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Abstract: This study addresses the complex management of patient-related information in hospitals
and clinical settings. This information includes treatments, medications, vital signs, patient locations,
and data exchange between healthcare professionals. The lack of effective synchronization between
these elements often delays timely care. This study proposes an architecture based on a semantic
representation model that articulates the various components of a hospital environment. This model
supports decision-making in healthcare by facilitating inferences from the environment. The semantic
model serves as a basis for executing predefined rules that trigger actions through a reasoner, resulting
in notifications, such as administering medications or responding to abnormal vital signs. The
model integrates supervised learning to improve the accuracy of alerts. The experiment focused on
monitoring vital sign parameters, such as Spo2, body temperature, and heart rate. The combination of
semantic representation modeling and machine learning algorithms demonstrates a robust approach
for improving the efficiency and accuracy of healthcare alerts in clinical settings.

Keywords: internet of things; machine learning; e-health; context awareness; ontology

1. Introduction

Providing care for a patient requires the use of various biomedical devices and equip-
ment, including X-ray machines, blood pressure monitors, and electrocardiographs. Addi-
tionally, it involves managing patient information, such as records, medical history, and
profiles, as well as coordinating with healthcare personnel such as doctors, nurses, and
social workers. Each component is intricately linked to contextual variables that define the
overall functional requirements of healthcare services. For example, biomedical devices
require specific hardware and sensor variables tailored to their medical functions. The state
variables related to the operation, availability, and location of these devices are equally cru-
cial. Vital data encompassing profiles and medical histories are essential for various aspects
of care such as treatments, monitoring, medication, and surgery. Healthcare providers are
intricately connected to assignments, shift exchanges, and patient care schedules, which
are determined by factors such as the specialty and location of care. In decision-making,
doctors and nurses must be informed about prior procedures, treatments, medications,
etc. The contextual variables in this scenario were linked to the patient’s temporal aspects
and clinical history. Communication among healthcare professionals has emerged as a
pivotal contextual variable, demanding great coordination among medical staff, biomedical
equipment, and data transmission technologies. Staff members often rely on devices for
data transmission, introducing another layer of contextual variables. Effective communica-
tion mechanisms must ascertain the location of the devices, identify their users, determine
when they are needed, and understand the reasons for their use.

Efficient information management within hospitals demands substantial collaboration,
mobility, and seamless data integration, presenting a challenge characterized by unique con-
textual requirements. Contextual awareness technology plays a pivotal role in addressing
tasks related to medical care [1], encompassing communication activities between doctors
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and nurses, as well as patient tracking and monitoring [2,3]. The technology’s capacity for
contextual awareness enables the detection of a patient’s condition and the environment
in which they are situated, which is achieved through specialized sensors capturing per-
tinent information. This capability allows medical staff to continuously monitor changes
in patients’ conditions and respond promptly and effectively to diverse health situations.
Incorporating contextual awareness computing is essential for healthcare systems, not only
for implementing new tools but also for refining the interaction between users, patients,
and the environment, providing system autonomy and reasoning capacity.

Hospitals and clinical settings exhibit considerable intricacy in handling patient-related
information. This information encompasses details regarding treatments, medications, vital
signs, patient locations, and the coordination and exchange of data among healthcare pro-
fessionals working in these environments. The absence of synchronization among various
elements constituting the clinical context, including sensors monitoring vital signs and
medical records, frequently delays the provision of timely care for convalescent individuals.

Primarily, the objective is increasingly focused on enhancing the patient’s experi-
ence in clinical environments, irrespective of their specific ailments or diseases. Sys-
tems designed to monitor patients aim to inform medical personnel effectively and facil-
itate decision-making processes that contribute to improved care. Although contextual-
awareness systems and ubiquitous computing have been successfully implemented in
hospital settings [1,4–9], there remains substantial ongoing research in this area. A partic-
ular research focus is tied to the intricacies arising from the heterogeneity of information
within clinical environments, resulting in the challenging task of real-time synchroniza-
tion and monitoring of patients. The literature reflects numerous proposals dedicated to
managing and monitoring a patient’s condition [10–13]. However, many of these studies
predominantly address aspects such as monitoring vital signs or personal care, neglecting
the crucial consideration of interactions among doctors and nurses and the exchange of
information between them for enhanced decision-making.

Smart healthcare has brought e-healthcare to a higher level by providing the ubiq-
uitous and intelligent delivery of healthcare and treatment services. This is achieved
through context awareness, which involves extracting current contextual information from
users such as patients, doctors, and nurses. Intelligent healthcare systems can provide
autonomous and intelligent services by understanding the current context and situation of
the users. Despite the importance of this topic, no studies have investigated and reviewed
the various context-aware healthcare systems proposed in different aspects of healthcare
and treatment. Therefore, this study examines context-aware healthcare systems from four
central viewpoints: setting, type of service, type of context, and source of context. The aim
is to discuss and technically classify these systems, identify their strengths and weaknesses,
and provide guidance for future research in this area.

The proposed architecture is rooted in a semantic representation model of hospi-
tal context components, enabling inferences guided by the environment and facilitating
decision-making in medical care. The semantic model serves as the foundation for execut-
ing a predefined set of rules established by the hospital environment. These rules trigger
actions through a reasoner, generating notifications such as administering medication to
a patient or responding to alerts regarding abnormal vital sign parameters. Furthermore,
it is integrated with supervised learning models to enhance its capacity to accurately
generate alerts.

This study introduces the development of a semantic representation model to manage
information within a clinical environment. The model encompasses various elements
including patient information, treatment details, medications, and vital signs. Additionally,
it integrates information about healthcare professionals such as doctors and nurses, as
well as details about locations and sensors monitoring vital sign locations. The proposed
semantic representation model serves as the foundation for an architecture that extracts
information from the model and uses it to generate inferences. These inferences are
instrumental in facilitating decision-making in patient care.
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Related Works

In Ref. [14], the authors propose an object-oriented service architecture to create an
intelligent hospital by integrating pervasive computing technologies. They use context-
sensitive techniques to perform automated selection and classification of services according
to patient information, in order to facilitate the management and personalization of medical
care in the hospital environment.

In Ref. [15], the authors propose a context-aware architecture and IoT technologies
for remote monitoring of patients with chronic diseases. The architecture consists of four
modules: IoT module, data preprocessing module, context-aware module, and decision
module. The IoT module collects biometric data such as temperature, pulse, blood pressure
and oxygen saturation from IoT sensors. The preprocessing module optimizes the data
received from the previous module, eliminating redundant data and providing structure
to the relevant information. The context-sensitive module uses contextual information to
tailor treatment and medical care to the specific needs of each patient. The decision-making
module extracts relevant features from the processed data and uses classification techniques
such as Dual Interactive W-GAN to categorize patient conditions.

In Ref. [16], the authors develop a classification model using an artificial neural
network with the aim of analyzing healthcare data stored in the cloud and determining the
severity level of diseases. The proposed model has three main subsystems: user subsystem,
cloud subsystem, and alert subsystem. The user subsystem performs data collection from
biomedical IoT sensors. The cloud subsystem is responsible for central data storage and
processing. The use of cloud computing resources facilitates advanced medical monitoring
and diagnosis using artificial neural networks. The alert subsystem detects critical health
anomalies and generates early warnings for physicians and healthcare personnel. The
model presents efficient performance in sensitivity, specificity, accuracy and F-value, with
an average sensitivity value of 96.094%, specificity of 93.492%, accuracy of 94.066% and an
F-value of 94.066%.

In Ref. [17], the authors propose a health monitoring model for elderly patients using
IoT sensors and context awareness. The proposed architecture is based on four modules:
IoT module, data preprocessing module, context-aware module and decision-making
module. The IoT module collects patient physiological data through sensors and mobile
devices. The preprocessing module performs the processes of collecting, storing, and
redundancy of input data to the system. The context-aware module makes use of a fog
layer and a cloud layer to analyze contextual data and obtain relevant information. The
decision-making module uses neural networks and optimization algorithms to classify and
extract features from the data, as well as send health alerts to medical staff. Evaluation
results with respect to other approaches such as BPNNN, K-nearest neighbor and artificial
neural network, in terms of high accuracy, scalability, network latency and lower response
time, show that the proposed model provides better performance.

In Ref. [18], the authors state that the complexity in devices, heterogeneity in data and
lack of interoperability in platforms impose difficulties to the accuracy of treatments in
patient care and monitoring. They propose a framework for intelligent health care using
an ontology for IoT. The architecture is composed of three modules: (1) data collection
and preprocessing, (2) reasoning and inference, and (3) knowledge management. The
evaluation of this model achieves an accuracy of 89.81% in medical decision-making.

In Ref. [19], the authors propose a medical data mining system that comes from
physiological metrics such as the following: ECG, PPG, temperature and accelerometer data
taken from biosensors that are sent to the cognitive engine for final data processing. The
proposed model uses the following components: (1) a feature extraction and classification
block to support physician decision-making; (2) a fusion analysis model Kernel Multiview
Canonical Correlation Analysis (KMCCA) which evaluates associations between the data;
(3) a data classifier based on machine learning techniques. The evaluation of the proposed
model reports an accuracy of 96.33%.
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In Ref. [20], the authors develop a system for monitoring patients with chronic diseases
based on the Do-Care ontology. It uses sensors and IoT devices for patient data collection
as well as the use of SWRL rules to improve medical recommendations. The architecture
of the Do-Care system consists of five subsystems: (1) Context Sensing, (2) Network
Communication, (3) Data Storage, (4) Application, (5) Ontology and Reasoning. The
efficiency of the Do-Care system is demonstrated through an experimental implementation.

In Ref. [21], the authors implement an IoT-based context-sensitive recommendation
system for data collection. This system provides personalized recommendations to patients
with diabetes through four phases: (1) data collection, (2) context modeling, (3) reasoning
through an artificial neural network, and (4) context dissemination. The results indicate an
overall accuracy of 89.5%.

Table 1 shows a comparison of the different studies that have been conducted for
intelligent clinical environments. The proposals contemplate the inclusion of IoT systems,
contextual awareness systems, ontology technologies, and automatic learning, among
others. The aim of this study was to improve patient care and treatment. The developed
architecture proposes a wide variety of alternatives for patient care and personalization.
Most of the systems analyzed had precision metrics for patient care. However, despite
the accuracy observed in different studies, there is not much emphasis on the quality of
the alerts. In this study, in addition to proposing an IoT system for patient care in clinical
environments, we developed a system capable of generating alerts with high reliability for
patient care, using a semantic representation model and supervised learning techniques
to filter and generate reliable alerts in such a way that the medical staff can attend to the
patient when alerts are generated, owing to the reliability of the system. Finally, in this
section, it can be seen that there are still challenges to overcome that are related to the
complexity of the systems and interoperability for data exchange and efficiency.

Table 1. Comparative table.

Ref. Proposed
Architecture Main Modules Technologies and

Techniques Used Collected Data Evaluation

[14] Object-oriented
service architecture Not specified

Pervasive computing,
context-sensitive

techniques

Patient
information Not specified

[15]
Context-aware

architecture with
IoT

IoT module, data
preprocessing module,
context-aware module,

decision module

IoT sensors, Dual
Interactive W-GAN,

classification
techniques

Temperature,
pulse, blood

pressure, oxygen
saturation

Accuracy:
94.066%

[16]

Classification
model using

artificial neural
networks

User subsystem, cloud
subsystem, alert subsystem

Biomedical IoT
sensors, cloud

computing, artificial
neural networks

Biomedical data Accuracy:
94.066%

[17]
Health monitoring
model for elderly

patients

IoT module, data
preprocessing module,
context-aware module,

decision module

IoT sensors, mobile
devices, neural

networks,
optimization
algorithms

Physiological data
of patients Not specified

[18]

Framework for
intelligent

healthcare using
ontology for IoT

Data collection and
preprocessing, reasoning and

inference, knowledge
management

Ontology for IoT Not specified Accuracy:
89.81%

[19] Medical data
mining system

Feature extraction and
classification block, KMCCA
fusion analysis model, data

classifier

KMCCA, machine
learning techniques

ECG, PPG,
temperature,

accelerometer

Accuracy:
96.33%
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Table 1. Cont.

Ref. Proposed
Architecture Main Modules Technologies and

Techniques Used Collected Data Evaluation

[20]

System for
monitoring chronic

disease patients
using Do-Care

ontology

Context sensing, network
communication, data storage,

application, ontology and
reasoning

IoT sensors, SWRL
rules Not specified Not specified

[21]

IoT-based
context-sensitive
recommendation

system

Data collection, context
modeling, reasoning, context

dissemination

IoT sensors, artificial
neural networks

Data from patients
with diabetes

Overall
accuracy:

89.5%

Ours
Context-aware

architecture with
IoT

Mapping and retrieval,
ontology, context

management, physical
environment detection

IoT sensors, SWRL
rules, machine

learning

ECG, Temperature,
pulse, blood

pressure, oxygen
saturation

Overall
accuracy:
98.10%

2. Approach
2.1. Semantic Representation Model (Ontology)

The model under consideration incorporates a knowledge base that mirrors the in-
formation stored within two relational databases. This knowledge base serves as the
repository of information, enabling the context management layer to execute various infer-
ence rules in response to situations arising within a context-aware clinical environment.
Figure 1 delineates the constituents of the ontological model, while Table 2 describes
selected relationships between the domains.

The main domains of the ontological model are described in detail below:
Person: Describes the roles of individuals within the system, such as patients, doctors,

nurses, assistants, and administrators.
Event: Generates notifications and alerts depending on the data acquired by the

sensors that monitor the patient and notifies the medical staff about monitoring a patient
or their treatment.

Measure: Characterizes the measurements with their respective parameters according
to the monitoring sensors associated with the patients.

Profile: Describes all personnel associated with a clinical environment. In the case
of patients, all personal information and clinical history are included, while for health
personnel, information associated with their specialties and roles is considered.

Location: Identifies the location of the hospital environment. This information can be
obtained through the devices. It also refers to the location of patients (e.g., inside a space,
a recovery room, an emergency room, or other places assigned for care and follow-up).
Likewise, it refers to the location information of medical staff, nurses, and assistants and
their proximity to patients.

Diagnostic: Refers to patients’ diagnoses and prognoses. Includes doctors’ assessment
concerning patients’ laboratory tests.

Treatments: Considers the possible treatments that can be applied to a certain disease
depending on the patient’s medical pathologies.

Device: Describes the hardware and software features required to interact with the
clinical environment, including patient monitoring sensors and smartphones used by
medical personnel, among others.

Time: Refers to the notion of real time in context. It represents the interaction time
between patients and medical staff with the system. This dimension is important because it
determines the execution timeframe of an activity at the current moment or at its scheduled
time, such as administering a patient’s medication or conducting laboratory tests.

Diseases: Describes information related to patients’ illnesses, treatments, and
medications.
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Figure 1. Semantic model of the hospital environment.

Table 2. Description of the relationships of concepts in the ontology.

Relationship Description Domain/Range Restrictions

hasActivity Allows recording of activities of patients, doctors and nurses. Domain: Person
Range: Location, Device

isDeviceLocation All devices are located in one location. Domain: Device
Range: Location

hasDevice All people have a device allowing them to interact with the context. Domain: Person
Range: Device

hasTreatments Patients receive one or more treatments according to the diagnosed
diseases.

Domain: Treatments
Range: Patient

hasDiseases A patient may have been diagnosed with one or more diseases. Domain: Diseases
Range: Diagnostic

hasDiagnostic A patient has one or more diagnoses. Domain: Patient
Range: Diagnostic

hasGeneratedg A doctor generates one or more diagnoses. Domain: Doctor
Range: Diagnostic



Electronics 2024, 13, 2999 7 of 23

Table 2. Cont.

Relationship Description Domain/Range Restrictions

hasAlert The system sends alert notifications to doctors about the patient’s
current situation.

Domain: Notify
Range: Doctor, Nurse

hasPlanning
Every patient has a series of procedures, treatments, and

medications according to the diagnosed disease that must be
monitored and executed according to the patient’s evolution times.

Domain: Planner
Range: Patient, Doctor, Diseases,

Treatments

hasTracking A device constantly monitors the evolution of a patient. Domain: Device
Range: Patient

hasDateBeginning Every treatment has a set time to execute it. Domain: Treatments
Range: Time

hasDateEnd Every treatment has a set completion time. Domain: Treatments
Range: Time

hasLocation Every patient has a location. Domain: Patient
Range: Location

Table 2 describes some of the main relationships between the concepts of the semantic
representation model for the smart clinical environment.

2.2. Ontology Comparison

After searching the ontologies by domains, the NeOn methodology [22] criteria were
applied to determine which ones to use and which ones to discard. For this purpose, the
following actions were performed:

- Checking the scope and purposes of the ontology.
- Analyze the terms in the candidate ontology if they are similar to the ontology to

be developed.
- Calculate the precision and scope of the terms in the candidate ontology to be reused

with respect to the terms included in the competency questions defined for the
new ontology.

- Analyze whether the candidate ontology answers the competency questions of the
ontology requirements specification document.

After reviewing the ontologies, the one that best fits our research problem is COPD
Patients [23]; however, it lacks some domain elements to be able to define the inference
rules, as shown in Table 3.

Table 3. Comparison of different ontologies for healthcare environments.

Criteria Do-Care
[20]

COPD
Patients [23]

Cobra
[24]

ITEMAS
[25]

Disease
Ontology [26] Ours

Similarity in scope No Partial Partial Yes No Yes
Similar objective No Partial Partial Yes No Yes

Coverage of non-functional requirements Partial Partial No Partial No Yes
Coverage of functional requirements Partial Partial No Partial Partial Yes

As shown in Table 4 on the evaluation of the different ontologies, our ontology is the
only one that satisfies all the criteria, because it is more understandable and versatile, and
responds to the needs of an intelligent clinical environment. Although other ontologies have
positive aspects, they do not meet the requirements of our research. Therefore, we decided
to develop an ontology from scratch that meets all the criteria listed in the table above.
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Table 4. Comparative Evaluation of Ontologies.

Criteria [20] [23] [24] [25] [26] Ours

Taxonomy
√ √ √

- -
√

Language
√ √

-
√ √ √

Application -
√ √ √

-
√

Vocabulary
√ √

-
√ √ √

Requirements Architecture - - - - -
√

Social Acceptance
√

- - - - -
Automatic Reasoning - -

√
-

√ √

Software - - - - -
√

2.3. Proposed Architecture

This architectural framework enables adaptive responses to diverse situations or
behaviors encountered within an intelligent clinical environment. The nature of these
situations varies based on contextual information, such as an individual’s location and
role (e.g., patient, doctor, auxiliary health personnel), planning activities related to patient
care, and proximity to objects or physical spaces intrinsic to specific medical activities. The
proposed architecture facilitates contextual information management to align with user
needs. To achieve this objective, mechanisms for context acquisition, modeling, storage,
processing, notification, and information presentation must be defined. These mechanisms
are intricately integrated into each layer.

The architecture comprises the following layers: persistence, data mapping and recov-
ery, knowledge base, context management, and physical environment. The distribution of
these layers is illustrated in Figure 2.
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Each layer is described in detail below.

2.3.1. Storage

Persistence comprises two relational databases: context and treatments. The con-
text database stores information related to patient profiles, medical records, medication,
treatment monitoring, and the location of physical spaces such as intensive care units,
intermediate care units, recovery or emergency rooms. It also stores all information related
to medical personnel and their specialties, nurses, and nursing assistants. The treatment
and disease object database stores data on treatments for patients with different diseases.

2.3.2. Data Mapping and Recovery

This layer is responsible for mapping and retrieving the information from relational
databases, subsequently transferring it to the ontological model, as depicted in Figure 3.
The mapping process entails the identification of tables with their corresponding fields,
relationships, and constraints. Several tools offer interfaces to facilitate the transformation
of relational databases into semantic models [27–29]. However, adapting from relational
to semantic models introduces challenges in discovering constraints, including treating
primary and foreign keys, alongside managing inheritance. Notably, most existing works
do not adequately represent data transformation into the Web Ontology Language (OWL)
format. This proposed solution addresses these issues by facilitating the identification of
parent and daughter classes (inheritance), defining class restrictions, and generating both
direct and inverse relationships. Furthermore, it enables the creation of mappings in the
OWL language, thereby supporting the reasoning of inference rules within the Semantic
Web Rule Language (SWRL) framework.
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Ontological Mapping

This layer extracts information from the relational model schema and transforms it into
an ontological model structure. The relational database structure is transferred to an OWL
format with RDF triples (subject, predicate, and object) describing the different classes’
instances. A class in the OWL schema represents a table in a Relational Database (RDB).
The field of an RDB table is the equivalent of a property with its respective OWL data type.
The foreign key RDB corresponds to a relationship in an OWL class. To explain how the
mapping and recovery process is generated, four phases have been defined (Figure 3).
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This process allows the ontology to be stored in a persistence unit, as shown in
Algorithm 1 the operation of this layer.

Algorithm 1 Relational Data Mapping and Extraction Algorithm to OWL

Input data: relational database schema
Output data: ontology persistence unit
Begin

If (no ontology exists) then
First phase: move all tables and relationships from the relational model to the Data
Representation Model for Ontologies (DRMO)
Second phase: map from the DRMO to the OWL schema, representing the tables in classes, the
attributes in properties and relationships
Third phase: extract the data from the relational database and instantiate the tuples of all the
tables to the OWL schema
Fourth phase: store the ontology in a persistence unit

Else
Third phase
Fourth phase

EndIf
End

2.3.3. Context Management

The function of this layer is the management of contextual information related to the
environment, which allows real-time information about the patient to be offered according
to the data obtained from the hospital environment. The purpose is to monitor the context
variables and respond to their behavior according to the information mapped in the
ontology. Context management comprises six modules: context detection, broker, profile
management, treatment planner, diagnosis and disease management, notification, and
presentation. Figure 4 shows the module distribution.
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The following sections describe each of the modules of this layer.
Patient profile management:
This module is tasked with delineating the clinical history of the patient, encompassing

information about pre-existing conditions (such as diabetes, cancer, hypertension, coronary
arteries, among others), medical allergies, including those related to food, prior surgeries,
and past medical interventions. Establishing the patient’s profile is grounded in the
information initially extracted upon admission to the hospital. This information is gathered
through a questionnaire administered to the patient in a conscious state or to a close
family member. These data serve as the foundation for the system to make preliminary
adjustments, providing suggestions or recommendations concerning potential treatments
for illnesses and contraindications for medications. Figure 4 illustrates the state diagram
depicting the system’s profile management behavior.

To establish the rules that will generate the patient’s profile, the patient’s clinical history
and data associated with the diseases diagnosed according to laboratory tests performed at
the hospital were initially taken as a reference. Based on the previous parameters, possible
treatments and medications can be suggested to the patients. The rules used to explain the
profile behavior are described below.

Rule 1
Patient(?patient), Diseases(?disease),

Doctor(?doctor),
Diagnostic(?diagnostic), hasDiseases(?diagnostic,

?disease), hasDiagnostic(?patient,?diagnostic),
hasGeneratedg(?doctor,?diagnostic), hasProfile(?pati

ent, ?profile), has_MedicalTests(?test, ?result),
swrlb:stringEqualIgnoreCase(?result, “YES”)->

NotifyTreatment(?patient)

Activity planner:
The activity planner is responsible for monitoring patients’ treatment and vital signs

within a clinical environment, enabling healthcare professionals, such as doctors and nurses,
to fulfill the healthcare needs of individuals. Patient treatments are systematically allocated
specific time intervals for execution. The scheduler inputs include details such as start
and end dates and start and end times. Furthermore, the traceability of all treatments is
intricately linked to a particular patient with a designated location for their administration.
For the planner to efficiently respond to treatment monitoring based on factors such as
time, location, or NFC/QRCode tag reading, the broker must initiate the request utilizing
the event trigger.

Rule 2
Planner(?plan), Patient(?patient), Activity(?act),

Treatments(?treatment), Location(?loc),
hasPlanning(?plan, ?act), hasTreatments(?patient, ?

treatment), hasDateBeginning(?treatment, ?datebegin),
hasDateEnd(?treatment, ?dateend),

swrlb:lessThanOrEqual(?datebegin, ?dateend),
hasLocation(?patient, ?loc) -> NotifyActivity(?patient)

Explanation of Rule 2 corresponding to event planner: The planner has an identifier
number, the patient has an identifier, the activity has its identifier, the treatment has its
identifier, and the location also has an identifier. The planner has a schedule associated with
the planner identifier and activity. The patient has a treatment that is associated with the
patient identifier and treatment identifier. It has a treatment start that is associated with the
treatment identifier, start date, and time. Finally, it has a treatment end time associated with
the treatment identifier and the end time and date. The patient has a location that is related
to the location and patient identifier. The rule notifies the patient of the location, including
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the date, start time, and end time of the patient’s treatment. This notification is sent to the
medical staff (doctors and nurses) so that they can follow the patient’s procedure.

2.3.4. Broker

This is an intermediary between the context detection, profile management, scheduler,
notification, and presentation modules. This module is integrated with context monitor
classes, inference engines, machine learning models, and the JENA API. These classes are
shown in Figure 5.
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The context monitor class comprises the context interpreter and event trigger methods.
The context interpreter is responsible for receiving the data emitted by the retrieval and
extraction module. The data come associated with a tag, which allows the interpreter
to assign an identifier for each context source stored in the ontology’s persistence unit.
Figure 6 gathers data sources obtained from the context in JSON format.

As seen in the previous code, an idPatient with its respective location is assigned
to the patient-context data source. Similarly, the device identifier is extracted using the
session token. After identifying each context source, the event trigger invokes the profile
and scheduler management modules. These two modules execute queries that provide
SWRL rules, which are sent as parameters to the inference engine class. The inference
engine executes the rules and generates context instances for each invoked module.
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2.3.5. Context Detection

The system obtains information from the clinical environment. Its function is to
permanently detect requests made by mobile clients and identify each of the contextual
factors. These factors include the time intervals at which a patient is monitored, given
medication, location, and vital sign sensor readings. Authentication, registration, discovery,
and extraction submodules are within context detection. Figure 7 shows the context
detection distribution. The modules of this layer are described as follows:
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Authentication module: The authentication process of medical personnel and devices
associated with the patient is performed. If the authentication service validates the existence
of the medical staff, it proceeds to send the data to the mediator to extract the information
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from the patient’s profile and associated treatments. This is because patients may have
different types of devices and sensors to connect to the system. Each device has a token
that allows a user to be associated with the device; therefore, the context management layer
always recognizes its characteristics.

Context discovery and extraction module: Gathers context data from different sources,
including sensors provided by the mobile device. Once the data are obtained, it proceeds
to validate and classify them depending on the origin, according to the ontological model
stored in the persistence unit of the knowledge base. For classification, labels are used as a
reference that allows the identification of data from each entity that is a part of the context.
A tag allows the locations of patients and medical staff in the clinical environment to be
known. After extracting the data, they are sent to the broker. The broker interconnects
with the remaining modules. Each module has inference rules that define the patient
profile, activate the planner, and verify the monitoring and follow-up of the treatments.
The medical staff are subsequently notified using the notification and presentation module.

Registration module: Registers different context data sources in the medical and
patient database, updating the interactions from the clinical environment and server. These
updates allow the traceability of each patient with their vital signs, monitoring data, and
treatments according to their diseases.

2.3.6. Notification and Presentation

This delivers information related to the interaction of the contextual awareness system
with the mobile device of the medical staff. One of the main functions of this module is to
notify doctors and nurses by sending messages about new changes in the environment (pa-
tient status). These messages may be related to location changes, abnormal measurements,
and start or end times of treatment.

2.3.7. Physical Environment

This corresponds to the physical infrastructure that allows information to be extracted
from the context through devices, including Near Field Communication (NFC) sensors,
Bluetooth Low Energy (BLE), Global Positioning System (GPS), cameras, and vital sign
sensors, among others. Technological artifacts useful for interaction between people and the
environment, such as NFC and QRCode tags, are also a part of it. Communication between
the physical environment and the context server occurs through mobile devices that operate
with the MQTT protocol. Bluetooth standards, already integrated, and NFC readers
available on smartphones were used to communicate between devices and physical objects.

As shown in Figure 8, through the sequence diagram, the system architecture is de-
signed to detect the physical environment using different types of sensors (NFC, QRCODE,
GPS, biometrics, etc.). These send the information to the context detection module, which
subsequently extracts the data so that the broker is subsequently responsible for managing
the patient’s profile information. After managing the profile, rules are generated based
on the origin of the data obtained by context detection. The profile management layer
immediately sends instances to the treatment management module, which in turn transmits
it to the broker to generate the respective event to the planner. The planner module searches
for information related to the activities to be performed with the patient. The planner sends
rules to the broker, which in turn processes them. The planner then sends an instance
to the treatment management module, which again generates the rules for the broker to
process and return to the treatment management module. According to the rules and
respective validations, the treatment management module sends alerts to the notification
and presentation module in the event that it is the monitoring of vital signs that have
exceeded the thresholds or, failing that, it is the notification for the traceability of the parent
treatment. This patient traceability notification may be an indication to provide the patient
with medications and take them for medical examinations, among others.
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3. Analysis and Results
3.1. Metrics for Model Evaluation

To evaluate the quality of the model we use the precision, recall, F1 score and specificity
metrics [30] as described below:

The confusion matrix shows the structure of two classes as seen in Figure 9.
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The terms described in the confusion matrix are:
True positives (TP): Indicates that the model positively predicts the class.
True Negative (TN): Indicates which model negatively predicts the class.
False Positive (FP): Indicates that the model incorrectly predicts the positive class,

which is called type 1 error.
False Negative (FP): Indicates that the model incorrectly predicts the negative class,

which is called type 2 error.
The confusion matrix metrics are described below:

- Accuracy: This metric indicates whether the model made predictions correctly.

Accuracy =
TP + TN

TP + TN + FP + FN
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- Precision: Indicates the dispersion of the set of values obtained from repeated mea-
surements of a magnitude. The smaller the dispersion, the greater the precision.

Precision =
TP

TF + FP

- Sensitivity: indicates the ability of the estimator to discriminate positive cases from
negative ones. Sensitivity is represented as the fraction of true positives.

Recall =
TP

TP + FN

- Specificity: this is known as the true negative rate. These are the negative cases that
the model has correctly classified, indicating how well the model can detect a class.

Speci f icity =
TN

TN + FP

- F1 Score: This metric is very useful when the distribution of classes is uneven. An
example may be when the number of patients with one condition is 15% and the other
is 85%, which in the healthcare field is quite common, as in our case.

F1 Score =
2 ∗ Precision ∗ Recall

2 ∗ TP + FP + FN

3.2. Definition of Dataset

Next, we describe the datasets used to make predictions to refine alerts. Three alert
types were considered, i.e., body temperature, heart rate, and blood oxygen level in
hospitalized patients. Each of the datasets is discussed.

3.2.1. Body Temperature

To measure body temperature, the variables age, gender, body temperature, and the
objective dependent variable were considered. 1346 instances were taken as reference, see
Table 5.

Table 5. Body temperature.

Age Gender Body_Temp Target

10 1 35.72 1
15 0 38 0
. . . . . . . . . . . .

The value of the categorical variable gender is changed to male = 0, and female = 1.
In the case of the target variable, the value of yes is changed to 1 and the value of no is
changed to 0.

In other words, if the target variable is equal to 1, it means that the body temperature
is elevated.

3.2.2. Heart Rate

To measure heart rate, the heart attack dataset available in [31] was adopted, which
considers the dependent variables of age, gender (0 female, 1 male), impulse (heart rate),
high blood pressure (systolic), low blood pressure (diastolic), glucose, KCM (creatine
kinase), troponin, and the independent variable target (0 to positive, 1 to negative). The
number of instances for this data set was 1319, see Table 6.
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Table 6. Heart rate.

Age Gender Impulse Pressurehigh Pressurelow Glucose Kcm Troponin Target

64 1 66 160 83 160 1.8 0.012 0
21 0 94 98 46 296 6.75 1.06 1
. . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.3. Blood Oxygen Level

In measuring the level of oxygen saturation in the blood, the independent variables
were age, gender (0 female, 1 male), Spo2 (oxygen saturation level in the blood) and the
objective dependent variable target (0 abnormal, 1 normal). The number of instances for
this dataset is 1208, see Table 7.

Table 7. Blood oxygen level.

Age Gender Spo2 Target

64 0 80 0
21 1 95 1
. . . . . . . . . . . .

In preprocessing, 70% was used for training and 30% for testing on the three datasets.
Likewise, k-fold cross-validation was applied for better classification accuracy, sensitivity,
and specificity. These data are important when generating smart alerts.

The goal was to permanently monitor the patient against an abrupt change in vital sign
variables. For this purpose, vital signs sensors sending data to the developed system were
provided. Its architecture implements techniques combining knowledge-based inference
rules and machine-learning models based on medical data. Combining these techniques
generates confidence in the alerts the system issues to medical personnel.

To train the dataset collected from the sensors, these supervised learning models
were used:

1. K-Neighbors Classifier (KNN)
2. Naive Bayes Gaussian (Gaussian NB)
3. Decision Tree Classifier
4. Logistic Regression
5. Support Vector Machine (SVM)
6. Random Forest Classifier
7. Linear Discriminant Analysis (LDA)

3.3. Experimentation

For the experimental phase, a patient was randomly selected in intermediate care from
a clinical center in the city of Monteria to observe the efficiency of the system. This study
aimed to validate the alerts generated by heart rate monitoring. Normally, in health centers,
one of the most critical alerts that medical personnel must pay attention to is the heart rate.
Normally, systems tend to generate false alarms at some point. Faced with this, our system
has a double validation, which is basically the establishment of inference rules, and it is
then filtered by a machine learning model to generate confidence with the alert.

Our system addresses the notification of alerts for monitoring the level of oxygen
saturation in the blood, temperature, and medical treatments in the clinical environment.
We will use a rule and different machine learning models to generate a reliable alert in
heart rate measurement. This rule is described as follows:

Rule 3 generates a medical alert based on the heart rate; this patient was diagnosed
with an underlying disease (hypertension). The treating doctor made a diagnosis based on
the clinical examinations performed on the patient. The heart rate was monitored, and if it
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exceeded the threshold of 100 or below 50, a notification was generated to the medical staff
so that they could care for the patient.

Rule 3
Patient(?patient), Diseases(?disease), Doctor(?doctor),

Diagnostic(?diagnostic), hasDiseases(?diagnostic,
?disease), hasDiagnostic(?patient,?diagnostic),

hasGeneratedg(?doctor,?diagnostic), hasProfile(?patient,
?profile), has_heart_rate(?profile, ? heart_rate),

swrlb:lessThan(?heart_rate, 50), swrlb:greaterThan
(?heart_rate, 100)-> Notify (?doctor)

Once the rule is triggered according to the parameters of the heart rate readings
with the minimums and maximums (50 and 100), it is validated using the random forest
supervised learning model. To determine whether this is the best model to fit the alerts, it
was compared to six additional machine learning models, as described below in Table 8
and Figure 10.

Table 8. Supervised learning models for heart rate alerts.

Model Score 1 Score 2 Score 3 Score 4 Score 5 Mean Std

SVM 0.64150943 0.63507109 0.67772512 0.67772512 0.65402844 0.65721184 0.01992801
LogisticRegression 0.78301887 0.77251185 0.85781991 0.77251185 0.81042654 0.7992578 0.0362238

RandomForest 0.97169811 0.97630332 0.99052133 0.99526066 0.99052133 0.98486095 0.01023141
GaussianNB 0.75 0.63507109 0.67772512 0.66350711 0.58767773 0.66279621 0.05966437

LinearDiscriminant 0.68396226 0.69668246 0.72985782 0.68246445 0.69668246 0.69792989 0.01908389
KNeighbors 0.58490566 0.5971564 0.56398104 0.67772512 0.63981043 0.61271573 0.04569165
DecisionTree 0.97641509 0.98578199 0.99052133 0.98104265 0.97156398 0.98106501 0.00747602
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After evaluating the different supervised learning models, the random forest model
was found to be the best fit to generate reliable alerts. Using the aforementioned metrics,
this model has an accuracy of 98.98%, a classification error of 0.0038, a Recall or Sensitivity
of 100%, allowing the discrimination of the negative and positive phases of the trained
instances, and a specificity of 0.9940. Finally, it achieved an F1 score of 99%. This indicates
that after the inference rule is generated, the random forest model is capable of generating
a reliable alert regarding the patient’s heart rate, thereby allowing the medical staff to care
for the patient in a confident and timely manner. The confusion matrix shown in Figure 11
corroborates what has been previously described.
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4. Discussion

This study presents a significant advance in the management of patient-related infor-
mation in clinical settings. By integrating a semantic representation model with supervised
learning algorithms, the proposed architecture addresses the critical need for the effective
synchronization of patient data, vital signs, and medical records. This dual approach
enhances decision-making capabilities and ensures timely care, distinguishing this study
from previous studies that have focused on semantic modeling or machine learning in
isolation. The ability of the system to infer and trigger actions based on predefined rules
represents a robust mechanism for improving patient care by efficiently processing and
responding to real-time data from various biomedical devices.

This study builds on existing work by incorporating elements from ontologies, such
as Disease Ontology, Cobra, Do-Care and COPD Patients, and refining them to fit the
specific needs of hospital contexts. This approach ensures comprehensive coverage of
functional and nonfunctional requirements and establishes a new standard for healthcare
data management systems. Additionally, the system’s high accuracy in alert generation,
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achieved through the integration of machine learning models, demonstrates a practical and
scalable solution for improving clinical workflows.

Limitations

Despite the positive results, our study has certain limitations that warrant further
exploration. First, the system’s reliance on predefined rules may limit its adaptability to
unforeseen medical scenarios or the changing nature of patient-care protocols. Second, the
experiment primarily focused on three vital sign parameters (Spo2, body temperature, and
heart rate), which may not capture the full spectrum of patient conditions in a clinical setting.
Expanding the scope to include additional parameters and complex conditions could
provide a more holistic assessment of the system effectiveness. Third, there are potential
challenges in integrating the system with existing hospital information systems (HIS) and
electronic health records (EHR). Ensuring interoperability and seamless data sharing among
different systems remains a critical hurdle. Additionally, the study’s validation scenarios
were conducted in controlled environments while demonstrating high accuracy. Real-world
implementation may introduce additional variables and complexities that could impact
the system performance. Future studies should include extensive field testing and user
feedback to refine the functionality and user interface of the system.

5. Conclusions and Future Work

This study mainly focused on the semantic representation of medical contexts through
the implementation of an ontology. The developed ontology delimits essential domains in
an intelligent clinical environment, including interactions with the patient, medical staff,
vital signs, and location sensors, among other relevant aspects. The relationships between
these domains are explained in detail within the ontological model, which facilitates
comprehensive interactions within the clinical environment and its constituent elements.

Additionally, the study implemented an architecture designed to interact with the
intelligent clinical environment and efficiently access the knowledge base containing con-
textual information. Machine learning models have been integrated into this architecture
to produce highly reliable predictions, guaranteeing the high quality of medical alerts
generated by the system.

The system was designed and implemented to manage information from the clinical
environment related to patients, treatments, medications, and vital signs. It integrates
information about medical personnel, locations, and vital sign monitoring sensors. The
semantic representation model is used through an architecture that extracts information
from the model and generates inferences to support decision-making in patient care. Su-
pervised learning models are used to accurately predict the quality of alerts based on data
from vital-sign sensors, thereby improving the efficiency of patient care and the overall
clinical environment.

The validation of the system through medical scenarios designed to monitor patients
with underlying health conditions demonstrated that the system can generate inferences
that allow alerts with a confidence level close to 98% accuracy.

Future Research Directions Include the Following

- Implementation of machine-learning models for medical treatments:
Development and integration of machine-learning models to predict medical treat-
ments for specific diseases commonly found in clinical settings.

- Establishment of inference rules:
Create rules capable of addressing disease-related information to improve the system’s
inference capabilities.

- Integration with advanced sensor technologies:
Incorporation of more advanced sensor technologies to improve the accuracy and
reliability of patient-monitoring and alert systems.
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- Expansion of the Ontological Domains:
The ontology should be extended to cover additional medical domains and contexts
to support a broader range of applications and clinical scenarios.

- Improving decision-making support systems
Real-time data synchronization:
Focus on improving the real-time synchronization of heterogeneous information
within clinical environments to ensure timely and accurate monitoring of patient
conditions.
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