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Abstract: Chinese calligraphy is a significant aspect of traditional culture, as it involves the art
of writing Chinese characters. Despite the development of numerous deep learning models for
generating calligraphy characters, the resulting outputs often suffer from issues related to stroke
accuracy and stylistic consistency. To address these problems, an end-to-end generation model for
Chinese calligraphy characters based on dense blocks and a capsule network is proposed. This
model aims to solve issues such as redundant and broken strokes, twisted and deformed strokes, and
dissimilarity with authentic ones. The generator of the model employs self-attention mechanisms
and densely connected blocks to reduce redundant and broken strokes. The discriminator, on the
other hand, consists of a capsule network and a fully connected network to reduce twisted and
deformed strokes. Additionally, the loss function includes perceptual loss to enhance the similarity
between the generated calligraphy characters and the authentic ones. To demonstrate the validity
of the proposed model, we conducted comparison and ablation experiments on the datasets of
Yan Zhenqing’s regular script, Deng Shiru’s clerical script, and Wang Xizhi’s running script. The
experimental results show that, compared to the comparison model, the proposed model improves
SSIM by 0.07 on average, reduces MSE by 1.95 on average, and improves PSNR by 0.92 on average,
which proves the effectiveness of the proposed model.

Keywords: calligraphy generation; generative adversarial network; capsule network; self-attention;
perceptual loss

1. Introduction

Calligraphy is a highly valued art form in Chinese culture, with works by renowned
calligraphers held in high regard. However, many pieces written by famous calligraphers
have been damaged or lost over time, making authentic forms of calligraphy difficult to
trace [1,2]. With the rapid advancements in artificial intelligence technology, computers can
now assist in reproducing these works [3]. The application of deep learning is significant
in the generation of calligraphy fonts that are damaged or lost. The use of deep learning
technology to generate Chinese calligraphy characters can effectively inherit and promote
this traditional art form, realize the organic combination of art and technology, provide
new ideas and inspirations for the creation of calligraphy, promote the innovation and
development of the art of calligraphy, and bring people a new esthetic experience.

In recent years, researchers have started modeling calligraphy characters and train-
ing networks to learn the mapping from source-printed characters to target calligraphy
characters [4]. The field of Generative Adversarial Networks (GANs) has gained consid-
erable interest. A GAN can generate high-quality images through a competitive learning
process that involves a generator and a discriminator. Additionally, several improvements
have been made to the original GAN framework, leading to the development of various
enhanced versions [5,6].
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In the research of calligraphy characters generation, GANs have been widely used.
GANs can be trained on a dataset of existing calligraphy to generate characters that mimic
the style of the examples. The generator network improves over time by producing
higher-quality calligraphy characters as it deceives the discriminator. The use of a GAN
in calligraphy character generation has significant applications. Zhang et al. proposed
an approach which uses a multi-scale GAN for Chinese calligraphy style transforma-
tion [7]. Kong et al. proposed a generative adversarial network model which introduces a
component-aware module that can supervise the generator to separate the content at a finer
level, leading to significant results in character generation [8]. Li et al. proposed a modified
version of the zi2zi calligraphy character generation method [9]. The method introduced
residual blocks, context-aware attention, and spectral normalization techniques to enhance
the overall visual effect of the generated calligraphy characters. Wang et al. proposed a
dual-attention network structure. They embedded this network structure into the encoding
and decoding layers of the zi2zi model to effectively enhance the efficiency of calligraphy
character generation [10]. However, its reliance on paired real data during the training
process poses a major challenge. Obtaining a complete dataset of authentic calligraphy is
particularly difficult due to the loss or damage of many valuable works. A Cycle-Consistent
Generative Adversarial Network (CycleGAN) is a model that can be trained without pairs
of data and has been widely used in generating calligraphy characters [11].

However, generating calligraphy characters with CycleGAN still presents some chal-
lenges. The calligraphy characters generated using CycleGAN have discontinuous strokes,
resulting in unnatural visual effects. Additionally, the generated characters may not suf-
ficiently resemble authentic calligraphy in terms of style. Further improvements to the
model are necessary to address these issues. An end-to-end generation model for Chinese
calligraphy characters based on dense blocks and the capsule network is proposed in
this paper to address stroke problems and dissimilarity with authenticity in generated
calligraphy characters. The generator uses self-attention mechanisms [12] and densely
connected blocks [13] to reduce redundant strokes and broken strokes. Additionally, a
capsule network [14] is employed to design the discriminator, enhancing its discriminative
ability and reducing twisted and deformed strokes. Furthermore, we introduce perceptual
loss to enhance the similarity between the generated calligraphy characters and authentic
ones [15]. The Chinese calligraphy characters generated using the proposed model in
this paper effectively reduce the problems of missing strokes, redundant strokes, and low
stylistic similarity with authentic handwriting compared to other models.

The following are the principal contributions of this paper:

(1) A self-attention mechanism and a densely connected module are employed to reduce
redundant and missing strokes.

(2) To reduce twisted and deformed strokes, a capsule network and a fully connected
network are employed in the design of the discriminator.

(3) Additionally, perceptual loss is introduced to enhance the similarity of calligraphy
style between the generated calligraphy and authentic ones.

The rest of this paper is organized as follows. Section 2 discusses the work related to
image-to-image translation and calligraphy character generation. Section 3 provides details
on the construction of the proposed model. Section 4 presents the experimental design and
the analysis of the experimental results, while Section 5 offers the conclusions of the study.

2. Related Work

This section introduces the work related to image-to-image translation and calligra-
phy generation, respectively. Image-to-image translation is the technique or process of
converting an image from one visual style or feature to another. Calligraphy generation
refers to the use of computer technology and artificial intelligence algorithms to generate
calligraphy fonts.
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2.1. Image-to-Image Translation

In the realm of deep learning, image translation is the process of transforming one
image into another, typically to modify its style, content, or both [16]. GAN is one of the
most widely used models for image translation, comprising a generator and a discrimina-
tor [17]. The objective of the generator is to generate new, lifelike images, while the goal
of the discriminator is to distinguish real data from the data created using the generator.
During the adversarial training process, the generator improves its ability to create images
that are difficult for the discriminator to distinguish authentic ones from generated ones.
Another noteworthy model is the Variational Autoencoder (VAE) [18], which learns a latent
representation of the input data and generates new images via sampling from this latent
space. VAEs are recognized for their capacity to generate a wide range of realistic images
while maintaining a high level of control over the generation process. Recently, models such
as the U-Net [19] have been developed for image-to-image translation tasks. The U-Net
architecture comprises an encoder–decoder structure with skip connections to preserve
detailed information throughout the translation process. This makes it especially suitable
for tasks such as image segmentation, style transfer and super-resolution. Pix2Pix [20]
uses conditional GAN to enable paired image-to-image conversion, while CycleGAN [11]
addresses unpaired image translation by incorporating a cycle consistency loss mechanism.
Tumanyan et al. proposed a new framework that takes text-to-image synthesis to the realm
of image-to-image translation [21]. Parmar et al. proposed an image-to-image translation
method that can preserve the original image’s content without manual prompting [22].
Ko et al. proposed SuperstarGAN, training an independent classifier by using data aug-
mentation techniques to address the overfitting issue in the classification of StarGAN
structures [23].

2.2. Calligraphy Generation

Calligraphy generation aims to generate digital versions of traditional Chinese callig-
raphy using deep learning techniques. This involves replicating the unique brush strokes,
styles, and techniques of professional calligraphers by training on large datasets of authen-
tic historical calligraphy. Huang et al. [24] proposed a method based on decomposition
rendering, which can achieve style transfer for Chinese calligraphy characters. This method
enables both few-shot learning and zero-shot learning. It utilizes a technique known as
“base decomposition” to break down calligraphy characters into bases and components,
representing them as vectors. It then uses GAN to perform style translation. Gao et al. [25]
introduced a GAN-based calligraphy style transfer method that utilizes skeleton translation
and stroke rendering to achieve migration between different style fonts. The method utilizes
contextual information to improve the semantic and visual consistency of characters. Xiao
et al. [26] proposed a model for calligraphy style transfer called CS-GAN, which uses struc-
tural alignment to transfer one calligraphy image into another style of calligraphy image.
Zhang et al. [27] presented a method that uses multi-scale GAN to achieve calligraphy style
transfer. The method begins by generating the style mask of the target calligraphy style.
This mask is then merged through multi-scale GAN to generate calligraphy characters with
the desired style. Kong Y et al. [28] proposed a GAN that uses a new perception module.
The model supervises the generator to decouple content at a finer granularity level in the
generation of calligraphy characters. Wen et al. [27] proposed ZiGAN, a small sample
style transfer calligraphy character generation model based on CycleGAN. This model
does not require paired calligraphy characters and can generate calligraphy characters
in a specific style using only a small number of character samples as input. Although
these calligraphy character generation methods can generate calligraphy characters, the
generated calligraphy characters have problems such as missing strokes, broken strokes,
excess ink, and low similarity to authentic ones. Therefore, to address the above problems,
it is necessary to construct a new model for calligraphy character generation.
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3. Method

This proposed model aims to solve issues such as redundant and broken strokes,
twisted and deformed strokes, and dissimilarity with authentic ones. This section intro-
duces the construction details of the proposed model, including the network structure,
generator, discriminator and loss function.

3.1. Network Architecture

The network architecture of the proposed model is shown in Figure 1 and consists of
three main components: generator, discriminator, and the loss function. During training,
the generator receives printed characters and generates calligraphy characters in a specified
style. The generated calligraphy characters are then evaluated for authenticity using the
discriminator. The loss value between the generated calligraphy characters and the authen-
tic ones is calculated concurrently. The generated calligraphy characters are then adjusted
to more closely resemble the authentic ones by reducing the loss of value during training.

The generator in the proposed model has a self-attention mechanism to improve its
perception of calligraphy strokes, allowing it to focus on the main stroke information and
reduce redundant strokes. Additionally, the generator is enhanced with dense blocks to
extract calligraphy stroke features. This helps to reduce the problems of broken strokes,
ensuring that the generated calligraphy characters are complete and coherent. A CapsNet
and FCN are used to construct the discriminator, allowing the model to more accurately
extract the positional information of calligraphy strokes, thereby reducing twisted and
deformed strokes. Perceptual loss Lper is introduced to further improve the calligraphy
style recognition ability of the model. This leads to the generated calligraphy style being
closer to the authentic one.
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3.2. Generator

The proposed model consists of two generators: a printed character generator and a
calligraphy character generator. The printed character generator is responsible for transfer-
ring the calligraphy character into the printed character, while the calligraphy character
generator transfers the printed character into the calligraphy character. Both generators
share the same network architecture. Figure 2 shows how printed characters are transferred
to calligraphy characters, using the calligraphy character generator as an example.

3.2.1. Generator Structure

To address the problem of redundant and broken strokes in generated calligraphy
characters, we propose the use of densely connected blocks (dense blocks) and self-attention
mechanisms in the design of the generator. Dense blocks enhance feature propagation,
effectively improving the ability of the generator for capture and restore stroke details.
Self-attention mechanisms enable the model to precisely identify and suppress unnecessary
strokes during the generation process.
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named Chu).

In the process of generating calligraphy characters, the calligraphy character gener-
ator extracts character features from the printed characters through the encoder layers.
The encoder layer includes convolutional layers and down-sampling layers. Then, the
main stroke information from these features is extracted via the self-attention mechanism.
Dense blocks transfer the features of printed characters to the features of calligraphy
characters, while maintaining the continuity and artistry of the strokes. After translation,
self-attention mechanisms are used to extract the main stroke information of the calligra-
phy characters, ensuring stroke precision in the generated calligraphy characters. Finally,
the calligraphy characters features are transferred into generated calligraphy characters
through decoder layers.

3.2.2. Dense Blocks

Dense blocks are designed and incorporated into the generator to address the problem
of partial character feature loss due to convolution during multilayer network propagation.
This helps reduce broken strokes in the generated calligraphy characters. Dense blocks
decrease the loss of character features by efficiently transmitting and reusing character
feature information within the network. This improves the ability of the generator to
capture character details and enhances the overall quality and coherence of the generated
calligraphy characters [13].

Figure 3 shows the network architecture of dense blocks, which is designed based on
the core idea of densely connected networks. To prevent the loss of character feature infor-
mation during propagation, our model designs a dense block that combines two “Instance
Normalization (IN)-Activation Function (ReLU)-Convolutional Layer (Conv)” operations.
This combination helps to extract and transmit character features more effectively. There is
a total of 6 dense blocks which can effectively extract and transfer character features.

In dense blocks, each block receives and integrates the output information of all
previous blocks. This weighted and value transfer of information ensures the smooth
circulation of character features between layers. Meanwhile, pooling between dense blocks
reduces the information and contributes negatively. This is removed to further retain the
feature maps. After six successive processing blocks, a convolutional layer is set up to
return the dimensionality of the accumulated character feature information to the initial
state at the time of inputting the blocks. The convolutional layer can effectively prevent
dimensionality explosion [28]. The use of dense blocks significantly improves the ability of
the generator to extract and retain character feature information, particularly in reducing
the loss of stroke feature information during network propagation. This reduces the
problem of broken strokes in generated calligraphy characters, making them more similar
to authentic ones.
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3.2.3. Self-Attention Mechanism

Calligraphy characters are made up of a series of strokes, including both the main
structural strokes and the smaller secondary strokes. However, when the generator extracts
the secondary stroke feature, it assigns similar weights to these strokes as the main strokes
through indiscriminate convolution operations. This results in visually redundant strokes
and larger strokes than the authentic ones.

To address this issue, the generator incorporates self-attention mechanisms, as illus-
trated in Figure 2. These mechanisms enhance the importance of primary strokes and
diminish the significance of secondary strokes based on their relevance.

The design of the generator includes self-attention mechanisms between the down-
sampling layers and dense blocks, as well as between dense blocks and up-sampling
layers. The initial self-attention mechanism adjusts stroke weights in printed characters,
while the second self-attention mechanism adjusts stroke weights in generated calligraphy
characters. In addition, the activation function Leaky ReLU is used in self-attention to solve
the gradient direction zig-zagging dynamics in the weight gradient updates [29].

3.3. Discriminator

The proposed model includes two discriminators: a printed character discriminator
and a calligraphy character discriminator. The printed character discriminator is respon-
sible for judging the authenticity of printed characters, while the calligraphy character
discriminator judges the authenticity of calligraphy characters. Both discriminators share
the same network architecture. Using the calligraphy character discriminator as an example,
the calligraphy character discriminator demonstrates how the discriminator authenticates
the input calligraphy characters, as shown in Figure 4.

3.3.1. Discriminator Structure

Calligraphy characters consist of strokes that have significant directionality and rela-
tive positional relationships between them. However, the CNN-based discriminator cannot
use these features. This results in the inability of the discriminator to recognize twisted and
deformed strokes. To solve this problem, the proposed model designs the discriminator
using a Capsule Network (CapsNet) and a fully convolutional network (FCN). CapsNet
extracts the direction and relative position information of strokes from calligraphy charac-
ters, so the discriminator can judge the authenticity of calligraphy characters in terms of
the direction and position of calligraphy strokes, thereby reducing the problem of stroke
twisting and deformation in generated calligraphy characters [30].
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In the calligraphy character discriminator, the convolutional layer first performs
feature extraction on the input calligraphy characters. These extracted calligraphy features
are then fed into the CapsNet and FCN for authentication. FCN primarily uses the character
stroke feature for authentication, while CapsNet focuses on using the direction and position
information of character strokes for authentication. The CapsNet within the discriminator
architecture consists of two core components: the primary capsule layer and the digit
capsule layer. The role of the primary capsule layer is to perform convolution operations
on the input character feature matrix, converting these features into vectorial capsules.
These capsules not only encapsulate the stroke feature information, but also capture the
directional and positional information of the strokes. This provides a rich context for
subsequent judgments. The digit capsule layer receives the generated capsules after primary
processing and transfers them into a matrix using dynamic routing. A norm operation is
then performed on this matrix to obtain a digital scalar Dcaps between 0 and 1, representing
CapsNet’s judgment of the input calligraphy character. In Figure 4, a fully connected
network refers to a neural network in which each neuron applies a linear transformation
to the input vector through a weight matrix. As a result, all possible connections layer-to-
layer are present, meaning every input of the input vector influences every output of the
output vector. In the calligraphy character discriminator, the FCN is used to evaluate the
authenticity of the input calligraphy character based on the features of calligraphy strokes.
To enable the discriminator to utilize both the stroke feature information and the direction
and position information of the characters, the discriminator finally performs a weighted
summation of the FCN’s judgment result Dfcn and the CapsNet’s judgment result Dcaps, as
shown in Equation (1):

D = λfcn · Dfcn + λcaps · Dcaps (1)

where λfcn and λcaps are the weights of Dfcn and Dcaps, respectively. In the proposed model,
both λfcn and λcaps are set to 0.5 to balance the contributions of the two networks. By
adopting this weighted fusion strategy, the discriminator can take into account stroke
characteristics, and the direction and position information of the strokes. This significantly
improves the accuracy of judging the authenticity of calligraphy characters and reduces
the twisted and deformed strokes in the generated calligraphy characters.

3.3.2. CapsNet

CapsNet is a novel neural network architecture designed to overcome the limitations
of traditional Convolutional Neural Networks (CNNs) [31,32]. It uses a series of neurons
called “capsules” to detect specific features within an image. Each capsule in CapsNet out-
puts a vector containing information about the image features, such as position, orientation,
and scale. Each capsule has a weight, which is continually updated during the training
process. CapsNet can better understand the spatial relationships of elements in images
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by recognizing rotated and scaled elements. CapsNet is widely used in image recognition
and object detection because of its ability to use directional information and the relative
position information of elements [33,34].

Unlike scalar neurons, vector neurons in CapsNet encapsulate the information they
need to carry and use weight matrices to store spatial information and other relationships
between neurons. The vector neuron model is shown in Figure 5. First, the magnitude and
the direction of the input vector are encapsulated into a prediction vector, i.e., xi in Figure 5.
At the same time, the relationship between the feature detected using the low-level capsule
and the prediction of the feature via the high-level capsule is obtained. This relationship is
coded to obtain the weight matrix wi. The weight matrix wi is used to process the prediction
vector xi to obtain a new input vector Xi. Second, the coupling coefficients Ci are set to
multiply the input vectors Xi by them, respectively [31]. Again, after setting the coupling
coefficients Ci, the vectors XiCi are summed to obtain the vector form of the capsule ∑ XiCi.
Finally, to ensure that the directionality of the capsules is preserved and the length of the
capsules is reasonably constrained, the vector form of the capsule ∑ XiCi is converted to
the vector V as the output of the capsule in this layer using the vectorized compression
function Squash [35], as shown in Equation (2):

Squash(x) =
∥x∥2

1 + ∥x∥2
x

∥x∥ (2)

where x represents the vector form of the capsule ∑ XiCi. The squash function preserves
the directional information of the capsules while constraining their lengths to between 0
and 1, ensuring effective information transfer and processing stability.
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3.4. Loss Function

To further improve the generation quality of the proposed model and to make the gen-
erated calligraphy characters more similar to authentic ones, a perceptual loss is introduced
to construct the loss function [15]. The purpose of the perceptual loss is to force the model
to pay more attention to the overall architecture and global features of the calligraphy
characters, and to better capture and reproduce these key elements during the generation
process. This ensures that the generated calligraphy characters match the authentic ones
not only in stroke details but also in overall style and architecture.

The loss function L of the proposed model consists of three parts: adversarial loss
LGAN, cycle consistency loss Lcyc, and perceptual loss Lper, to improve the similarity
between the generated calligraphy and the authentic calligraphy, as shown in Equation (3):

L = LGAN + λ · Lcyc + γ · Lper (3)

where λ and γ are the weights of Lcyc and Lper, respectively. After several experiments,
the generation result of the proposed is optimal when λ is set to 10 and γ is set to 1/7.

Below, we introduce the individual loss functions that make up L.
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3.4.1. Adversarial Loss LGAN

The goal of LGAN is to minimize the distance between the generated distribution
of data and the actual ones. In the generation of calligraphy characters, LGAN asks the
discriminator to judge the generated characters as fake and the authentic characters as
real. In the proposed model, LGAN consists of the calligraphy character adversarial loss
LGAN(G, DY, X, Y) and the printed character adversarial loss LGAN(F, DX , Y, X), as shown
in Equation (4):

LGAN = LGAN(G, DY, X, Y) + LGAN(F, DX , Y, X) (4)

where G represents the calligraphy character generator, F represents the printed char-
acter generator, X represents the printed character domain, and Y represents the callig-
raphy character domain. The calligraphy character adversarial loss LGAN(G, DY, X, Y)
and printed character adversarial loss LGAN(F, DX , Y, X) are, respectively, defined in
Equations (5) and (6):

LGAN(G, DY, X, Y) = Ey∼pdata(y) [log DY(y)] + Ex∼pdata(x) [log(1 − DY(G(x)))] (5)

LGAN(F, DX , Y, X) = Ex∼pdata(x) [log DX(x)] + Ey∼pdata(y) [log(1 − DX(F(y)))] (6)

The goal of LGAN(G, DY, X, Y) is to recognize the authentic calligraphy characters as
real and the generated ones as fake. The goal of LGAN(F, DX , Y, X) is to recognize the real
printed characters as real and the generated ones as fake.

3.4.2. Cycle Consistency Loss Lcyc

Lcyc is a loss function used to train image translation models, whose main goal is to
ensure that the output image of the model is similar to the input image after two translations.
Lcyc is designed based on the principle of cycle consistency, which means that an image
should be able to return to its original state after a series of translations [35]. The cycle
consistency loss function measures the difference between the output after two translations
and the original input, as shown in Equation (7):

Lcyc(G, F) = Ex∼pdata(x)[∥F(G(x))− x∥1] + Ey∼pdata(y)[∥G(F(y))− y∥1] (7)

where the printed character x is input into the calligraphy character generator G, generating
the corresponding calligraphy character G(x). Then, the generated calligraphy character
G(x) is input into the printed character generator F, aiming to keep the generated printed
character F(G(x)) as consistent as possible with the original printed character x. The
calligraphy character y is calculated in the same way as the printed character x.

3.4.3. Perceptual Loss Lper

To improve the overall style similarity between the generated calligraphy characters
and authentic ones, perceptual loss Lper is introduced to construct the loss function L.
Lper is used to calculate the mean square error between the feature of the real images
and the feature of the generated images, both of which are extracted from the pre-trained
networks [36]. With the help of Lper, errors due to small differences in individual pixel
positions can be avoided by comparing high-level features. The introduction of Lper
encourages the generator to pay more attention to the reproduction of the overall style of
calligraphy characters, thereby making the generated calligraphy characters closer to the
authentic ones in overall style [37].

The perceptual loss Lper in the proposed model is composed of the perceptual loss of
printed characters Lx

per and the perceptual loss of calligraphy characters Ly
per, as shown in

Equation (8):
Lper = Lx

per(x, F(G(x))) + Ly
per(y, G(F(y))) (8)

where x represents real printed characters, y represents authentic calligraphy characters,
G represents the calligraphy character generator, and F represents the printed character
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generator. The perceptual loss of printed characters Lx
per is calculated using the generated

printed characters F(G(x)) and the real ones x. Similarly, the perceptual loss of calligraphy
characters Ly

per is calculated using the generated calligraphy characters G(F(y)) and the
authentic ones y. Lx

per and Ly
per are summed to obtain the perceptual loss Lper.

The calculation of Lx
per and Ly

per relies on a pre-trained network model that extracts the
feature from the input images. The proposed model uses VGG16 as the pre-trained model.
In the calculation of Lx

per and Ly
per, the generated characters and real ones are input into

the VGG16. The feature values are extracted and calculated to obtain loss values at layer 3,
layer 8, layer 15, and layer 22 of the VGG16. Lx

per and Ly
per are obtained by summing the

loss values from each layer [38]. The process of using the VGG16 model to calculate Ly
per is

shown in Figure 6.
The method for calculating the perceptual loss of printed characters Lx

per and the
perceptual loss of calligraphy characters Ly

per is shown in Equations (9) and (10):

Lx
per(x, F(G(x))) =

1
Cj HjWj

∥ϕj(x)− ϕj(F(G(x)))∥2
2 (9)

Ly
per(y, G(F(y))) =

1
Cj HjWj

∥ϕj(y)− ϕj(G(F(y)))∥2
2 (10)

where x represents real printed characters, y represents authentic calligraphy characters, G
represents the calligraphy character generator, F represents the printed character generator,
ϕ represents the pre-trained network VGG16, and j represents layer j of the pre-trained
network. Cj, Hj and Wj, respectively, represent the number of channels, height, and width
of the features.
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3.5. Discussion of Proposed Method

An end-to-end generation model for Chinese calligraphy characters based on dense
blocks and capsule networks is proposed. This model aims to solve problems such as
redundant and broken strokes, twisted and deformed strokes, and dissimilarity to authentic
strokes. The generator of the model uses self-attention mechanisms and densely connected
blocks to reduce redundant and broken strokes. The discriminator consists of a capsule
network and a fully connected network to reduce twisted and deformed strokes. In addition,
the loss function includes a perceptual loss to increase the similarity between the generated
calligraphy characters and the authentic ones.

4. Experiment

We experimentally evaluate the effectiveness of the proposed model using a self-
constructed Chinese calligraphy character dataset. This dataset is used primarily for
research on generating different styles of calligraphy characters based on deep learning,
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with the aim of promoting the integration of traditional Chinese calligraphy with modern
technology. To comprehensively evaluate the performance of our model, three different
style generation experiments are designed: Yan Zhenqing’s regular script, Deng Shiru’s
clerical script, and Wang Xizhi’s running script. In evaluating the experimental results,
three quantitative evaluation metrics are chosen: the Structural Similarity Index [39], Mean
Square Error [40], and the Peak Signal-to-Noise Ratio [41]. These evaluation metrics are
intended to comprehensively measure the performance of the model in generating different
styles of calligraphy characters from different perspectives.

4.1. Dataset

The Chinese Calligraphy Character Dataset is derived from ancient texts and stele
inscriptions, ensuring the authenticity and authority of the data. The dataset includes three
categories: regular script, clerical script, and running script. Through the pre-processing
and cropping the images, samples of calligraphy characters with a pixel size of 128 × 128
are constructed for model training and evaluation.

First, the gray scale of the original image is inverted so that the white characters on a
black background become black characters on a white background. Second, the inverted
gray-scale image is pre-processed, which involves techniques such as denoising to prevent
noise from affecting the quality of the sample. Then, to ensure the uniform format of
the samples, the pre-processed black-on-white image is directly cropped to obtain the
calligraphy character. Next, to ensure the clarity of the sample images and to facilitate the
subsequent use of the dataset, the Skimage method was chosen to normalize the calligraphy
character slices to obtain a single calligraphy character image with a pixel size of 128 × 128.
Finally, all the calligraphy character images were binarized. After the above steps, a sample
of calligraphy characters was obtained with a uniform format and size.

In the regular script category, works by four master calligraphers are selected, in-
cluding Ouyang Xun’s “Inscription on the Sweet Spring in the Jiucheng Palace”, Yan
Zhenqing’s “Duobao Pagoda Stele”, Liu Gongquan’s “Xuanmi Pagoda Stele”, and Zhao
Mengfu’s “Danba Stele”. These works are hailed as classics by the “Four Masters of Regular
Script” in China and hold immense artistic and historical value [42]. In the clerical script
category, Deng Shiru’s “Shaoxue Qinshu Clerical Script Album” is selected. Deng Shiru’s
clerical script is known for its tight structure, simplicity, and elegance, demonstrating a
high level of artistry and serving as a typical representation of clerical script [43]. In the
running script category, Wang Xizhi’s “Orchid Pavilion Preface” is selected. With its fluid
and natural style, it is hailed as the most important running script under the sky [44].
Detailed information on the Chinese calligraphy character dataset is given in Table 1. This
dataset not only provides rich data resources for generating calligraphy characters, but also
helps to study the characteristics and artistic values of different calligraphy styles in depth.

Table 1. Dataset of Chinese calligraphy characters.

Sample Category Quantity

Regular Script

Ouyang Xun’s “Inscription on the Sweet Spring in the Jiucheng Palace” 1107
Yan Zhenqing’s “Duobao Pagoda Stele” 479
Liu Gongquan’s “Xuanmi Pagoda Stele” 1315
Zhao Mengfu’s “Danba Stele” 902

Clerical Script Deng Shiru’s “Shaoxue Qinshu Clerical Script Album” 245

Running Script Wang Xizhi’s “Orchid Pavilion Preface” 324

Total 4372
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4.2. Training Process

The specific configuration of the computer system used in the experiment is as follows:
the operating system is Ubuntu and the processor is an Intel Xeon Silver 4216 quad-core
CPU with 8 GB of RAM. The graphics card is an NVIDIA RTX3080 with 8 GB of video
memory, of which 7 GB is used during model training. The programming language used is
Python 3.8.15 and the implementation is based on the Pytorch 1.12.1 framework.

The following hyperparameters are set during model training: the number of iterations
is 200, the batch size is 8, the learning rate is 0.0002, and the number of decay iterations is
100. These hyperparameters are carefully selected and adjusted to ensure the stability and
effectiveness of the model training.

The proposed model analyzes the training process in detail by recording changes in the
loss values of the model. Taking the training process for generating Yan Zhenqing’s regular
script as an example, the variation in the loss value of the generator is shown in Figure 7a,
and the variation in the loss value of the discriminator is shown in Figure 7b. Here,
D_A Loss and D_B Loss are the loss values for the calligraphy character discriminator and
the printed one, respectively. The loss values for both the generator and the discriminator
progressively decrease, while the fluctuations decrease and eventually stabilize. This trend
in the loss function demonstrates the effectiveness and stability of the proposed model
during the training process.
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4.3. Comparative Experiments

In this paper, the proposed methods are compared qualitatively and quantitatively
with four other methods. The following models are chosen: AGGAN [45], StarGAN-v2 [46],
pix2pix [20], and CycleGAN. AGGAN is an improved GAN model that enhances the quality
and diversity of the generated images by introducing an auxiliary classifier. StarGAN-
v2 is an advanced image translation model specifically designed for multi-domain style
translation. Pix2pix is an image translation model based on conditional GAN. CycleGAN is
an image translation model for image translation between different domains. The proposed
model can be comprehensively evaluated through comparative experiments with these
four models by generating characters of three style calligraphy styles: Yan Zhenqing’s
regular script, Deng Shiru’s clerical script, and Wang Xizhi’s running script.

4.3.1. Qualitative Comparison

The comparative experimental results for the regular script, clerical script, and running
script are shown, respectively, in Figure 8, Figure 9, and Figure 10.
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Figure 8. Comparison on regular script generation (The Chinese characters from upper to lower lines
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(e) CycleGAN. (f) Ours. (g) Authentic ones.
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(1) Yan Zhenqing’s regular script

The generation results for Yan Zhenqing’s regular script are shown in Figure 8. In the
comparative experiment, the calligraphy characters generated using AGGAN suffer from
problems such as too thin strokes, missing strokes, and incomplete character structures.
The calligraphy characters generated using StarGAN-v2 have a low similarity in style to
the authentic ones, with significant deviations in detail and style. Calligraphy characters
generated using pix2pix have problems with missing and distorted strokes. Calligraphy
characters generated using CycleGAN have redundant strokes. On the other hand, the
calligraphy characters generated using the proposed model, with clear strokes and complete
structures, are more similar to the authentic ones in style and detail, including the rigorous
structure and varied details of the strokes.

(2) Deng Shiru’s clerical script

Clerical script, as a unique style of Chinese characters, is characterized by a slightly
flattened writing effect and a structure in which horizontal strokes are long and vertical
strokes are short. It is challenging to generate clerical script due to the differences between
clerical script and modern character forms [43].

The generation results for clerical calligraphy are shown in Figure 9. In the comparative
experiment, the calligraphy characters generated using AGGAN suffer from noticeably thin
strokes, which results in a lack of the solidity characteristic of clerical script. The calligraphy
characters generated using StarGAN-v2 have a low stylistic similarity to the authentic
ones. The calligraphy characters generated using pix2pix have problems with missing and
distorted strokes. CycleGAN generates calligraphy characters with redundant strokes. In
contrast, the calligraphy characters generated using the proposed model have clear strokes
and complete structures. It has a slightly flattened structure and long horizontal strokes
with short vertical ones, and is more similar in style and detail to the authentic characters.

(3) Wang Xizhi’s running script

Wang Xizhi’s “Orchid Pavilion Preface” is celebrated as the most important running
script in ancient China, and its unique personal style adds artistic charm to each calligraphy
character. It is challenging to generate these calligraphy characters [47].

The results of running script generation are shown in Figure 10. In the comparison
experiment, the calligraphy characters generated using AGGAN have problems with
missing strokes. The calligraphy characters generated using StarGAN-v2 have less style
similarity to the authentic ones, and have some blurred strokes. The calligraphy characters
generated using pix2pix have problems with missing and distorted strokes. CycleGAN
generated calligraphy characters with missing strokes. In comparison, the proposed model
shows the highest generation quality when generating the running script. The calligraphy
characters generated using the proposed model are more similar to the authentic calligraphy
characters in style and detail, including their fluid strokes, natural rhythm, and unique
personal style.

Table 2 shows the results of the qualitative analyses of the proposed and comparative
models. The proposed model has shown significant advantages in the generation of
regular script, clerical script, and running script. First, by introducing dense blocks into
the generator, the model improves its ability to extract features from calligraphy strokes,
effectively reducing problems with broken strokes. The dense blocks are able to capture
richer detail information, ensuring that the generated calligraphy characters are structurally
more complete. In addition, the proposed model introduces self-attention mechanisms into
the generator, which further enhances the model’s perception of calligraphy strokes. The
self-attention mechanism allows the model to focus on key strokes, thereby reducing the
generation of redundant strokes. Second, the proposed model employs the CapsNet in the
discriminator. This allows the model to effectively extract the positional information of
calligraphy strokes, thereby reducing the problem of stroke distortion. The CapsNet has
superiority in handling spatial information, which leads to a better understanding of the
structure of calligraphy characters. Finally, the proposed model introduces a perceptual
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loss function. This strategy aims to improve the calligraphy style recognition ability of the
model, making the generated calligraphy characters more similar to the authentic ones
in style. Through the perceptual loss, the proposed model can better capture the unique
charm and artistic characteristics of calligraphy characters.
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Table 2. Comparison of qualitative evaluation.

Methods Strokes Structure Style

pix2pix broken incomplete dissimilar
AGGAN broken incomplete dissimilar

CycleGAN distortion deformation dissimilar
StarGAN-v2 redundant deformation dissimilar

Ours clear complete similar
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In summary, the proposed model significantly improves the quality of generated
calligraphy characters through modular design and optimization strategies. It not only
effectively solves problems such as stroke discontinuity, redundant strokes, and distortion,
but also more accurately captures the style of authentic calligraphy characters, thus imbuing
the generated calligraphy characters with the essence of the authentic ones. The proposed
model is trained using the dataset of authentic calligraphy characters, while the dataset
of authentic characters has a limited amount of data, which leads to the fact that the
calligraphy characters generated using the proposed model are still a little different from
the corresponding authentic characters.

4.3.2. Quantitative Comparison

From a quantitative perspective, we analyze the generation results of three types of
calligraphy fonts: regular script, clerical script, and running script. To objectively evaluate
the quality of the generated results, we use three quantitative evaluation metrics: Structural
Similarity Index (SSIM), Mean Square Error (MSE), and Peak Signal-to-Noise Ratio (PSNR).
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SSIM is a widely used metric to measure image quality [33]. A higher SSIM indicates
that the generated calligraphy characters are structurally closer to the authentic ones. MSE
is a metric used to measure the similarity of image pixels [34]. By achieving a lower MSE,
the quality of the generated calligraphy characters can be significantly improved, making
them much closer to the authentic ones at the pixel level. PSNR is an important measure of
image quality [35]. A higher PSNR indicates that the generated calligraphy characters are
visually closer to the authentic ones.

Table 3, Table 4, and Table 5, which correspond to Figure 8, Figure 9, and Figure 10,
respectively, show the quantitative metrics of various models on regular script, clerical
script, and running script. Among them, pix2pix generates calligraphy characters with
problems such as missing strokes and distorted strokes, which differ significantly from
the authentic ones; thus, its three metrics are the worst of all models. The calligraphy
characters generated using AGGAN are different from the authentic ones, with thin strokes
and some missing strokes. But it is better than the results generated using pix2pix, so the
metrics of AGGAN are better than the metrics of pix2pix, but worse than the metrics of
other models. The calligraphy characters generated using CycleGAN have no missing
strokes, but have problems such as redundant strokes. So, the metrics of CycleGAN are
better than the metrics of pix2pix and the metrics of AGGAN, but worse than the metrics
of the proposed model. StarGAN-v2 generates calligraphy characters without missing or
redundant strokes, but the overall calligraphy style differs significantly from the authentic
ones. Thus, its three metrics are better than those of pix2pix, AGGAN, and CycleGAN, but
worse than those of the proposed model.

Targeting the characteristics of calligraphy characters, self-attention, dense blocks,
CapsNet, and perceptual loss Lper are used to design the proposed model. Therefore,
the calligraphy characters generated using the proposed model are superior to pix2pix,
AGGAN, CycleGAN, and StarGAN-v2 in terms of SSIM, MSE, and PSNR metrics.

Table 3. Comparison of quantitative evaluation on regular script.

Methods SSIM (↑) MSE (↓) PSNR (↑)

pix2pix 0.622 29.761 10.240
AGGAN 0.630 29.459 10.481

CycleGAN 0.635 29.216 10.483
StarGAN-v2 0.742 29.120 10.629

Ours 0.758 28.680 10.853

Table 4. Comparison of quantitative evaluation on clerical script.

Methods SSIM (↑) MSE (↓) PSNR (↑)

pix2pix 0.549 31.823 9.259
AGGAN 0.558 31.687 9.684

CycleGAN 0.563 30.837 9.741
StarGAN-v2 0.571 30.587 9.839

Ours 0.613 28.484 10.753

Table 5. Comparison of quantitative evaluation on running script.

Methods SSIM (↑) MSE (↓) PSNR (↑)

AGGAN 0.527 30.497 9.429
StarGAN-v2 0.537 29.791 9.562

pix2pix 0.511 30.685 9.203
CycleGAN 0.532 29.910 9.482

Ours 0.594 27.843 10.655
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Finally, we discuss the computational complexity of the proposed model. The size of
the weight parameters of the generator of the proposed model is 160 MB and the size of the
weight parameters of the discriminator is 20 MB. The single training time of the proposed
model is about 12 h and the single testing time is about 10 s.

4.4. Ablation Study

To evaluate the effect of self-attention, dense blocks, CapsNet, and perceptual loss
Lper on the image translation results, we designed ablation experiments on the generation
of a running script, as shown in Figure 11. The ablation experiment includes four sets of
comparison experiments, corresponding to models without different parts. The proposed
model without Lper is denoted as “Proposed model—Lper”, the proposed model without
CapsNet is denoted as “Proposed model—CapsNet”, the proposed model without dense
blocks is denoted as “Proposed model—Dense blocks”, and the proposed model without
self-attention is denoted as “Proposed Model—self-attention”.
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Figure 11. Ablation experiment on running script generation (The Chinese characters from upper
to lower lines are named Yong, He, Jiu, Nian, Sui, Gui, Mu, and Chun, respectively. The red
squares are used for comparison of details). (a) Printed characters. (b) Proposed model—Lper.
(c) Proposed model—CapsNet. (d) Proposed model—dense blocks. (e) Proposed model—self-
attention. (f) Proposed model. (g) Authentic ones.

In Figure 11, there is a degree of degradation in the generation effect for each ablation
model. Without Lper, the generated running script has problems such as stroke distortion
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due to the lack of the in-depth learning of calligraphy styles. Without CapsNet, the model
fails to accurately extract the positional information of strokes, resulting in problems such
as strokes being too thick and sticking together in the generated running script. Without
dense blocks, the model has limited ability to extract the features of strokes in the running
script. The generated strokes are thin, and some strokes are missing. Without self-attention,
the model’s ability to perceive the running script decreases and the generated calligraphy
characters have problems with missing and distorted strokes. The running script characters
generated using the proposed model with self-attention, dense blocks, CapsNet, and Lper
are more similar to the authentic ones. In addition, the quantitative metrics obtained from
the ablation experiments in Figure 11 are compared in Table 6. The metrics of the ablation
models are lower compared to the proposed model, further proving the effectiveness of
each structural component.

Table 6. Comparison of quantitative evaluation for the ablation experiments on running script.

Methods SSIM (↑) MSE (↓) PSNR (↑)

Ours 0.594 27.843 10.655
Ours—Lper 0.532 31.292 9.488

Ours—CapsNet 0.526 31.717 9.711
Our—dense blocks 0.518 32.727 9.578

Ours—self-attention 0.510 31.012 9.763

4.5. Discussion

The proposed model aims to solve problems such as redundant and broken strokes,
twisted and deformed strokes, and dissimilarity to authentic strokes. The model’s generator
uses self-attention mechanisms and densely connected blocks to reduce redundant and
broken strokes. The discriminator consists of a capsule network and a fully connected
network to reduce twisted and deformed strokes. In addition, the loss function includes
a perceptual loss to increase the similarity between the generated calligraphy characters
and the authentic ones. To demonstrate the validity of the proposed model, we conducted
comparison and ablation experiments on the datasets of Yan Zhenqing’s regular script,
Deng Shiru’s clerical script, and Wang Xizhi’s running script. The experimental results
show that, compared with the comparison model, the proposed model improves SSIM by
0.07 on average, reduces MSE by 1.95 on average, and improves PSNR by 0.92 on average,
which proves the effectiveness of the proposed model.

5. Conclusions

In this paper, an end-to-end generation model for Chinese calligraphy characters based
on dense blocks and a capsule network is proposed. Experiments were conducted on Yan
Zhenqing’s regular script, Deng Shiru’s clerical script, and Wang Xizhi’s running script. The
experimental results indicate that the proposed model can not only generate calligraphy
characters in different styles but can also significantly reduce problems such as redundant
and broken, twisted, and deformed strokes. Compared with other current models, the
proposed method achieves superior generation effects. By studying the generation models
of calligraphy characters and improving the quality of generated calligraphy, we can better
explore the intrinsic rules and artistic characteristics of calligraphy, thus providing technical
support for the inheritance and innovation of calligraphy art.

Due to the limited amount of the authentic calligraphy characters in our dataset, the
training effect on the proposed model is restricted. As a result, the generated calligraphy
characters still exhibit some differences from the authentic ones, particularly in terms of
details. In future research, expanding the training samples and optimizing the network
model should be considered to make the generated calligraphy characters more similar to
the authentic ones.
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