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Abstract: In responsible AI development, the construction of AI systems with well-designed trans-
parency and the capability to achieve transparency-adaptive adjustments necessitates a clear and
quantified understanding of user states during the interaction process. Among these, trust and load
are two important states of the user’s internal psychology, albeit often challenging to directly ascertain.
Thus, this study employs transparency experiments involving multiple probabilistic indicators to
capture users’ compliance and reaction times during the interactive collaboration process of receiving
real-time feedback. Subsequently, estimations of trust and load states are established, leading to the
further development of a state transition matrix. Through the establishment of a trust–workload
model, probabilistic estimations of user states under varying levels of transparency are obtained,
quantitatively delineating the evolution of states and transparency within interaction sequences. This
research lays the groundwork for subsequent endeavors in optimal strategy formulation and the de-
velopment of transparency dynamically adaptive adjustment strategies based on the trust–workload
state model constraints.

Keywords: responsible AI; human computer interaction; transparency design; collaborative decision
making; human computer trust; cognitive modeling

1. Introduction

The transparency of systems is regarded as the most pressing issue in the practical ap-
plication of AI [1], thus posing a significant challenge in constructing responsible AI. Studies
indicate that even state-of-the-art AI systems, including various intelligent electronic de-
vices or agents, cannot eliminate unreliability in real-world applications [2]. Therefore, in
human–computer collaborative tasks, the design and investigation of transparency present
crucial opportunities for implementing responsible AI. Transparency design methodologies
focus on conveying clues about the probabilistic features of AI, involving information
pertaining to uncertainty, dependency, and vulnerability [3]. Transparency design can
positively impact user experience and behavior, serving as a pivotal starting point for the
more comprehensive, reliable, and responsible application of AI [4].

However, current research on transparency often concentrates on algorithmic perspec-
tives, striving to enhance the interpretability of AI itself [5], while overlooking human
factors and ergonomics studies in AI application processes [6]. Blindly elevating trans-
parency may not directly enhance user trust and could potentially degrade the performance
of human–computer interaction and collaboration. In comparison to algorithm develop-
ment, human-centric research bears the greatest responsibility for transparency design in
AI [7], including leveraging theoretical research findings from cognitive psychology [5],
visualizing probabilistic features [8], and thereby effectively enhancing AI’s accountabil-
ity through interaction. Hence, AI transparency should reconcile the tension between
deficiencies in displaying probabilistic information in the interaction interface and user
cognition [2]. Relative to the rapid advancement of algorithms, significant gaps persist in
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AI transparency research, particularly in complex electronic technologies and systems [9].
How to present system transparency in a manner consistent with user cognition remains a
major challenge [10], representing a crucial yet insufficiently explored research dimension
and signifying an open frontier in responsible AI and interaction research.

From the perspective of the human–computer interaction (HCI), AI transparency
should be designed based on user trust and workload states, further achieving dynamic
adjustments based on these two states. The trust state is a complex and multidimensional
concept. Establishing a trust state stems partly from the feedback and explanations pro-
vided by AI, aiding users in comprehending its operational principles and decision-making
logic [11]. Users exhibit strong interest and concern about the concepts and logic behind AI,
extending beyond simple acceptance of its computational results. Conversely, the workload
state involves the magnitude of psychological effort users endure during the process of
understanding transparent information. The quantity of transparency information often
directly impacts cognitive resource consumption, thereby influencing user decisions and
the efficiency of human–computer collaboration.

In the process of transparency design, the requirements of trust states and the con-
straints of cognitive load often pose a dilemma. For trust states, as transparency increases,
it can assist users in understanding and constructing meaning around AI [12], which
has been demonstrated to enhance trust states [3]. However, increasing transparency re-
quires conveying more information and conveying excessive details significantly alters
the cognitive load. Excessive cognitive load can lead to attentional distraction, cognitive
fatigue, and even psychological discomfort, not only prolonging the time users expend
on decision-making in human–computer collaboration but also increasing the likelihood
of errors.

Therefore, if an AI system lacks transparency or has a low level of transparency, users
cannot perceive the logic behind the AI system’s decisions, making effective collaborative
decision making difficult and hindering the AI system’s accountability. Conversely, if the
transparency level is too high, it may significantly increase the response time for collabora-
tive decisions without necessarily improving the accuracy of the outcomes. Addressing
these issues, this study extends the series of works conducted by Akash et al. [13–17] and
proposes the following human–AI collaborative decision-making loop, as illustrated in
Figure 1.

1. The AI system first makes a decision and generates “Actions”. The AI system consoli-
dates and analyzes various data to make decisions, such as determining whether an
object is a threat or not. As a responsible AI, the “Actions” presented to users include
three aspects: the current decision result, the correctness of the previous decision
result, and the system’s transparency. The system’s transparency describes the relia-
bility of the current decision result, reflected through a probabilistic indicator system.
This probabilistic indicator system, being an abstract expression, can have different
meanings in various application environments, such as reflecting the accuracy of
data from various sources using measurement error, natural variation, and prediction
error, or indicating the evaluation and measurement of the AI system itself using
feature vector similarity, probability scores, and model confidence. The number of
probabilistic indicators presented to the user reflects the transparency level of the AI
system. For example, level 1 transparency indicates only providing the AI’s decision
result to the user, while level 4 transparency includes the decision result plus three
probabilistic indicators;

2. “Actions” and “Feedback” are presented to the user in real-time, prompting changes
in the user’s “States”. In the “Actions”, the correctness of the previous decision
result pertains to the AI system’s decision result, while “Feedback” pertains to the
correctness of the user’s previous decision. For instance, if in the previous collabo-
rative decision, the user judged an object as a threat and it indeed was a threat, the
“Feedback” will inform the user in real time that their decision was correct. Upon
perceiving the “Actions” and “Feedback”, the user’s cognitive system is stimulated,
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which then responds to control interactive behaviors. This process affects the user’s
trust and cognitive load states;

3. The AI system generates “Observations” about the user and estimates the “States”.
Influenced by trust and cognitive load states, the user exhibits two types of behavioral
responses. One aspect is the user’s decision outcome, i.e., agreeing or disagreeing
with the AI system’s decision, reflecting the user’s compliance with the AI system.
The other aspect is the user’s response time in collaborative decision making. By
observing these two behavioral responses, the AI system estimates the trust and
cognitive load states;

4. The AI system calculates the “Rewards” of the collaborative decision. The “Rewards”
of the collaborative decision are composed of two aspects involving trust and cognitive
load. One aspect is the ultimate correctness of the collaborative decision. Blind trust
and compliance with the AI system are not always beneficial. For example, if the AI
system judges an object as a threat when it is not and the user complies with the AI’s
result, this should be considered a negative reward. The other aspect is the shorter
the decision time, the higher the reward. In summary, the reward setting provides an
optimization direction for the AI system’s dynamic adjustment, aiming to improve
decision accuracy while reducing response time;

5. The AI system dynamically adjusts the system’s transparency. Based on the estimation
of “States” and the real-time calculation of “Rewards”, the AI system can determine
the “Actions” strategy that maximizes “Rewards” under the current “States”. Among
the three elements of “Actions”, the current decision result and the correctness of the
previous decision result are directly tied to system reliability and cannot be adjusted
through design. In contrast, system transparency is the object of dynamic adjustment.
Therefore, the AI system can dynamically adjust the number of probabilistic indicators
presented to the user to build a responsible AI system. This constitutes a cycle in the
human–AI collaboration process, wherein the sequence of decisions (e.g., continu-
ously judging whether multiple targets are threats), the user’s “States” dynamically
change, and the number of probabilistic indicators displayed by the AI system also
dynamically changes, ensuring that transparency always follows the optimal strategy
for maximizing decision accuracy and minimizing time.
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To achieve the above cycle, we conducted a series of studies, constructing a Partially
Observable Markov Decision Process (POMDP) and using reinforcement learning to de-
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rive the optimal strategy for transparency adjustment. This study is part of a series of
investigations, focusing primarily on points 1 to 3 of the above cycle. Specifically, for the
optimization and updating of reinforcement learning strategies, it is first necessary to initial-
ize the strategy, which includes defining the interaction process, conducting collaborative
decision-making experiments, and observing users to construct trust and load models. The
core significance of this process lies in the following two aspects:

• State estimation through observations: Trust and load states are not directly accessible
and need to be estimated through partial observations. Quantifying trust and load
states first requires obtaining their current status; however, these states are difficult
to observe directly and are hidden variables within cognitive processes. In the field
of human–computer interaction research, the evaluation of trust and load states for
electronic systems largely relies on self-reported survey methods. For example, the
Likert Scale is used to assess trust states and the NASA Task Load Index is used to
assess load states. However, in the context of real-time feedback algorithms, con-
tinuously querying the cognitive domain is usually infeasible. Therefore, this study
constructs observation probability functions based on user observations (compliance
and response time) to quantitatively estimate users’ trust and load states;

• Dynamic Characteristic Construction: Trust and load states are not fixed characteristics;
they have a complex relationship with transparency and mutually influence each
other. These states are highly sensitive to transparency and adaptively adjust during
interactions. As the sequence of interactions unfolds, the dynamic interplay between
these states and transparency evolves. Therefore, this study constructs transition
probability functions to model the dynamic properties of users’ trust and load states.

In summary, as part of a series of studies, this research constructs trust and load models
for the human–AI collaborative process. Specifically, through collaborative decision-making
experiments at different transparency levels, we observe users’ compliance and response
times to construct observation probability functions, forming estimates of trust and load
states. Additionally, this study develops transition probability functions to quantify the
dynamic evolution of states and transparency throughout the interaction sequence. These
methods provide a deep understanding of the collaborative decision-making process with
responsible AI and lay the foundation for further optimal strategy derivation and the
development of transparency dynamic adaptive adjustment strategies constrained by the
trust–load state model.

The remaining sections of this study are organized as follows: Section 2 introduces the
relevant research background. Section 3 sets the parameters involved in the model. Section 4
conducts transparency experiments, mainly obtaining observations on user compliance
and reaction times. Section 5 constructs the trust–load model. Section 6 discusses the
experimental and modeling results and Section 7 summarizes the study.

2. Related Works

As electronic devices and intelligent agents become increasingly complex, transparency
has become a prominent topic in recent years. There is a growing commitment to mak-
ing AI outputs more transparent to maximize the joint performance of human–machine
teams [18]. Throughout the application of modern AI systems, users consistently express
strong concerns and interests regarding the underlying principles and logic behind system
outputs. This demand has formed a humanizing cycle of AI ethical assurance [19]. Research
by Brasse et al. indicates that user demands extend far beyond merely accepting system
suggestions or ratings, as good transparency can positively impact domain experts’ user
experiences and behaviors [4]. Visser et al. point out that trust between humans and ma-
chines has been repeatedly shown to be a key factor influencing decision effectiveness, with
empirical studies demonstrating the benefits of increased transparency [3]. Alexander et al.,
through neurophysiological measurements, demonstrate that information about others’
prior use of algorithms has a greater impact on algorithm adoption than the accuracy of the
algorithms themselves, resulting in lower cognitive load. Conversely, adopting algorithms
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without any information leads to low cognitive engagement during task processes and
compromised task performance [20]. As shown in Figure 2, in situations where AI reliability
cannot be guaranteed perfectly, transparency design is significant for constructing and
developing responsible AI for the following reasons.

1. Avoidance of abandonment. When AI operates in a “black box” manner and its output
results do not match user expectations, it leads to biases in users’ perceptions of AI
capabilities [21]. This ongoing cognitive dilemma and negative emotions affect users’
attitudes and behavioral intentions, gradually eroding and inhibiting their confidence
in the system [22], thereby reducing their willingness to use the technology. More
critically, this loss of confidence may introduce potential risks in critical real-time
decision-making scenarios, affecting decision quality and implementation effective-
ness [2]. This scenario is particularly evident in significant decision choices involving
military recognition, disaster relief, and medical diagnosis [4]. Good transparency can
present fundamental information, action reasons, and uncertain predictions, which aid
users in understanding AI and making necessary adjustments, including providing
missing instructions or information to AI and correcting its understanding [23];

2. Avoidance of misuse. When AI outputs are not sufficiently understood and validated,
misuse of its results may lead to adverse consequences or poor decisions [24]. The
lack of necessary questioning of AI results and critical thinking will lead to the
cognitive domain’s unreasonable confidence in recognition results [25]. Enhancing
AI transparency displays can effectively manage uncertainty [2], help users identify
when AI may operate beyond its limits, and determine when AI results should not
be used [7];

3. Facilitation of assessment. Enhanced transparency assists in more accurately assessing
computational domain capabilities and limitations for trust calibration. Visualization
of transparency and probability indicators is a standard tool for assessing and com-
municating risks [26]. Responsible AI should enhance the visibility of underlying
processes to enable users to understand current states [2]. Precise probability indica-
tors should be implemented in the computational domain, encompassing all sources
of decision uncertainty (e.g., model performance, prior knowledge about training data
distributions, and input data noise) [27], to emphasize AI limitations [28]. Displaying
this information aids in evaluating whether AI logic and decisions are reasonable,
judging their consistency with domain prior knowledge and practical experience,
thereby calibrating trust [29]. Additionally, providing and highlighting this metadata
to users [3] increases their awareness of probabilistic features [30], improves their
perception of cognitive decision risks, and promotes greater caution [31];

4. Bias correction. Responsible AI can complement users’ ideas through transparency
information and probabilistic feature inference [32], for example, Zhou et al. introduce
the uncertainty of training data and model represented by knowledge graphs into
AI-informed decision making [33]. This additional information will correct users’
cognitive predictions and expectations, thereby improving the quality of recognition
decisions [34]. Transparency design assists in constructing and testing causal relation-
ship hypotheses related to recognition decisions [28], including forming reasons for
decision outcomes and the association between causes and results [22]. This correction
of decision biases is crucial for ensuring accuracy and scientific credibility [24].

Consequently, the establishment, maintenance, and calibration of such trust have
become focal points of research [30]. In this context, researchers and designers in HCI bear
significant responsibility for trust calibration and system transparency design [7]. Therefore,
HCI research should strive to integrate transparency into the data sets, algorithms, and
data models within the computational domain, as well as into the intent, behavior, and
prediction uncertainties, enabling the cognitive domain to gain a deeper understanding of
how the computational domain interprets and acts upon the received data [21].
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Firstly, HCI researchers must ensure the clear and comprehensible communication of
uncertainties. Andrienko posits that merely providing descriptions of data and uncertain-
ties is insufficient to enhance system transparency; the key lies in how this information is
presented. The primary task of information visualization is to represent information visu-
ally, enabling users to perceive it accurately and efficiently [32]. Bles et al. stress the need
to combine statistical methods for quantifying uncertainty with psychological perspectives
that highlight the importance of communication’s impact on the audience [34]. Hullman
emphasizes that designers must identify effective communication methods to successfully
convey uncertainty [35]. Jiang et al. point out that, particularly in AI system collaborations,
ensuring that the system clearly communicates associated uncertainties when presenting
its outputs is crucial for achieving more efficient and reliable decision support [2]. Thus,
comprehensively understanding and effectively managing these uncertainties are not only
cutting-edge issues in research and design but also essential for ensuring the robustness,
reliability, and interpretability of AI technologies.

Simultaneously, HCI researchers should manage probabilistic characteristics through
visualization to enhance human–machine trust. Sterzik demonstrates that skillfully convey-
ing probabilistic characteristics profoundly impacts the interpretation of data spaces, with
the degree of this interpretation’s alignment with cognitive spaces playing a crucial role in
building and maintaining human–machine trust [36]. Shin’s research elucidates the specific
cognitive processes involved in intelligent recommendation algorithms’ characteristics
(fairness, accountability, transparency, and explainability) and their fundamental connec-
tions to trust and subsequent behaviors. Shin asserts that users employ a dual-process
model, wherein trust is built upon the combination of the algorithm’s normative values
and performance-related qualities [37]. Ferrario et al. proposed an incremental trust model
applicable to both human–human and human–AI interactions, describing simple, reflective,
and paradigmatic forms of trust. Simple trust, characterized by a willingness to depend
in the absence of control, demands low cognitive effort. Reflective trust involves a belief
in the AI’s credibility, while paradigmatic trust combines simple and reflective trust [38].
Cassenti and Kaplan note that probabilistic characteristics are core factors influencing
decision confidence, with an inverse relationship between uncertainty and confidence [39].
Panagiotidou et al. emphasize that due to overtrust and lack of criticality, visualization
developers must exert effort to make users aware of the inherent errors in visualizations
and consciously correct them [40]. To achieve this goal, the system’s information represen-
tation and interaction design should fully consider users’ cognitive needs and expectations,
ensuring the provision of clear consistent information that aligns with the users’ cognitive
space. HCI research has the opportunity to address how to reconcile users’ mental models
of agent capabilities with the agents’ actual constraints [21].

3. Model Parameter Settings

From the previous analysis, it is evident that there is a need to construct a trust–load
model to facilitate the observation and estimation of states. This study employs a POMDP
to achieve this. POMDPs are used to describe dynamic environments under conditions
of uncertainty and partial observability by mathematically modeling the environment’s
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states, the effects of actions, the probabilities of observations, and the reward of actions,
thereby enabling the selection of optimal or near-optimal actions in environments with
limited information. Therefore, POMDPs are particularly suitable for modeling scenarios
where designers cannot directly and fully observe the states of trust and load.

The specific task involves a human computer collaboration recognition task, where the
AI first performs threat identification on a given target, presenting the recognition results
and transparency information to the user, who then determines whether the target poses
a threat based on this information. The specific parameters for each aspect are described
below, with the detailed parameters for the state set S , action set A, and observation
set O shown in Table 1.

Table 1. Parameters for the state set S , action set A, and observation set O.

Model Sets Inclusive Tuples Tuple Parameters

State Set s ∈ S s =
[

trust state sT
load state sW

] sT ∈ T :=
{

low state T↓
high state T↑

}
sW ∈ W :=

{
low state W↓
high state W↑

}

Action Set a ∈ A a =

 current recognition result aSA

correctness of the previous recognition aE
transparency level aτ


aSA ∈ SA :=

{
non − threat S−

A
threatS+

A

}
aE ∈ E :=

{
incorrect E−

correct E+

}

aτ ∈ τ :=


level one τ1
level two τ2

level three τ3
level four τ4


Observation Set o ∈ O o =

[
compliance oC

reaction time oRT

]
oC ∈ C :=

{
rejection C−

acceptance C+

}
oRT ∈ R+

3.1. State Set

The state set is the collection of all possible user states. Each state represents a specific
configuration or condition of the user, encompassing relevant information that needs to
be considered when presenting transparency. Since the study assumes that the AI cannot
directly observe the user’s true state, the elements in the state set are not directly accessible.
The properties of the state set (such as its size and complexity) directly affect the complexity
and solvability of the model.

In this specific study, the user states s are defined as a finite state set S , consisting
of tuples that include both the trust state sT and the workload state sW . To manage
the complexity of subsequent modeling, the trust state sT ∈ T and the workload state
sW ∈ W are each set to two levels: the low state↓ and high state↑.

3.2. Action Set

The action set encompasses all possible actions that the AI can select. At each time
step, the AI chooses an action based on its current state estimate. These actions aim to alter
the user’s state or obtain new information regarding the state.

In this specific study, the set of AI actions a is defined as a finite action set A, composed
of the current recognition result aSA , the correctness of the previous recognition aE, and
the transparency level aτ . Since the task involves determining whether a specific target is
a threat, the current recognition result aSA ∈ SA includes non-threat (S−

A) and threat (S+
A).

Additionally, due to the iterative nature of sequential recognition tasks, the correctness of
historical recognitions can be replaced by the correctness of the previous recognition aE ∈ E,
which includes incorrect (E−) and correct (E+) parameters. Furthermore, the transparency
level aτ ∈ τ is set at four levels, ranging from τ1 to τ4, representing levels one to four of
transparency, respectively.
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3.3. Observation Set

The observation set defines all possible observations that the computational domain
can receive. Since states in a POMDP are not directly observable, observations provide in-
direct information about the current state of the environment. Each time the computational
domain performs an action, it receives an observation that depends on the post-action envi-
ronmental state and the observation probability. The size and nature of the observation set
depend on the specific problem’s observational capabilities and environmental uncertainty.

In this specific study, the set of user behavior data o that can be obtained directly
and in real-time is defined as a finite observation set O, consisting of tuples representing
compliance with the AI’s recognition result (oC) and reaction time for decision making (oRT).
Compliance oC ∈ C includes rejection (C−) and acceptance (C+). Additionally, reaction
time oRT ∈ R+ represents the time required by the user to respond after receiving the
recognition result from the AI.

3.4. Transition Probability Function

The transition probability function defines the probability of the user transitioning
from the current state to a new state given a particular action. This function reflects the
dynamic nature of states, accurately mapping how user states respond to actions taken by
the AI and elucidating the impact of each potential action on state changes.

In this specific study, the transition probability function T is defined to describe
the probability of transitioning to subsequent states sT and sW given the current trust
state s′T and workload state s′W , following the action a. The research postulates the condi-
tional autonomy between trust state and workload state with respect to their impact on
observations given specific actions. To clarify, the trust state exclusively influences compli-
ance, while the workload state primarily affects reaction time. This postulation facilitates
the independent identification of trust and workload models, leading to a marked reduction
in the number of parameters within each model, thereby streamlining the requisite subject
data for model training. Consequently, the transition probability functions for the trust
model TT := T × T ×A → [0, 1] and the workload model TW := W × W ×A → [0, 1] can
each be represented by a 2 × 2 × 16 matrix.

3.5. Observation Probability Function

The observation probability function, also known as the emission probability function,
describes the probability of observing each possible observation given a particular state.
This function bridges the relationship between the user states and the observations that the
AI can receive.

In this specific study, the observation probability function ε is defined to describe the
probability of observing oC and oRT after taking action a and resulting in state transitions
to s′T and s′W . For the trust model, the observation probability function ET := C × T → [0, 1]
is represented by a 2 × 2 matrix. For the workload model, the observation probability func-
tion EW := R+ × W → [0, 1] is represented by two probability density functions. Research
findings suggest that the distribution of human reaction times follows an ex-Gaussian
distribution [41,42]. Consequently, this study postulates that each workload state exhibits a
distinct reaction time pattern, characterized by an ex-Gaussian distribution.

3.6. Methodological Guide

The above content defines the main parameters required for constructing the trust
and load models. The specific forms of the action set will be elaborated in Section 4, while
the contents of the observation set will be directly derived from the experiments detailed
in Section 4. Based on the experimental results, the transition probability functions and
observation probability functions can be solved. The establishment of the trust model
requires the use of an extended Baum–Welch algorithm. The Baum–Welch algorithm, an
expectation–maximization algorithm for parameter estimation, iteratively optimizes the
model parameters (transition probability functions, observation probability functions, and
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initial state probabilities) to maximize the likelihood of the given observation sequence. In
contrast, for the parameter estimation of the load model, the ex-Gaussian distribution of
human reaction times renders the Baum–Welch algorithm infeasible. Therefore, Matlab’s
genetic algorithm is employed to estimate the parameters of the load model.

4. Transparency Experiment
4.1. Experiment Objective

The primary objective of this experiment is to observe user behavior under different
AI actions a (current recognition result aSA , correctness of the previous recognition aE, and
transparency aτ), as well as the influence of real-time feedback R. Specifically, we aim to
gather observations o about user compliance oC and reaction time oRT .

4.2. Experimental Method
4.2.1. Experimental Scenario

The specific scenario for the human–AI collaborative decision-making experiment is
as follows. The AI system first makes a target identification decision (determining whether
the target is a threat or non-threat) based on data provided by sensors and other electronic
devices. The identification result and the basis for the identification (probability indicators)
are presented on the experimental interface. The participants make their identification
decisions based on the display on the experimental interface.

4.2.2. Transparency

The experiment employs experimental interfaces with four different levels of trans-
parency. The interfaces for each transparency level are shown in Figure 3. The level-one
transparency τ1 interface provides only the system’s recognition result (see Figure 3a); the
level-two transparency τ2 interface adds a probability indicator to the level-one information
(see Figure 3b); and the level-three τ3 and level-four τ4 transparency interfaces each add an
additional probability indicator (see Figure 3c,d).

The different probability indicators represent various probabilistic characteristics of
the AI’s decision-making process, such as feature vector similarity, probability scores, or
model confidence. To reduce the participants’ comprehension difficulty, it was explained
to them that the three probability indicators are independent abstract bases for the AI’s
decision making, with each equally influencing the AI’s decision outcome. In other words,
the red lines and values on each indicator represent the probability that the AI system,
based on that indicator, believes the target object is a threat.

The shading in the probability indicators is included only to maintain consistency
with our series of studies and does not serve as a variable in this study. In our series of
studies, due to the presence of uncertainty, the threshold for the AI system’s decision-
making is not a fixed value: rather, it fluctuates with specific contexts and tasks, forming
a probability distribution and thus being displayed using density bars. However, in this
study, to control the complexity of the experiment, the distribution of thresholds is not
treated as a variable but merely as an accurate representation of the experimental interface.
Participants primarily use the red lines and annotated probability values to make their
decision judgments.

4.2.3. Probability Characteristics Setting

First, the true situation of whether the target is a threat is defined as aS ∈ S := S−, S+,
where S− represents a true non-threat and S+ represents a true threat. In each trial, the
probability of the target being a true threat is equal, i.e., the prior probability of the true
situation is p(S−) = p(S+) = 0.5.
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To determine the specific values displayed for the probability indicators on the inter-
face, this study conducted actual measurements on a particular AI system. The reliability
of this AI system is 80%, with three indicators equally influencing the judgment outcome.
By statistically analyzing the AI system’s current judgment result aSA , the corresponding
actual situation aS and the corresponding indicator display results, such that the following
relationships can be established in Table 2.

Table 2. Confusion matrix of the true situation aS, current recognition result aSA , and interface display
(Non-τ1).

True Situation AI Recognizes Correctly AI Recognizes Incorrectly

Threat p
(
S+

A

∣∣S+
)

= 0.8 p
(
S−

A

∣∣S+
)

= 0.2
Non-threat p

(
S−

A

∣∣S−) = 0.8 p
(
S+

A

∣∣S−) = 0.2

1. When the system correctly recognizes a true threat (S+) as “threat” (S+
A), it is consid-

ered a True Positive. The conditional probability is p
(
S+

A

∣∣S+
)

= 0.8. In this case, if the
experimental interface is not τ1, at least one probability indicator displayed will have
a value between 93% and 97%, while the other probability indicators will randomly
distribute between the ranges of 93 to 97% and 80 to 90%;

2. When the system incorrectly recognizes a true threat (S+) as “non-threat” (S−
A), it is

considered a False Negative. The conditional probability is p
(
S−

A

∣∣S+
)

= 0.2. In this
case, if the experimental interface is not τ1, at least one probability indicator displayed
will have a value between 80% and 90%, while the other probability indicators will
randomly distribute between the ranges of 80 to 90% and 10 to 20%;
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3. When the system correctly recognizes a true non-threat (S−) as “non-threat” (S−
A), it

is considered a True Negative. The conditional probability is p
(
S−

A

∣∣S−) = 0.8. In this
case, if the experimental interface is not τ1τ1, the values of all displayed probability
indicators will randomly distribute between 3% and 7%;

4. When the system incorrectly recognizes a true non-threat (S−) as “threat” (S+
A), it is

considered a False Positive. The conditional probability is p
(
S+

A

∣∣S−) = 0.2. In this
case, if the experimental interface is not τ1, at least one probability indicator displayed
will have a value between 10% and 20%, while the other probability indicators will
randomly distribute between the ranges of 10 to 20% and 3 to 7%.

4.2.4. Real-Time Feedback Setting

Real-time feedback is derived from comparing the participant’s final decision result
with the true situation. The participant’s decision result is defined as aSH ∈ SH := S−

H , S+
H .

Scores can be assigned based on the relationship between the participant’s decision re-
sult aSH and the true situation aS, defining a decision feedback function RD : SH × S → R .
Therefore, aS, aSH , and RD can also form a confusion matrix. The notation, description,
and specific score values are as follows and are summarized in Table 3.

1. When the participant correctly identifies a true threat (S+) as a “threat” (S+
H), it means

that after correctly recognizing the threat, resources must be expended to address the
threat, ensuring the completion of the task. Therefore, the decision feedback is set at
+5 points, RD

(
S+

H

∣∣S+
)

= +5;
2. When the participant incorrectly identifies a true threat (S+) as a “non-threat” (S−

H), it
means that after incorrectly ignoring the threat, the threat is not addressed, leading
to punitive consequences and failure to complete the task. Therefore, the decision
feedback is set at −20 points, RD

(
S−

H

∣∣S+
)

= −20;
3. When the participant correctly identifies a true non-threat (S−) as a “non-threat” (S−

H),
it means that after correctly recognizing the non-threat, resources are not expended
to address the threat, ensuring the completion of the task. Therefore, the decision
feedback is set at +20 points, RD

(
S−

H

∣∣S−) = +20;
4. When the participant incorrectly identifies a true non-threat (S−) as a “threat” (S+

H), it
means that after incorrectly recognizing the threat, resources are wasted to address
the non-threat, ensuring the completion of the task. Therefore, the decision feedback
is set at −5 points, RD

(
S+

H

∣∣S−) = −5.

Table 3. Confusion matrix of the true situation aS, participant’s recognition result aSH , and decision
feedback RD.

True Situation Participant Recognizes Correctly Participant Recognizes Incorrectly

Threat RD
(
S+

H
∣∣S+

)
= +5 RD

(
S−

H
∣∣S+

)
= −20

Non-threat RD
(
S−

H
∣∣S−) = +20 RD

(
S+

H
∣∣S−) = −5

4.3. Experimental Procedure

The experimenter explains to the participants that the task is to make a rapid yet
accurate decision on whether the target is a threat based on the displayed results on the
experimental interface. The system’s recognition accuracy is set to a value below 100%,
with each probability indicator equally influencing the system’s recognition decision. It
is important to note that the specific accuracy value of the system is not disclosed to the
participants. The sequence of events for each trial is as follows, as illustrated in Figure 4.

1. The interface shows that the system is performing recognition, requiring no action
from the participant. This display lasts for 1 s before disappearing. The purpose of
this interface is to separate consecutive judgments and prevent participant fatigue,
which could affect reaction times;
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2. The interface then presents the interactive recognition screen, where the partici-
pant must decide whether the target is a “threat” or “non-threat” based on the
displayed content;

3. The interface immediately shows feedback, indicating the correctness of the partici-
pant’s judgment and the corresponding score adjustment, which remains until being
updated by the next feedback.
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Before the formal experiment begins, participants complete 20 trials of a pre-experiment
to familiarize themselves with the experimental interface and the four different transparency
levels. The formal experiment consists of four sets of recognition tasks, each set containing
25 trials, with a 1-min rest period between sets. The interface for each transparency level is
randomly assigned to participants to minimize order effects.

A total of 30 participants were recruited for this experiment, all of whom were under-
graduate or graduate students aged between 18 and 25 years. Among them, 18 were male
and 12 were female, with a male-to-female ratio of 3:2. The experimental platform was
built using E-Prime 2.0.

5. Model Construction

To establish a POMDP model that matches the probabilities between the computa-
tional domain and the cognitive domain, parameter estimation is necessary. This involves
estimating the initial state probability p0, the observation probability function E and the
state transition probability function T . Therefore, data from all participants are aggregated
to estimate the parameters for both the trust model and the workload model.

5.1. Trust Model

The parameter estimation for the trust probability matching process involves finding
the optimal parameters that maximize the likelihood of the observed sequence given a
specific action sequence.

First, the initial state probability p0(sT) for the trust model is estimated. The p0(sT) re-
flects the probability with which participants start interacting with the system in a given
trust state. Parameter estimation reveals that the initial state probability p0

(
T↓

)
for low

trust T↓ is 0.1323, while the initial state probability p0
(
T↑
)

for high trust T↑ is 0.8677. This
indicates that participants tend to trust the system at the beginning of the interaction sequence.

Next, the observation probability function ET(oC|sT) for the trust model is estimated.
The ET(oC|sT) represents the probability of observing participants accepting or rejecting
the system’s recognition result in each trust state. As shown in Figure 5, the probabilities
of observing acceptance or rejection in both trust states are indicated by the arrows. The
probabilities of acceptance and rejection are both over 0.93 in both trust states. However,
there remains a 0.0655 probability of rejection in the high trust state and a 0.0107 probability
of acceptance in the low trust state.
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correct. 

After completing the parameter estimation, we can analyze the factors influencing 
the trust state based on the transition probability graph. First, consider the effects of trans-
parency 𝑎ఛ and the current trust state 𝑠் on the next trust state 𝑠ᇱ் . The transition prob-
abilities for the 𝜏ଵ interface varies significantly in each scenario. This indicates that when 
participants are presented only with the system’s recognition result, without additional 
information to aid their decision making, their trust state is heavily influenced by the sys-
tem’s current recognition result 𝑎ௌಲ  and the correctness of the system’s previous 

Figure 5. The observation probability function ET(oC|sT) for the trust model.

Finally, the transition probability function TT(s′T |sT , a) for the trust model is estimated.
The TT(s′T |sT , a) reflects the probability of transitioning from the current trust state sT to
the next trust state s′T given an action a ∈ A. Figure 6 depicts the transition probability
graph based on TT(s′T |sT , a). The numbers next to the arrows in each graph indicate the
probabilities of state transitions.
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for the trust model: (a) Recognition: non-

threat. Previous recognition incorrect. (b) Recognition: non-threat. Previous recognition correct.
(c) Recognition: threat. Previous recognition incorrect. (d) Recognition: threat. Previous recogni-
tion correct.

After completing the parameter estimation, we can analyze the factors influencing
the trust state based on the transition probability graph. First, consider the effects of
transparency aτ and the current trust state sT on the next trust state s′T . The transition
probabilities for the τ1 interface varies significantly in each scenario. This indicates that
when participants are presented only with the system’s recognition result, without addi-
tional information to aid their decision making, their trust state is heavily influenced by
the system’s current recognition result aSA and the correctness of the system’s previous
recognition aE. According to the current experimental data, this influence does not follow a
fixed pattern.
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For other levels of transparency, the following conclusions can be drawn by com-
parison. For the probability of transitioning from low trust T↓ to high trust T↑ and for
remaining in T↑, the τ3 and τ4 interfaces have similar effects. In contrast, the τ2 interface
slightly reduces these probabilities, indicating that using the τ2 interface results in a rel-
atively higher probability of transitioning from T↑ to T↓ or remaining in T↓. This may be
because the τ2 interface makes participants aware of system errors; but, without additional
indicators, they cannot understand why the system made an error, leading to a decrease in
trust levels.

Next, consider the effects of the current recognition result aSA and the correctness
of the previous recognition aE on the next trust state s′T . The aSA can create different risk
scenarios. Figure 6a,b can be considered to represent high-risk scenarios. Whether the
system’s previous recognition was correct or not, accepting the system’s S−

A result means
no countermeasures will be taken and, if the true state is a threat, a penalty (−20 points)
will be incurred. In contrast, Figure 6c,d can be considered to represent low-risk scenar-
ios. Regardless of whether the system’s previous recognition was correct, accepting the
system’s S+

A result means preparing for a threat response and, even if the true state is not a
threat, only a small penalty (−5 points) will be incurred.

The data show that in low-risk scenarios, participants are more likely to transition to
and remain in high trust T↑. For example, in various transparency levels, the probability
of transitioning from low trust T↓ to T↑ in low-risk scenarios is at least 92.31% and in
some transparency levels, it even reaches 100%, which is significantly higher than the
system’s 80% accuracy rate. This indicates the inherent risk-averse behavior within the
cognitive domain.

5.2. Workload Model

First, the initial state probability p0(sW) for the workload model is estimated. The p0(sW)
reflects the probability with which participants start interacting with the system in a given
workload state. Parameter estimation reveals that the initial state probability p0

(
W↓

)
for low

workload W↓ is 0.2689, while the initial state probability p0
(
W↑

)
for high workload W↑ is

0.7311. This indicates that participants tend to start with a higher workload to familiarize
themselves with the system.

Next, the observation probability function EW(oRT |sW) for the workload model is
estimated. The EW(oRT |sW) represents the probability density function of the reaction
time observed in each workload state, as shown in Figure 7. Both probability density
functions can be represented by an ex-Gaussian distribution. For low workload W↓, µW↓ is
0.3804, σW↓ is 0.2487, and τW↓ is 0.5172. For high workload W↑, µW↓ is 1.4347, σW↓ is 0.3249,
and τW↓ is 2.8436.
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Finally, the transition probability function TW
(
s′W

∣∣sW , a
)

for the workload model is
estimated. The TW

(
s′W

∣∣sW , a
)

reflects the probability of transitioning from the current
workload state sT to the next workload state s′W given an action a ∈ A. Figure 8 depicts the
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transition probability graph based on TW
(
s′W

∣∣sW , a
)
. The numbers next to the arrows in

each graph indicate the probabilities of state transitions.
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After completing the parameter estimation, the factors influencing the workload state
can be analyzed based on the transition probability graph. Firstly, consider the effects
of transparency aτ and the current workload state sW on the next workload state s′W .
The τ1 interface leads to the highest probability of transitioning from low workload W↓ to
high workload W↑ and remaining in W↑. This indicates that when participants are provided
only with the system’s recognition results, without additional information to aid their
decision making, their workload is maximized. This is because participants feel uncertain
and hesitate to follow the system’s recommendation when they have no other information
to judge the system’s accuracy, leading to increased time and effort in decision making.

For other levels of transparency, the following conclusions can be drawn: given the cur-
rent recognition result aSA and the correctness of the previous recognition aE, the τ4 interface
is more likely to transition participants from low workload W↓ to high workload W↑ and
to keep them in W↑. Therefore, under the W↓ state, higher transparency is more likely
to increase participants’ workload, as they need to process more information to make a
decision. However, the interface is most likely to transition participants from W↑ to W↓ and
to keep them in W↓ is τ3. This may be because the τ3 interface provides an optimal amount
of information, which is sufficient for understanding the system without excessively taxing
cognitive resources.

Secondly, consider the effects of the current recognition result aSA and the correctness
of the previous recognition aE on the next workload state s′W . It can be seen that when using
the τ2 − τ4 interfaces, the state transition probabilities are relatively stable across the four
different scenarios. In contrast, when using the τ1 interface, the probability of transitioning
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to and remaining in low workload W↓ is higher in low-risk scenarios (Figure 8c,d) compared
to corresponding high-risk scenarios (Figure 8a,b). Furthermore, compared to situations
where the system’s previous recognition was incorrect (E−, Figure 8a,c), the probability of
transitioning to and remaining in W↓ is higher when the previous recognition was correct
(E+, Figure 8b,d). This indicates that when participants have no other information to judge
the system’s recognition accuracy, their workload is significantly influenced by aSA and aE.
Low-risk and E+ scenarios make participants more decisive in their decision making. When
additional information is available to help participants judge the system’s recommendation
accuracy, the influence of aSA and aE on participants’ workload is significantly reduced.

6. Discussion
6.1. Research Methods

In the development and application of AI, the design and study of transparency
are critical opportunities for ensuring its responsibility. In human–computer interaction
and collaboration, AI often cannot achieve perfect reliability and its explanations and the
manner in which they are provided can easily be modified [22]. This is particularly true
for the presentation of transparency information such as parameters and indicators in
interactive interfaces [43]. Conducting user-centered research to develop responsible AI
fully responds to the call by Abdul et al. for transparency design to integrate cognitive
psychology and be quantified [5]. This is specifically reflected in three aspects:

• Through cognitive psychology experiments, this study explores how users utilize
transparency for visualization, reasoning, and knowledge construction [32], capturing
the dynamic impacts of transparency on trust and workload states;

• It combines the cognitive psychology perspective, which emphasizes the importance
of communicating transparency, with quantitative statistical methods to manage uncer-
tainty [34], ensuring that AI can clearly convey the decision basis and the probabilistic
characteristics contained within its outputs [2];

• By precisely modeling functions such as state transition probability and observa-
tion probability, this research provides a method to detail the impact and evolution
processes between transparency and trust–load states.

This study references a series of research contents by Akash et al. [13–17]. In their
research, tasks were typically set to determine whether there was a shooter in a building,
with the highest level of transparency only up to three levels, including identification results,
probability indicators, and infrared images, with the system’s recognition accuracy often
being 50% or 70%. This chapter extends their research settings in several significant ways:

• The experimental tasks adopt more general scenarios, thus making the research results
more generalizable;

• The transparency levels were increased to four and the system’s recognition accuracy
was improved to 80%, thereby exponentially increasing the complexity of modeling
and analysis;

• The feedback given to participants was quantified and scored, constructing a feedback
confusion matrix;

• The transparency levels were increased to four and the system’s recognition accuracy
was improved to 80%, thereby exponentially increasing the complexity of modeling
and analysis.

In summary, this study introduces significant innovations and deepens existing re-
search, thereby enhancing the extensibility and theoretical value of the research results.

6.2. State Estimation

Traditional methods for assessing user states, such as surveys and interviews, can
provide direct user feedback that is often limited by their static data collection approach and
the influence of user subjectivity. These methods may not accurately reflect the real-time
experience and psychological state of users during interaction. The estimation methods
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and modeling techniques employed in this study allow for real-time monitoring and
analysis of user states without disrupting the execution of primary tasks. Among various
reinforcement learning methods, a POMDP approach was utilized, estimating states using
behavior data indicators that can be directly and continuously obtained in real time.

Compliance and response time in the cognitive domain are two key indicators that im-
plicitly reflect users’ basic trust in AI and their current workload state. By comprehensively
analyzing these indicators, the data collection process becomes more efficient, reducing
response delays and subjective biases that might be introduced by traditional evaluation
methods. Moreover, this provides a deeper understanding of the dynamic changes in trust
and workload levels during user interaction.

6.3. State Modeling

The modeling of states reveals that trust and workload states do not directly transition
or remain constant with the change in transparency. In other words, higher transparency is
not always beneficial or detrimental. Specifically, the next trust state s′T does not directly
transition or remain based solely on changes in transparency aτ . Instead, it is influenced
by a combination of factors including aτ , the current trust state sT , the current recognition
result aSA , and the correctness of the previous recognition aE. Similarly, the next workload
state s′W does not transition or remain directly based on changes in transparency aτ . Instead,
it is influenced by a combination of factors, including aτ , the current workload state sW , the
current recognition result aSA , and the correctness of the previous recognition aE. Among
these, given the conditions of aSA and aE, the highest or lowest levels of transparency are
most likely to place participants in a high workload state.

Therefore, transparency should be dynamically adjusted based on the estimation
of trust and workload states, as well as the system’s current and previous recognition
results. This deep understanding provides a scientific basis for designing transparent and
responsible AI, contributing to the enhancement of overall efficiency in human–computer
interaction and collaboration by precisely adjusting interface transparency.

6.4. Limitations

The limitations of this study lie in the fact that, relative to the ultimate goal of con-
structing an AI system that dynamically and adaptively adjusts transparency, this research
represents a necessary but initial first step. The estimates and models of trust–load states ob-
tained in this study are necessary conditions for the development of adaptive transparency
adjustment but further solutions are still required. Our subsequent research will focus on
the design space constrained by trust–load states, using reinforcement learning methods
to find the optimal subset under dual constraints, ultimately obtaining a transparency
adjustment strategy that maximizes cumulative reward.

7. Conclusions

This study constructs a trust–load model within the human–computer collaboration
decision-making process based on the POMDP method. In scenarios where AI transparency
is presented with multiple probabilistic indicators, the research focuses on observing com-
pliance and response time through experiments, forming estimates and models of trust and
load states based on these observations. Furthermore, this study establishes trust–load state
transition matrices under different levels of transparency, quantitatively describing the
evolutionary process between states and transparency in interaction sequences. Through
the above methods, this study constructed the observation probability functions and tran-
sition probability functions for the trust and load models. This enables the acquisition of
probabilistic estimates and dynamic characteristics of the user’s internal states under differ-
ent transparency levels. This study offers a deep understanding of the user’s state during
interactions with transparent AI, thereby laying the foundation for further optimal strategy
solutions, the development of dynamically adaptive transparency adjustment strategies
constrained by the trust–load state model, and the implementation of responsible AI.
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