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Abstract: To detect text from electronic seals that have significant background interference, blurring,
text overlapping, and curving, an improved YOLOv8 model named RA-YOLOv8 was developed.
The model is primarily based on YOLOvS, with optimized structures in its backbone and neck.
The receptive-field attention and efficient multi-scale attention (RFEMA) module is introduced in
the backbone. The model’s ability to extract and integrate local and global features is enhanced
by combining the attention on the receptive-field spatial feature of the receptive-field attention
and coordinate attention (RFCA) module and the cross-spatial learning of the efficient multi-scale
attention (EMA) module. The Alterable Kernel Convolution (AKConv) module is incorporated in the
neck, enhancing the model’s detection accuracy of curved text by dynamically adjusting the sampling
position. Furthermore, to boost the model’s detection performance, the original loss function is
replaced with the bounding box regression loss function of Minimum Point Distance Intersection
over Union (MPDIoU). Experimental results demonstrate that RA-YOLOVS surpasses YOLOVS in
terms of precision, recall, and F1 value, with improvements of 0.4%, 1.6%, and 1.03%, respectively,
validating its effectiveness and utility in seal text detection.

Keywords: YOLOVS; seal text detection; RFEMA; AKConv

1. Introduction

Text serves as a crucial carrier for information transfer and preservation in the era of
information technology. The proliferation of smartphones has led to the accumulation of a
large amount of visual data. Efficiently and accurately extracting text information from
this massive amount of visual data has become an urgent problem. As a prerequisite for
text recognition, text detection plays a crucial role. A superior text detection model can
accurately locate text areas, avoid background interference, and provide a solid foundation
for subsequent text recognition. As an important means of anti-counterfeiting and anti-
tampering, seals are usually stamped on documents or bills. However, since most seals
are red or blue, stamping them on black text can make it difficult to extract the seal’s text
information due to color coverage. Additionally, uneven seal color or mutilations in the
seal’s outline also pose challenges to text detection. Therefore, achieving an accurate seal
text detection model with strong robustness is particularly important.

Numerous text detection techniques have been developed due to the rapid advance-
ment of computer vision technology, including CTPN [1], SegLink [2], EAST [3], and others.
CTPN uses a vertical anchor box to position text. CTPN can handle long text by adopting
a vertical anchor box, but it is difficult to detect non-horizontal text. SegLink forms a
complete line of text by connecting many parts of a line. SegLink introduces a rotation
Angle compared to CTPN. This allows SegLink to handle not only long text, but also text
with different orientations. But SegLink has trouble detecting crooked text. EAST has
a simple structure. This method can predict the text box directly and reduce the com-
plexity of post-processing, but it cannot deal with long text. However, since most seals
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contain curved text, these methods often suffer from low accuracy and practicality for such
cases. To address the issue of text detection in arbitrary directions, many methods such
as TextSnake [4], Inceptext [5], and R2ZCNN [6] have emerged. TextSnake transforms the
text detection problem into a series of circular parameter prediction problems based on
the geometric properties of the text area. TextSnake is good at handling curved text, but
the algorithm has time-consuming, post-processing operations. Inceptext enhances the
detection performance of the model by extracting multi-scale features, but the algorithm
has high computational complexity. R2ZCNN introduces a rotating bounding box to handle
text in any direction, but this algorithm requires higher hardware. Although these methods
improve the detection performance to some extent, they often struggle to achieve an ideal
balance between accuracy and computational efficiency.

To address these problems, an improved YOLOvV8 method for seal text detection,
called RA-YOLOVS, is proposed. This method introduces modules such as AKConv [7],
RFAConv [8], and EMA [9] based on YOLOVS, enhancing the backbone and neck of the
original YOLOVS8. These improvements not only promote the attentional feature fusion in
channel and spatial dimensions, improve the model’s ability to extract seal features, but
also reduce the computational load and achieve a better balance between network overhead
and performance. Additionally, the loss function in YOLOVS is replaced with the MPDIoU
loss function [10], a loss function based on MPDIoU for bounding box regression. By
considering the shape differences of the bounding boxes, this loss function minimizes the
distance between the corresponding top-left and bottom-right corners of the predicted box
and the ground truth box when they have the same aspect ratio but different widths and
heights. This not only simplifies the computational process but also makes the bounding
box regression more accurate and improves the convergence speed of the model loss,
enabling the model to produce better localization results.

The contributions of this paper are as follows:

1.  Considering the large number of Chinese character categories and the limited number
of existing Chinese seal datasets, a Chinese seal dataset consisting of 7004 images was
created, including 2002 blurred real seals and 5002 electronic seals.

2. Animproved seal text detection method RA-YOLOVS is proposed. YOLOvS backbone
and neck are enhanced, with the RFEMA method replacing the original Conv layer
in the backbone. The RFEMA method integrates REAConv receptive field attention
convolution operation and the EMA cross-latitude interaction operation, significantly
improving the model’s accuracy and performance while adding a negligible number
of parameters. In the neck, the improved AKConv method replaces the original Conv
layer, further enhancing the model’s feature extraction efficiency and precision.

3. Replace the loss function with the MPDIoU loss function. The MPDIoU loss function
considers the geometric features of the bounding box. This allows the model to better
adapt to different scenarios, handle targets, and improve regression performance.

The rest of the paper is organized as follows: Section 2 provides an overview of
related work, Section 3 presents detailed information about the proposed method, Section 4
describes the self-constructed dataset and the experiments testing the performance of the
proposed method, and Section 5 concludes the paper and discusses plans for future work.

2. Related Work

The seal text detection problem can essentially be regarded as natural scene text de-
tection. Current natural scene text detection methods can be mainly divided into two
categories: one applies traditional text detection methods to seal text detection, typically fo-
cusing on utilizing the unique features of seals, and the other uses deep learning techniques
for text detection.

The traditional text detection method is to extract the outline features of the seal.
Gao et al. [11] proposed a seal discrimination method based on stroke edge matching,
which identifies the tested seal by comparing the similarity between the edge images of
the template seal and those of the tested seal. However, when the outline of the seal is



Electronics 2024, 13, 3001

30f22

damaged, the stroke edges may lose key information, leading to a decrease in accuracy in
specific cases. Chen et al. [12] proposed an identification approach for valid seal imprints
based on the center-rays model, which takes advantage of the geometric properties of the
seal. First, the connected component of the seal is segmented using image segmentation
methods. Then, the region growth method is used to locate the candidate region. Finally,
the topological relationship between the seal frame and the region within the frame is
explored using eight rays extending from the center of the model in different directions
to extract the seal. However, when the seal outline is mutilated, key information may
be lost, resulting in decreased identification accuracy. Cai et al. [13] proposed a method
by selecting the contour shape skeleton as a lantern ring, which takes advantage of the
fact that most seals are red or blue. The method normalizes the color of colored seals
and then extracts the color of the seal to simplify the image. It judges by calculating the
Euclidean distance between any two black point pixels on the contour shape skeleton map.
Yao et al. [14] took full advantage of the fact that most seals are red and proposed using
the red component for seal detection and localization via the HSI color model. However,
when the seal is gray and similar to the background color, this method becomes ineffective.
Zhang et al. [15] used a diffuse water filling algorithm to process the grayscale image and
achieve seal detection through binarization. But the robustness of this algorithm is not
high. Kang et al. [16] first extracted the seal ontology using the SN color space model,
and then used the adaptive Canny operator for edge detection on the morphologically
processed image, further localizing the seal text. When the edge information is destroyed,
the detection performance of this method is low.

Based on deep learning, text detection methods can be mainly divided into two
types: regression-based text detection algorithms and segmentation-based text detection
algorithms. Each type showcases its unique advantages and applicable scenarios in the
text detection task. The text detection method based on Regression mainly predicts the
coordinates of the bounding box. Methods with a preset anchor box are called indirect
regression, while those without a preset anchor box are called direct regression. For
detecting horizontal text, Zhong et al. [17] proposed the Inception and RPN (Inception
RPN) method. The method uses convolution and max pooling of different sizes to extract
text features. The method improves the accuracy of model detection of horizontal text by
adjusting the anchor box. Zhong et al. [18] also proposed the Anchor-Free Region Proposal
Network (AF-RPN) method, which utilizes the Feature Pyramid Network (FPN) to detect
text of different sizes such as large, medium, and small, thereby producing high-quality
text region proposals. Then, the sliding window detector is used for classification and
regression. This method can detect scene text regions at low resolution, but it cannot deal
with extremely small text instances.

In order to detect multi-directional text, Liao et al. [19] proposed a trainable text
detection model named TextBoxes++. By using inclined bounding boxes to detect text
accurately, the model increases the acceptance area of long text area, and enhances the
ability of the model to detect long text. When the character spacing is large or the text is
curved, the detection performance of this method will be degraded. Xu et al. [20] created a
new Geometry Normalization Module (GNM). The module can normalize the text instances
to a geometry range through a single branch. This improvement enables the model to better
adapt to changes in text size and orientation, thus improving the accuracy and robustness
of detection. This method performs well in conventional text detection. However, the
detection performance of this method can be improved greatly under special and complex
conditions. He et al. [21] proposed a scene text detection method named MOST. The method
first compares the initial detection results with the image features. Then, according to the
obtained comparison results, the receptive field of image features is dynamically adjusted,
and the final detection result is obtained by refining continuously. This method solves the
problem of inaccurate long text detection. MOST is optimized for three problems that exist
in EAST. This method may perform well in natural scenes, but may degrade in special
cases such as text missing. Wang et al. [22] created a scene text detection method. This
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method creates an end-to-end network that reduces the complexity of text detection. This
method improves the performance of the model by ranking the similarity of the detected
text instances. This method is mainly aimed at the problem of text detection in natural
scenes. When the text is fuzzy and cannot be displayed completely, the detection effect of
this method may be poor.

To detect curved or arbitrarily directional text, Liu et al. [23] proposed a curved text
detector (CTD). The model optimizes the regression module by adding curved locating
points. The model first performs offset prediction for width and height, respectively. The
bounding box is then corrected by predicting the offsets of 14 points on the proposal
bounding box. The coordinates of these 14 points represent the curved shape of the text.
Wang et al. [24] proposed a robust method for scene text detection. The method utilizes
Long Short-Term Memory (LSTM) to iteratively regress the coordinates of points on the
proposal bounding box. This enables the detection of arbitrarily shaped text. In order to
improve the detection performance of curved text, Liu et al. [25] proposed a Conditional
Spatial Expansion (CSE) method. The model models local features in vertical and horizontal
directions, respectively. Then, the model extracts the contour points and performs processes
such as Non-Maximum Suppression (NMS). This effectively suppresses similar features
and reduces false discriminations. Zhang et al. [26] created a text detection model named
LOMO. LOMO model first generates the initial quadrilateral text. Then, the model extracts
feature blocks from the obtained initial text and extracts the long text through continuous
refinement. Finally, the model comprehensively considers the geometric properties of the
text instances. This makes the detection results more accurate. Liu et al. [27] proposed a
model that can use parameterized Bezier curves to adaptively fit arbitrarily shaped text.
The model can also simplify the detection of scene text and reduce the computational
overhead, but cannot detect Chinese text. Zhang et al. [28] proposed an adaptive boundary
proposal network. The model first generates the prior information and an initial bounding
box through multi-layer convolution. Then, an adaptive boundary deformation model is
used to iteratively change the shape of the bounding box. This makes the bounding box
constantly fit the text region. Dai et al. [29] created a Progressive Contour Regression (PCR)
model. The model first generates an initial horizontal text bounding box by estimating the
center and size of the text. It then predicts the corner points of the bounding box. Then, it
generates a rotated text box based on the position and semantic information of these points.
Finally, the model iterates over the text bounding box. This makes the bounding box fit the
shape of the text. However, the final detection result of this method is greatly affected by
the number of selected points. Zhu et al. [30] proposed a scene text detection method called
TextMountain. This method can be used to locate the text centers by predicting the Text
Center-Border Probability (TCBP) and Text Center-Direction (TCD) using the border-center
information. This method has no advantage when the word is short.

Segmentation-based text detection algorithms use neural networks to extract features.
It then determines whether the pixel belongs to the text region by classifying each pixel
in the image. This enables the segmentation of text and background. Deng et al. [31]
proposed a scene text detection algorithm called PixelLink. The algorithm segments the
text by connecting pixels of the same text instance and then extracts the text bounding
box from the segmentation result. However, this method is not accurate in the detection
of large objects. Since this method only looks at the relationship between the pixel and
its neighbors, it ignores the context information and may cause some false detections
in the model. Baek et al. [32] introduced a character-level-based scene text detection
method designed to detect long lines of text efficiently. This method uses a convolutional
neural network to predict the affinities between characters. But it has limitations in stroke
sticking and curved text. Tian et al. [33] developed a model called LSAE. By using Shape-
Aware Embedding, the model can distinguish between different text instances and make
pixels belonging to the same instance closer. Additionally, a Shape-Aware Loss and a
new post-processing operation are introduced to generate more accurate bounding box
predictions. Wang et al. [34] proposed a Progressive Scale Expansion Network (PSENet).
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The network generates different proportions of kernels for each text instance. This can
separate two closely text instances, so that the model can get more accurate detection
results. The disadvantage of this method is that the selection of hyperparameters is
particularly important for different data sets. Selecting a hyperparameter that is not
suitable for the model may affect the detection effect. Xu et al. [35] proposed a text
detection method called TextField. This algorithm segments the text region from the
background by encoding a binary text mask and direction information through a direction
field. However, its detection effectiveness is compromised when the text region is occluded
in the image. Liao et al. [36] proposed a Differentiable Binarization (DB) module and a
network named DBNet. The network can adaptively set the binarization threshold. This
simplifies the post-processing operation and improves the text detection performance. This
model does not solve the case of circular text with text inside. Zhu et al. [37] proposed a
new Fourier Contour Embedding (FCE) method and created the FCENet network. The
network uses Inverse Fourier Transformation (IFT) and Non-Maximum Suppression (NMS)
to generate a more accurate detection bounding box for text instances in any direction. This
method may not perform as well as expected when dealing with low resolution or blurred
images. Because text detail may be insufficient in low-resolution images, this can affect
feature extraction. Cai et al. [38] proposed a new arbitrary shape text detection method
named DText. This method can dynamically generate convolution kernels for different
text instances according to features. This approach overcomes the limitations of fixed
convolution kernels, which cannot adapt to all resolutions and prevent information loss
across multi-scale instances. However, this method is difficult to deal with sharpened
text instances. Zhong et al. [39] created a new Progressive Region Prediction Network
(PRPN) with directional pooling. The network first predicts the probability distribution of
the text region. Then, the network converts this distribution into a bounding box using a
watershed-based, post-processing algorithm. This can achieve the purpose of text detection.
The high computational complexity of the directional pooling module in this method leads
to a decrease in speed. Yu et al. [40] proposed a text detection method called TCM. The
method uses the CLIP model for unsupervised perception of text images. This model
applies CLIP model to scene text detection through adaptive learning. The model also
incorporates features between different levels of the CLIP model to obtain more accurate
text detection results. Shi et al. [41] proposed a scene text detection algorithm based on
result fusion. This method synthesizes the results of different text detection algorithms
and improves the performance of text detection by using the advantages of these text
detection algorithms. However, if the fused algorithm has the wrong detection result, the
algorithm will also have the wrong result. Naveen et al. [42] proposed a new text detection
method. The method improves accuracy by combining Generative Adversarial Network
(GAN) and Network Variational Autoencoder (VAE). The method first generates diverse
text regions, then continuously optimizes these text regions, and finally detects these text
regions. However, in some cases, the complexity of the model can affect its effectiveness.
Zheng et al. [43] proposed a text detection method based on boundary points dynamic
optimization (BPDO). The method first extracts the image features. Then, text region and
text awareness features are obtained according to the extracted features. Finally, based
on the text perception features, the boundary points are iteratively optimized to obtain a
complete boundary box.

Many existing text detection methods are optimized for some problems in natural
scenes. The text in the natural scene is clear and complete, but the seal text detection will
face problems such as text missing or text blurring. These detection methods do not take
into account the particularity of seal text. This results in these models often working less
well in environments with complex backgrounds and multiple fonts. Especially in the
seal text detection, many models do not perform as well as they do in ordinary scene text.
When dealing with seal text, these models often have difficulty in distinguishing between
text and background. In addition, due to the lack of seal text, it is difficult for the model to
extract image features, which makes the model detection accuracy decline. Therefore, it is
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crucial to develop a detection model specialized for seal text scenes. To solve the above
problems, we proposed RA-YOLOVS. This model can extract the detailed features of the
seal text and effectively distinguish the text from the complex background.

3. Method
3.1. YOLOwv8 Model Introduction

YOLOV8 is an improvement on YOLOv5. YOLOVS consists of three main parts, namely
the backbone, neck, and head. The backbone mainly extracts features from the input image.
It incorporates YOLOv7 ELAN design concept and replaces the original C3 module with
the C2F module, which captures more key detail information in complex backgrounds
and noise environments. The neck removes 1 x 1 convolutional to reduce channel layer
and replaces the C3 module with the C2F module. The head mainly transforms the fused
feature maps into final detection results. The head structure is changed to decoupled head
structure, and the Anchor-Based is changed to Anchor-Free. The original structure of
YOLOVS is illustrated in Figure 1.
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Figure 1. Structure of YOLOVS.
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Seals are usually stamped on a variety of documents. However, these documents
have various colors of text or graphics, which can obscure the text content on the seal and
increase the difficulty of text detection. Additionally, uneven pressure during stamping
may lead to blurred seal impressions. In such complex backgrounds, YOLOvV8 may struggle
to distinguish between the target and the background. Furthermore, when the seal con-
tains densely packed text, leading to reduced character spacing, YOLOvV8 may experience
detection omissions, resulting in decreased accuracy. YOLOVS structure is also complex,
requiring substantial computational resources and longer training times. To address these
issues, specific optimizations have been made to YOLOVS, focusing mainly on improving
the backbone, the neck, and the loss function. The Conv layers in the backbone and the neck
have been replaced with RFEMA module and AKConv module, respectively, enhancing
the model’s feature extraction capabilities and detection accuracy in complex backgrounds.
The improved YOLOVS is showed in Figure 2.
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Figure 2. Improved structure of YOLOVS.

3.2. RFEMA Module

RFEMA module is a modification of RFCA module and EMA module. RFEMA
module incorporates the feature of both modules and combines them in a new structure
by connecting the two modules in series. The structure of RFEMA module is showed in
Figure 3.
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Figure 3. Structure of RFEMA module.

RFCA module enhances existing spatial attention mechanisms by combining Receptive
Field Attention (RFA) with Coordinated Attention (CA), resolving the issue that CA only
focuses on spatial features without enabling the sharing of convolution kernel parameters.
The original structure of RFCA module is depicted in Figure 4. RFCA module adds several
operations to CA module, including group convolution operations, batch normalization,
activation functions, and adjusting the shape of the feature map. Additionally, it employs
a K x K convolution operation to output the final feature information after the output
from CA module. RFCA module first makes a feature extraction operation through group
convolution to generate multiple feature maps of different sizes. Then, the generated
feature map is reshaped to isolate the local receptive field features of each location, which
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is conducive to the subsequent feature rearrangement and integration. Compared to CA
module, RFCA module places greater emphasis on the spatial features of the receptive
fields, allowing the model to better handle local regions within the image. For stamp
text detection, RFCA module makes the model more focused on emphasizing smaller
text or edges and also effectively suppresses background noise. When the content of
the seal is blurred, REFECA module enables the model to better concentrate on relevant
areas, thus improving the distinction between seal text and background and enhancing
detection accuracy. RFCA module combines spatial attention with convolution through
the integration of the attention mechanism, enabling flexible adjustment of convolution
kernel parameters, solving the problem of convolution parameter sharing. The combination
of RFA and CA directs the attention of existing spatial attention mechanisms toward the
receptive field features. This allows the model to solve the problem of remote information
parameter sharing and requires fewer parameters than self-attention. Through this focused
attention on receptive field spatial features, the model better adapts to the deformation of
seals, enhancing its ability to detect a diverse range of seals.

Input  CxHxW
Group Conv CK2xHxW

Norm+RelLU CK2xHxW

Adjust Shape | CxKHxKW

Cx1xKW H AvgPool W AvgPool CxKHx1

T T
Concat+Conv Cx(KH+KW)x1
Norm+Non Linear Cx(KH+KW)x1
Split
Cx1xKW Conv Conv CxKHx1
Cx1xKW Sigmoid Sigmoid CxKHx1
Re-weight CxKHxKW
CxHxW Conv Stride=K

Output

Figure 4. Structure of RFCA module.

RFEMA module is a simplified and optimized version of RFCA module. First, it splices
the features of row and column directions, and then splits the features of row and column
directions directly after 1 x 1 convolution, which simplifies the process of feature splicing
and segmentation. Following this, SiLU activation function is used in both directions to
calculate the respective attention weights. By removing the original batch normalization
operation, RFEMA module reduces computational complexity and simplifies the model
training process. These improvements make RFEMA module more efficient and concise
while preserving the advantages of RFCA module.

The original structure of EMA module is shown in Figure 5. EMA module preserves
the information of each channel and reduces computational overhead by reshaping part
of the channels into batch dimensions. Initially, EMA module selects a portion of the
1 x 1 convolution in CA module as its 1 x 1 branch and sets a 3 x 3 convolution in parallel
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as the 3 x 3 branch. Compared to CA module, EMA module introduces a cross-spatial
information aggregation method to achieve richer feature aggregation. The input for the
cross-spatial learning method consists of two parts: the outputs of the 1 x 1 branch and
the 3 x 3 branch. EMA module encodes global spatial information in the output of the
1 x 1 branch, followed by Softmax activation function to generate attention weights
for each channel. Simultaneously, the output of the 3 x 3 branch is reshaped to the
corresponding shape, and the outputs of these two branches are matrix-multiplied to
obtain the weighted feature aggregation results, generating the first spatial attention
map. Similarly, the output of the 3 x 3 branch is subjected to a 2D global average
pooling operation and Softmax activation function is used to generate attention weights.
The 1 x 1 branch is then reshaped into the corresponding dimensions and the outputs
of the two branches are matrix multiplied to obtain another weighted result to generate
the second spatial attention map. Finally, EMA module fuses the output features of the
two branches and adds the corresponding attention weight values in each spatial attention
map to obtain a new set of spatial attention weights. Cross-space learning through the
output features of the two parallel branches enables the model to obtain richer contextual
information.
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Groups C//GxHxW

C//Gx1xW X AvgPool Y AvgPool C//GxHx1 Conv(3x3) C//GxHxW
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Figure 5. Structure of EMA module.

In RFEMA module, the output of RFCA module is used as the input for the
1 x 1 branch. The 3 x 3 convolution is replaced by depthwise separable convolution,
Sigmoid activation function of the original EMA module is replaced by SiLU activation
function, and a residual structure is added. Depthwise separable convolution decomposes
the traditional convolution operation into two steps: depthwise convolution and point-
wise convolution. This convolution first applies depthwise convolution for independent
spatial feature extraction on the input channels and then performs cross-channel feature
combination using pointwise convolution. This achieves more efficient feature extraction
and computational optimization. By extracting spatial and channel features separately, the
parameters are significantly reduced, making the model more lightweight and efficient.
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In seal text detection, capturing complex features in a deep network can be challenging
if the gradient vanishes, making training difficult. SiLU activation function has good
gradient flow properties, which can alleviate the problem of gradient vanishing. It allows
for negative outputs and combines linear and nonlinear properties, enhancing the feature
representation of the model. To minimize information loss and retain more original feature
information, the residual connection is introduced in RFEMA module. This design not only
accelerates the training process of the model but also promotes its rapid convergence.

RFEMA module not only retains the advantages of RFCA module’s focus on receptive-
field features but also incorporates the benefits of EMA’s cross-spatial learning. RFCA
component of RFEMA module enhances the capture of local features by emphasizing the
fusion of receptive field features and convolution with spatial attention. Meanwhile, EMA
module can obtain global features of different scales through adaptive average pooling and
multi-scale convolution operations. The use of depthwise separable convolution enhances
the ability to integrate global information and detailed information. The combination of
these two methods makes the model to be more comprehensive in extracting local features
and global features. This also allows the model to handle noise more efficiently, effectively
distinguish between background and text, and reduce false and missed detections. RFCA
module uses group convolution to improve the feature extraction ability of the model
while reducing the parameters. EMA module reduces the dimensions by reshaping the
dimensions, in this way avoiding the dimension reduction of the convolution method. The
module also combines depthwise convolution and pointwise convolution to improve the
feature extraction ability while making the model more computationally efficient. This
combination alleviates the high demand for computational resources of YOLOv8 without
sacrificing the feature extraction ability, and achieves a good balance between feature
extraction effectiveness and computational efficiency. Since RFCA module can accurately
extract the local features, it improves the robustness of the model in dealing with the
detailed features. EMA module has a strong ability to integrate global functions, which
enhances the generalization ability of the model in various cases, and makes the model
perform well in various complex environments.

3.3. Formatting of Mathematical Components

AKConv module uses a new coordinate generation algorithm to define the initial
positions of the convolutional kernels. This balances the relationship between fixed shape
convolutional kernels and network performance. It adjusts the shape of the convolutional
kernels by introducing offsets to suit different application scenarios. AKConv module is
illustrated in Figure 6.

AKConv module first obtains the corresponding offsets through depthwise separa-
ble 2D convolution operations. Depthwise separable convolution significantly reduces
computational complexity and improves training efficiency by decomposing standard con-
volution into two independent steps: depthwise convolution and pointwise convolution.
Specifically, it performs depthwise convolution independently for each input channel and
then combines these results through pointwise convolution. The modified coordinates
are obtained by adding the initial coordinates and offsets, where the initial coordinates
are generated by the initial coordinate generation algorithm. Finally, the features at the
corresponding locations are extracted by interpolation and resampling. AKConv module
borrowed the idea of RFCA module performing separate convolutions in the row and col-
umn directions. This can solve the problem that irregular convolution kernels are difficult
to extract image features. AKConv module convolves features with convolution kernels
appropriate size in the column direction, and then uses row convolution to complete the
extraction of irregular convolution features. In order to speed up the training process,
AKConv module performs batch normalization of the input feature maps. In addition,
AKConv module employs Mish activation function, which allows the model to learn more
complex features compared to SiLU activation function. To alleviate the problem of gradi-
ent vanishing in deep neural networks, residual connection is added to AKConv module
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to improve the stability of model training. This residual connection is usually a mapping
that simply transfers the input directly to the output without any changes. But there is a
different situation in this model. When the number of input channels are different from the
number of output channels or the stride is not 1, a sequence container is used to adjust the
number of input channels and the spatial dimensions. The sequence container is composed
of al x 1 convolutional layer and a batch normalization layer. This ensures that the inputs
and outputs have the same shape, thus maintaining the stability of the model training.

7 Input

C,HW

|
SeparableConv2d

Offset %ﬁ
|

|
7777J‘ 2N,HW

|

gt

,H,W
|

qﬂ
=

Output

G5,

Figure 6. Structure of AKConv module. The red frame in the figure represents the sample shape.

AKConv module has an adaptive convolution kernel, which can dynamically adjust
the sampling position based on the feature map. This enhances the model’s ability to extract
local features and enables the model to better handle character connections in seal text
detection. compared to fixed sampling position, AKConv module can efficiently handle
rotated images, allowing the model to better handle the seals of font changes. In addition,
AKConv module also includes an adaptive learning rate adjustment mechanism, which
makes the model to dynamically adjust the gradient during the backpropagation process.



Electronics 2024, 13, 3001

13 of 22

3.4. Loss Function

The loss function of YOLOvV8 mainly consists of two parts: classification loss and
regression loss. BCE Loss is used for classification loss, while DFL Loss and CIOU Loss are
used for regression loss. These three losses are weighted using specific weight proportions
to form the complete loss function of YOLOVS.

In this study, a bounding box regression loss function based on MPDIoU is introduced.
In some cases, as shown in Figure 7, when there are two images where the predicted box
and the ground truth box have the same aspect ratio but are visually inconsistent—one
predicted box is inside the ground truth box and the other is outside—the calculation
results of CIOU and GIOU may be the same. This leads to the ineffectiveness of these
loss functions in handling such cases, which can limit the model’s convergence speed.
MPDIoU loss function, however, can compute the difference between these two boxes, thus
addressing this issue.

_ 4 _ A
- > > 9
-— -—>
-l >
Picture 6 Picture
L _ \/
8 N 8 -
(a) (b)

Figure 7. (a) The predicted bounding box is outside the ground truth bounding box, at this time
Lcrou = 0.75, Lgiou = 0.75, Livppiou = 0.79; (b) The predicted bounding box is inside the ground truth
bounding box, at this time Loy = 0.75, Lgiou = 0.75, Lmppiou = 0.76.

Inspired by the geometric properties of bounding boxes, which determine a rectan-
gular shape through the coordinates of the points in the top-left and bottom-right corners,
MPDIoU loss function directly minimizes the distances between these two sets of corre-
sponding points between the predicted box and the ground truth box. This approach
simplifies the process of similarity comparison and improves the accuracy of bounding
box detection. This makes the model more suitable for overlapping and non-overlapping
bounding box regression. In addition, MPDIoU loss function considers the central point
distance and the deviations in width and height, improve the efficiency of bounding box
regression. The formula of MPDIoU loss function is as follows:

Lmvppiou = 1 — MPDlou, 1)
Bet N B 2 2
MPDIou = & pd __di 4 2)
Bprd U Bgt w2+ h w2 +h
5 d t\ 2 d t\ 2
ds = (xfr — X%) + (y}fr — y%) , 3)
d t) 2 d t) 2
B = () + (¥ -8 @

where w is the width of the input image, h is the height of the input image, By,,q is the
predicted box, and Bg; is the ground truth box. The coordinates of the predicted box is

(xij " yfrd), and the coordinates of the groundtruth box is (x‘ft, y§t>, d; is the distance
between the top-left corner of the predicted box and the top-left corner of the ground truth
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box, and d; is the distance between the bottom-right corner of the predicted box and the
bottom-right corner of the ground truth box.

In the seal text detection, MPDIoU loss function can more accurately recognize the
differences between bounding boxes. This loss function can more efficiently handles seal
text with complex shapes and rich details. It can improve the localization accuracy of the
model and enhance the accuracy and robustness of detection.

4. Experiments
4.1. Datasets

The dataset used in this study is a self- constructed dataset for Chinese seal text
detection. This dataset contains various difficult situations that are encountered when
detecting seal text. These situations include partial absence of seal text due to document
overwriting, or blurring of seal text caused by uneven stamping force, etc. The dataset
consists of 7004 images, including 2002 real seals and 5002 electronic seals. The real seals
were collected from the public information of the people’s government of Guangxi Zhuang
Autonomous Region, mainly collecting seals on documents or pictures. The electronic seals
were created by ourselves. During the creation process, we enhanced data diversity of the
data by adding anti-counterfeiting marks, rotating text angles, modifying word spacing,
and increasing simulation effects. The modifications allow the model to learn from more
realistic scenarios, thus improving its performance in practical applications. This also
prevents the model from overfitting the training and ensures better performance on the test.
The dataset is divided into a training dataset and a test dataset in a ratio of 8:2, resulting in
5603 training images and 1401 test images. The training set contains 1614 real seals and
3989 electronic seals. The test set contains 388 real seals and 1013 electronic seals. The real
seals in the training set contained 1302 blurred seals, 263 missing text seals, and 49 distorted
seals, with a ratio of 263:53:10. The real seals in the test set contained 349 blurred seals,
35 missing text seals, and 4 distorted seals, with a ratio of about 70:7:1. The electronic seals
in the training set and the test set are different angles, different texts and blurred seals. All
the images have a resolution of 640 x 640 pixels and saved in PNG format.

As shown in Figure 8, the data set contains different types of seals, such as seals
with missing text, seals with blurred text, seals with distorted text, seals with complex
backgrounds, and so on. Compared with text in natural scenes, these seals are difficult to
detect and challenging. The dataset contains seals of different sizes, shapes, and angles,
which allows the model to learn the diversity of the dataset and better adapt to different
scales of data. The distribution of data samples is shown in Figure 9.

v\
)

Figure 8. Different types of seals in the data set.



Electronics 2024, 13, 3001

15 of 22

5000 -

4000 -

3000 -

instances

2000 -

1000 -

| 06
0.8- 0.8- ':'
a Soa
i 02
e 0.6
00

0.4- 1

02- Soa

02
0.0-
. . ' . . . ' . . 00
o2l ol |l lloiel Il o8 /01l lllkoz2: Wlliiora Il karex lilllioie PR ] 535050 "o7s """ loo 50 e

o5
x width x y width height

Figure 9. Dataset label distribution map.

4.2. Evaluation Metrics

In this study, Precision, Recall, F1 score, and mean Average Precision (mAP) were
used as the primary metrics to evaluate the model.

TP
P= e ©)
TP
R=7p +FN’ ©)
1
AP = /0 p(R)dR, %
0 ror
mAP = 7i:0r1AP(l) 8

where, TP denotes the number of samples that are actually positive and correctly detected
as positive by the model. FP denotes the number of samples that are actually negative but
incorrectly detected as positive by the model. FN denotes the number of samples that are
actually positive but incorrectly detected as negative by the model. Positive samples refer
to labeled textual objects, while negative samples represent background regions that are
not related to the text.

4.3. Experimental Platform and Parameters

The experiments were conducted on a hardware platform featuring an AMD EPYC
7T83 CPU and an RTX 4090 graphics card, using the PyTorch deep learning framework.

During the training process, the number of epochs was set to 80, with a batch size of
32. The AdamW optimizer was used, with an initial learning rate (Ir0) set to 0.002, a final
learning rate (lrf) set to 0.01, and momentum set to 0.937.

4.4. Experimental Results

To evaluate the detection performance of the model, a self-constructed seal text dataset
was used. Under the same experimental conditions, the model was compared with several
up to date seal text detection algorithms. The values of Precision (P), Recall (R), and F1
score for each algorithm were compared, and the results are shown in Table 1.
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Table 1. Comparative experiments of different detection models.

Model P (%) R (%) F1 (%) mAP50 (%)

PSENet 86.13 90.62 88.32 -
DB 76.30 71.16 73.64 -
FCENet 91.05 82.70 86.67 -
DB++ 93.69 71.16 80.88 -

TextBPN++ 83.79 80.90 - 68.39
DPText-DETR 79.78 67.03 72.85 -

YOLOvVS 95.00 92.00 93.48 94.90

RA-YOLOvVS 95.40 93.60 94.51 96.50

As shown in Table 1, DB model does not perform well in seal text detection. DB++
model and FCENet model have relatively high precision but relatively low recall and F1
scores. DB++ model is an improvement over DB model, mainly enhancing the detection
of text regions by introducing a binarization mechanism. However, it is not suitable
for handling complex backgrounds and detail-rich seal text content, as the binarization
operation may ignore some edge information, resulting in some text regions not being
detected correctly. FCENet model primarily detects text regions through Fourier transform,
but it struggles when dealing with small or blurred text, as some detailed information may
not be captured by the model, leading to lower detection performance in these regions.
The overall performance of PSENet and DPText-DETR models is not as effective as that of
RA-YOLOVS. PSENet model’s overall performance may be lower due to its weak ability
to detect small text. DPText-DETR model may be interfered with by background noise in
complex backgrounds, causing the dynamically updated control points to deviate slightly
from the actual text regions. In high-density text scenes, control points in neighboring text
regions may overlap, making it difficult for the model to distinguish each individual text
region, leading to detection omissions. RA-YOLOvVS improves precision by 0.4%, recall
by 1.6%, and F1 score by 1.03% compared to the original YOLOvS8. The experimental
results demonstrate that RA-YOLOVS can avoid background noise interference, accurately
distinguish between background and target, and achieve precise localization of stamped
text under complex backgrounds, making the model robust.

As shown in Figure 10, the comparative experiment was mainly conducted on the
S-scale and M-scale of YOLOVS5, the N-scale, S-scale and M-scale of YOLOvV®6, the N-scale,
S-scale and M-scale of YOLOVS, and the N-scale and S-scale of RA-YOLOvS8. As shown
in Figure 10, with the increase of parameters, the precision of RA-YOLOVS is greater than
other models. We also compared the performance of different models in the yolo series,
and the results are shown in Figure 11. It can be seen from Figure 11 that RA-YOLOvV8
model has the best performance.

9.5 YoLovs
—e— YOLOV6
—e— YOLOV8
—e— RAYOLOV8
96.0

MAPS50 (%)
©
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«n

©
g
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Figure 10. Comparative experiments of yolo series.
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Figure 11. Performance comparison experiment of yolo series models.

We selected 6 challenging seal pictures from the test dataset for testing. As shown
in Figure 12, for seals with uneven colors, compared with RA-YOLOVS, the detection
results of YOLOvV8 and YOLOV5 are lower, while the detection results of YOLOv6 are
very low. For seals containing two texts, compared with RA-YOLOVS, the positioning
results of YOLOv8 and YOLOVS5 are biased, and the positioning results of YOLOvV6 are
inaccurate. For complex background or fuzzy seals, RA-YOLOVS8 can accurate detection,
and other models are underperforming. For seals with missing text, the localization results
of YOLOvVS, YOLOv5 and YOLOV®6 are inaccurate, and these models ignore the missing
text part. It can be seen that the detection performance of RA-YOLOVS is better than that of
the other models.
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Figure 12. Visualization results of different models.

As you can see from Figure 13, RA-YOLOVS can detect a seal that is missing text.
However, the model is not very accurate at detecting seals that have a large amount of
text content missing. As shown in the left image of Figure 13, the strokes of this seal are
incoherent, with many horizontal or vertical strokes missing, leaving only a few dots. As
shown in the right picture of Figure 13, this seal has a large amount of blank space due
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to the missing upper part of many characters. For this kind of seal, although the model
can extract the detailed features of the image, it is difficult for the model to obtain enough
context information due to the excessive white space, so they cannot be correctly judged as
a complete text instance.

AT "

Figure 13. Visualized results of failed cases.

4.5. Ablation Experiments

To assess the validity of this study, ablation experiments will be conducted on the
two improvement points, using the values of Precision (P), Recall (R), F1 score, and mean
Average Precision (mAP) as indicators for evaluating the model. The results are shown in
Table 2.

Table 2. Ablation experiments of different modules.

Model P (%) R (%) F1 (%) mAP50 (%)
YOLOvVS 95.00 92.00 93.48 94.90
YOLOvVS
+RFEMA 95.40 92.80 94.07 96.40
YOLOvVS

+AKConv 95.20 92.50 93.81 94.80
RA-YOLOvVS 95.40 93.60 94.51 96.50

As shown in Table 2, the addition of RFEMA module and AKConv module to the back-
bone and neck of YOLOVS, respectively, improves the detection performance of YOLOVS.
Specifically, the precision increased by 0.4% and 0.2%, the recall increased by 0.8% and
0.5%, and the F1 score increased by 0.59% and 0.33%, respectively. The experimental results
show that RFEMA module and AKConv module significantly enhance model’s ability to
detect seal text in complex backgrounds and improve model’s feature extraction capability.

As can be seen from Figure 14, RFEMA module can enhance the model’s ability to
extract the detailed features of seal text, so that the model can accurately extract seals with
missing text or complex background. AKConv module enables the model to accurately
extract seals with high text density.

Figure 15 shows the enhancement effect of each module. It can be seen that both
RFEMA module and AKConv module can enhance the performance of the model. In
particular, when the RFEMA module is added to YOLOVS, recall, map50 and MAP50-95 all
have certain improvements.
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Figure 14. Visualization results of different modules.
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5. Conclusions

In this paper, an improved YOLOv8 model called RA-YOLOVS is proposed. This
model can solve the difficult problem of seal text detection when detecting complex back-
grounds. RA-YOLOVS8 enhances the backbone and neck of YOLOvVS by adding RFEMA
module and AKConv module. These upgrades significantly improve the model’s ability to
extract local features and global features, enabling it to efficiently handle curved seals and
improve detection performance of the model. Experimental results show that compared
with YOLOv8, RA-YOLOvS improves the precision by 0.4%, the recall by 1.6%, and the F1
score by 1.03%.

In future work, the seal text dataset can be extended further, allowing the dataset to
cover a wider variety of situations. In addition, a more lightweight seal text detection model
can be created to reduce the model size while maintaining high detection performance.
This would improve the efficiency and practicality of the detection process.
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