficient when processing different input resolutions or feature
dimensions. Subsequent research has built upon and refined this concept. For instance,
EfficientNet [11] integrated the inverted bottleneck with additional optimization techniques
through compound scaling, achieving a balanced performance across multiple resource
constraints. UIB’s design preserves the benefits of the inverted bottleneck while increasing
the network’s expressive capacity and computational efficiency. This is achieved by sharing
common components like pointwise expansion and projection, while treating only the
depth-wise convolution as a variable element. YOLOv8 incorporates the Cross Stage Partial
connections with the full-stage fusion (C2F) [6] module to bolster its feature extraction
and fusion capabilities. However, the bottleneck components within C2F can incur signifi-
cant computational costs under certain conditions. Given UIB’s adaptive nature, which
is particularly advantageous in overcoming the challenges of varying feature dimensions
within the C2F module, its integration offers the potential to markedly reduce the model’s
computational complexity and parameter count. The aim of this approach is to maintain
detection accuracy while achieving a more lightweight YOLOv8 model.

3. Methodology
3.1. Overall Architecture of the YOLO-FMDI

The overall architecture of our newly proposed YOLO-FMDI is illustrated in Figure 1B
and can be summarized into three main parts: (a) the backbone with the improved C2F
with UIB; (b) the neck with a focus on the Multi-scale Feature Diffusion Interaction module;
(c) the original detection part. First, a 640 × 640 input image is fed into P1, where it
undergoes a series of convolutions and C2F modules, resulting in features with 1/8, 1/16,
and 1/32 resolutions at P3, P4, and P5, respectively. Subsequently, the feature maps with
different dimensions obtained from the backbone are inputted into the FMDI structure,
which undergoes N stages of feature focusing, feature diffusion, and feature interaction
enhancement, thereby acquiring multi-scale features with richer semantic information.
Finally, the feature maps after N stages of feature interaction are passed into the detection
part for pest and disease recognition tasks.

3.2. Focus Multi-Scale Feature Diffusion Interaction

We propose a module called FMDI, standing for Focus on Multi-scale Feature Diffusion
Interaction, as illustrated in Figure 2. It takes three scaled features from backbone modules as
inputs to the Multi-core Focused Network (MFN), focusing on multi-scale features, allowing
each input scale of these features to possess detailed contextual semantic information, further
enhancing the network’s modeling and semantic representation capabilities.
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Figure 2. Focus Multi-scale Feature Diffusion Interaction module.

Subsequently, the features focused by the MFN are processed through three branches:
(1) by upsampling and fusing with the P3 scale features, then passing through a lightweight
C2F–UIB module, mixing semantic information from different spatial and channel dimen-
sions; (2) by a 3 × 3 convolutional downsampling operation and fusing with the P5 scale
features, also passing through another lightweight C2F–UIB module; (3) directly outputting
from the MFN. Finally, the multi-scale features outputted from the above three branches
serve as the input for the MFN module with three different scales of features in the next
stage. Simultaneously, starting from the second stage, the upsampling and downsampling
features from the previous stage are also inputted to the next stage, as shown at the Concat
position in Figure 2. This process is repeated until the Nth stage is completed. Through
this focusing and diffusion mechanism, features with rich contextual semantic informa-
tion are diffused to various detection scales, further enhancing the expressiveness and
generalization ability of the model.

3.3. Multi-Core Focused Network

The Multi-core Focused Network (MFN) consists of multi-scale pyramid layers and
multi-core deep convolutional layers. In the multi-scale pyramid layers, upsampling, Conv 1
× 1, and the novel lightweight ADown [22] downsampling are introduced. The ADown [22]
module reduces model complexity by optimizing the number of parameters in the convo-
lutional layers while preserving as much image information as possible without affecting
object-detection accuracy. Meanwhile, the multi-core deep convolutional layers extend the
receptive field through different convolutional kernel sizes to capture multi-scale texture
features, thereby enhancing the network’s long-range modeling capability, as shown in
Figure 3. Specifically, after focusing and fusing the features, a set of parallel depth-wise
convolutional layers with different receptive fields and residual structures are introduced to
capture cross-scale contextual semantic information (e.g., k = 5 × 5, 7 × 7, 9 × 9, 11 × 11).
Subsequently, a Conv 1 × 1 and residual structure are used to further capture more local
information. This process can be represented as:

C (P) = C (AD(P3), Conv(P4), Conv(Up(P5))) (1)

O = C (P) +Conv (DWConvkxk (C (P))+ C (P)) (2)

where C (·) is Concat, AD(·) is ADown, Up(·) is Upsample, Conv (·) is Conv 1 × 1, and
DWConvkxk (·) is a set of depth-wise convolutions with different kernel sizes.
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3.4. Improved C2F with UIB

The C2F module in YOLOv8 has evolved from the C3 module in YOLOv5. As shown
in Figure 4, within the bottleneck block, the input first passes through a 1 × 1 convolu-
tional layer, followed by a 3 × 3 convolutional layer, and is finally added to the initial
value through a residual structure. As can be seen, the C2F block contains more skipped
connections, eliminates the convolution operation in branches, and introduces an addi-
tional splitting operation. This structural design allows for the capture of richer feature
information. To further lightweight this module while maintaining detection accuracy,
we incorporate the new and efficient Universal Inverted Bottleneck (UIB) block to replace
the original bottleneck block. This module can flexibly adapt to building models with
various optimization objectives without the need for complex searches. While maintaining
a similarly simple structure, it shares common modules such as pointwise expansion and
projection, enabling the C2F module to temporarily make trade-offs between spatial and
channel mixing. The optimization of the above modules further maximizes computational
utilization and serves to lightweight the model.
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4. Experiment

The experimental dataset comprised 1810 images of healthy and spotted tomato leaves
collected by us, along with 2700 images of leaf curl, wilt, and blight diseases [24]. In our
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experiments, we divided the 4510 images in the tomato pest and disease dataset according
to the ratio of 8:1:1, specifically categorized as a training set of 3608 images, a validation set
of 451 images, and a test set of 451 images. Tomato leaf blight, leaf curl, septoria leaf spot,
and verticillium wilt are important phytopathological concerns in tomato cultivation. The
fungus Alternaria solani induces leaf blight, which is characterized by concentric, necrotic
brown lesions that result in early leaf shedding and diminished photosynthetic efficiency.
Various begomoviruses are responsible for leaf curl, which causes leaves to yellow and
curl upwards, inhibiting plant development and reducing fruit production [25]. Septoria
lycopersici is the pathogen behind septoria leaf spot, manifesting as small, round lesions
featuring dark borders and pale centers, which merge over time, inflicting widespread
foliar harm [25]. Verticillium wilt, caused by either Verticillium dahliae or V. albo-atrum, is
identifiable by the wilting, yellowing, and death of lower foliage, often affecting one side
of the plant due to vascular system invasion [26]. These pathogens severely disrupt crucial
physiological functions in tomato plants, including carbon fixation, nutrient circulation,
and water absorption [27]. The consequences include decreased plant vitality, restricted
growth, and accelerated aging. Collectively, these diseases lead to significant reductions in
crop yield, deterioration of fruit quality, and lowered market value, presenting substantial
financial obstacles for tomato growers globally. Due to the limitations imposed by the
local cultivation conditions at the time, we could not obtain physical samples of leaf curl,
wilt, and blight diseases. Consequently, we supplemented our dataset with the images of
these three disease categories from [24]. Partial dataset images are displayed in Figure 5.
We conducted extensive ablation and comparative experiments on this curated dataset
to validate the efficacy of our proposed optimized model in detecting pests and diseases
affecting vegetation.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 5. Selected sample plots of the dataset. 

4.1. Experimental Setups 
The experiments were conducted on a platform built on the Windows 11 (64-bit) op-

erating system. The specific environmental parameters used are presented in Tables 1 and 
2. 

Table 1. Experimental configuration environment. 

Platform environment Details 
Operating system Windows 11 (64-bit) 

Programming language Python 3.8.19 
Memory 32G 

CPU AMD Ryzen 9 7950X3D 16-Core Processor 4.20 GHz 
GPU NVIDIA GeForce RTX 4090 

CUDA 11.8 
Pytorch 2.2.2 

Development platform Visual Studio Code 

Table 2. Experimental parameter settings. 

Parameter Value 
Initial learning rate 0.01 
Final learning rate 0.01 

Momentum 0.937 
Batch size 12 

Input image size 640 × 640 
Epoch 130 

4.2. Evaluation Indicators 
In this paper, we utilized the model parameter counts, GFLOPs, and size of the model 

as quantitative metrics for evaluating the degree to which the lightweight model has been 
achieved. Concurrently, we utilized the mean average precision (mAP50 and mAP50-95) 
to assess the accuracy of the model. The formulation for computing precision (P) is delin-
eated in Equation (2), recall (R) in Equation (3), and the mean average precision (mAP) in 
Equation (4). P = TPTP + FP (3)

R = TPTP + FN  (4)

Figure 5. Selected sample plots of the dataset.

4.1. Experimental Setups

The experiments were conducted on a platform built on the Windows 11 (64-bit) operat-
ing system. The specific environmental parameters used are presented in Tables 1 and 2.

Table 1. Experimental configuration environment.

Platform Environment Details

Operating system Windows 11 (64-bit)
Programming language Python 3.8.19

Memory 32G
CPU AMD Ryzen 9 7950X3D 16-Core Processor 4.20 GHz
GPU NVIDIA GeForce RTX 4090

CUDA 11.8
Pytorch 2.2.2

Development platform Visual Studio Code
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Table 2. Experimental parameter settings.

Parameter Value

Initial learning rate 0.01
Final learning rate 0.01

Momentum 0.937
Batch size 12

Input image size 640 × 640
Epoch 130

4.2. Evaluation Indicators

In this paper, we utilized the model parameter counts, GFLOPs, and size of the model
as quantitative metrics for evaluating the degree to which the lightweight model has been
achieved. Concurrently, we utilized the mean average precision (mAP50 and mAP50-
95) to assess the accuracy of the model. The formulation for computing precision (P) is
delineated in Equation (2), recall (R) in Equation (3), and the mean average precision (mAP)
in Equation (4).

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

AP =
∫ 1

0
P(R)dR (5)

mAP =
∑K

i=1 APi

K
(6)

In Equations (3) to (6), we used several key metrics to evaluate the model performance.
Among them, TP represents the number of accurately identified tomato pest instances,
FP represents the number of healthy instances misclassified as pests, and FN refers to the
number of actual pest instances that were not successfully detected. Precision (P) and recall
(R) are two important evaluation metrics, and their different combinations form a curve.
AP value, which is the area under this curve, reflects the overall performance of the model
at different thresholds. The mAP, on the other hand, is the average of multiple AP values
and is used to measure the overall performance of the model across multiple categories.

4.3. Ablation Studies
4.3.1. Ablation for Components

In the ablation experiments, we progressively incorporated the respective submodules
into the YOLOv8n baseline model, ultimately evolving into our proposed optimized model,
YOLO-FMDI. The results of the ablation experiments are presented in Table 3. When the
original neck structure is replaced with the FMDI structure incorporating the original C2F
module, an improvement of 1.1% in mAP50 and 0.7% in mAP50-95 is observed. However,
using the FMDI structure with the C2F module fused with UIB yields an improvement
of 1.8% in mAP50 and 3.2% in mAP50-95 is observed. As the objective of this paper is
to produce a lightweight model, the two ablation approaches mentioned above resulted
in an increase in either parameters, GFLOPs, or model size. Considering the lightweight
capabilities of the UIB module, we replaced solely the bottleneck blocks within all C2F
modules with UIB, leaving the remaining modules unaltered. This resulted in a 27.5%
reduction in the number of parameters, a 25.6% decrease in GFLOPs, and a 25.4% reduction
in model size. Ultimately, we constructed our proposed optimized model by replacing all
bottleneck blocks within the C2F modules with UIB, while simultaneously substituting the
original neck structure of the YOLOv8 model with FMDI. In summary, compared with the
standard YOLOv8 model, our proposed model achieved an improvement of 1.2% in mAP50
and 0.9% in mAP50-95, along with reductions of 18.2% in parameters, 6.1% in GFLOPs,
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and 15.9% in model size. The experimental results demonstrate that our proposed FMDI
structure and UIB block fusion can significantly optimize the capabilities of the standard
YOLOv8, and better adapt it to the task of tomato pest and disease detection.

Table 3. Ablation studies of key components.

Model Parameters GFLOPs Model Size mAP50 mAP50-95

YOLOv8n(baseline) 3,011,823 8.2 6.3 MB 0.928 0.745
+FMDI(C2F) 3,048,559 9.4 6.4 MB 0.938 0.750
+FMDI(UIB) 2,884,575 8.9 6.1 MB 0.945 0.769

+UIB 2,184,031 6.1 4.7 MB 0.917 0.728
+UIB+ FMDI(UIB) (ours) 2,463,519 7.7 5.3 MB 0.939 0.752

4.3.2. Number of Focus Diffusion Interactions

In Table 4, we list the impact of varying the number of focus diffusion interaction
stages on the model’s characteristics. We observed that as the stage count N increases, the
model’s parameters, GFLOPs, and model size metrics exhibit a continuous rise. However,
at N = 2, the model attains the highest mAP50 value, while concurrently maintaining its
lightweight metrics lower than the YOLOv8n baseline model. Consequently, we set the
default stage N value to 2.

Table 4. Ablation of the number of focus diffusion interactions. The model performs best when N = 2.

The number of Stages (N) Parameters GFLOPs Model Size mAP50 mAP50-95

1 1,864,927 6.0 4.0 MB 0.915 0.738
2 (ours) 2,463,519 7.7 5.3 MB 0.939 0.752

3 3,396,863 10.6 7.2 MB 0.927 0.747
4 4,927,375 15.2 10.3 MB 0.931 0.758

4.3.3. Different Kernel Sizes in MFN

Table 5 illustrates the impact of varying kernel sizes on the Multi-core Focused Net-
work (MFN). The results demonstrate that as the kernel size increases, there is a concomitant
escalation in the model’s parameters, GFLOPs, and model size metrics. Simultaneously, we
observed that the utilization of kernel sizes 5, 7, 9, and 11 yields the apex values for mAP50
and mAP50-95. Consequently, we ultimately determined to employ 5, 7, 9, and 11 as the
default kernel size configuration for the MFN.

Table 5. Ablation of the setting of kernel size in MFN.

Kernel Size (k) Parameters GFLOPs Model Size mAP50 mAP50-95

3 2,333,919 7.3 5.0 MB 0.905 0.722
3,5 2,346,399 7.4 5.0 MB 0.924 0.740

3,5,7 2,370,399 7.5 5.1 MB 0.931 0.748
3,5,7,9 2,409,759 7.6 5.1 MB 0.925 0.746

3,5,7,9,11 2,468,319 7.8 5.3 MB 0.929 0.754
3,5,7,9,11,13 2,549,919 8.0 5.4 MB 0.923 0.740

5 2,341,599 7.4 5.0 MB 0.920 0.744
5,7 2,365,599 7.4 5.1 MB 0.925 0.743

5,7,9 2,404,959 7.6 5.1 MB 0.916 0.730
5,7,9,11 (ours) 2,463,519 7.7 5.3 MB 0.939 0.752

5,7,9,11,13 2,545,119 8.0 5.4 MB 0.921 0.739

4.3.4. Comparison Studies

Table 6 show the comparative analysis of the YOLO-FMDI model against various
object-detection models. It is evident that our model exhibits superior lightweight metrics in
terms of parameters, GFLOPs, and model size when compared with other network models.
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For instance, our model boasts the lowest parameters at 2,463,519, the lowest GFLOPs
at 7.7, and the most diminutive model size at 5.3 MB. Furthermore, while maintaining
its lightweight advantage, our model demonstrates outstanding performance in terms of
mean average precision, with commendable mAP50 and mAP50-95 values. Consequently,
our model is better suited for the tomato pest and disease detection task at hand.

Table 6. Object detection with different frameworks.

Model Parameters GFLOPs Model Size FPS mAP50 mAP50-95

YOLOv5s [5] 46,563,709 109.9 27.0 MB 92.9 0.553 0.364
YOLOx [28] 54,208,895 156.0 34.4 MB 76.6 0.853 0.599
YOLO7 [29] 3,762,012 106.5 74.3 MB 64.5 0.847 0.638
DETR [30] 3,674,045 74.0 15.9 MB 42.6 0.507 0.395

YOLO7-tiny [29] 6,529,483 13.9 23.2 MB 108.5 0.618 0.404
YOLOv8n [6] (baseline) 3,011,823 8.2 6.3 MB 228.1 0.928 0.745

YOLO-FMDI (ours) 2,463,519 7.7 5.3 MB 311.4 0.939 0.752

As shown in Figure 6 the visualization of the detection results of the three different
models is displayed. We selected the models with the clearest difference in detection
results, YOLOv5s and YOLO-FMDI, and also selected the baseline model YOLOv8n. From
the detection results of diseased tomato leaves, the mean average precision (mAP50) of
YOLOv5s, YOLOv8n, and YOLO-FMDI in detecting leaf verticillium wilt were 0.54, 0.89
and 0.92, respectively. The mAP50 of our proposed model is 0.03 higher than the mAP50 of
the baseline model and 0.38 higher than the mAP50 of the YOLOv5s model. Meanwhile, it
can be seen that the mAP50 of the YOLO-FMDI model in detecting leaf curl is 0.91, which
is 0.08 higher than the 0.83 of the YOLOv8n model and 0.30 higher than the 0.61 of the
YOLOv5s model. Therefore, the detection ability of our proposed model YOLO-FMDI is
better than the other models.
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5. Conclusions

In this work, we propose the YOLO-FMDI model, which incorporates a novel Focus
Multi-scale Feature Diffusion Interaction neck structure. It effectively diffuses and fuses
focused multi-scale features, reconstructing fine-grained hierarchical semantic information.
Simultaneously, we integrate the state-of-the-art lightweight Universal Inverted Bottleneck
module. We validate the effectiveness of YOLO-FMDI on a tomato pest and disease dataset.
Extensive ablation and comparative experiments demonstrate that our approach achieves
higher detection accuracy while attaining lightweighting compared to conventional object-
detection models. Moving forward, we aim to collect a more diverse sample dataset from
local vegetable cultivation environments and continue to lightweight advanced real-time
monitoring models, providing robust technical support for vegetable cultivation.
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