
Citation: Wang, W.; Chen, S.; Zhang,

P.; Liu K. Reinforcement-Learning-

Assisted Service Function Chain

Embedding Algorithm in Edge

Computing Networks. Electronics

2024, 13, 3007. https://doi.org/

10.3390/electronics13153007

Academic Editors: Javid Taheri and

Christos J. Bouras

Received: 28 June 2024

Revised: 24 July 2024

Accepted: 28 July 2024

Published: 30 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Reinforcement-Learning-Assisted Service Function Chain
Embedding Algorithm in Edge Computing Networks
Wei Wang 1, Shengpeng Chen 2, Peiying Zhang 2,3 and Kai Liu 4,5,*

1 School of Information Engineering, Guangzhou Panyu Polytechnic, Guangzhou 511483, China;
wangw@gzpyp.edu.cn

2 Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum
(East China), Qingdao 266580, China; z24070039@s.upc.edu.cn (S.C.); zhangpeiying@upc.edu.cn (P.Z.)

3 Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong
Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology
(Shandong Academy of Sciences), Jinan 250013, China

4 State Key Laboratory of Space Network and Communications, Tsinghua University, Beijing 100084, China
5 Beijing National Research Center for Information Science and Technology, Tsinghua University,

Beijing 100084, China
* Correspondence: liukaiv@tsinghua.edu.cn

Abstract: Edge computing networks are critical infrastructures for processing massive data and
providing instantaneous services. However, how to efficiently allocate resources in edge computing
networks to meet the embedding requirements of service function chains has become an urgent
problem. In this paper, we model the resource allocation problem in edge computing networks
as a service function chain embedding problem model, aiming to optimize the resource allocation
through reinforcement learning algorithms to achieve the goals of low cost, high revenue, and high
embedding rate. In this paper, the basic concepts of edge computing network and service function
chain are elaborated, and the resource allocation problem is transformed into a service function chain
embedding problem by establishing a mathematical model, which provides a foundation for the
subsequent algorithm design. In this paper, a service function chain embedding algorithm based
on reinforcement learning is designed to gradually optimize the resource allocation decision by
simulating the learning process. In order to verify the effectiveness of the algorithm, a series of
simulation experiments are conducted in this paper and compared with other algorithms. The experi-
mental results show that the service function chain embedding algorithm based on reinforcement
learning proposed in this paper exhibits superior performance in resource allocation. Compared with
traditional resource allocation methods, the algorithm achieves significant improvement in terms of
low cost, high revenue, and high embedding rate.

Keywords: edge computing; resource allocation; service function chaining; distributed reinforcement
learning

1. Introduction

With the rapid development of the Internet of Things (IoT) and cloud computing
technology, edge computing, as a new computing paradigm, has increasingly attracted
the attention of researchers. In the construction of smart cities, edge computing has
played an important role in data processing, service provision, etc. However, achieving
efficient resource allocation and management on edge devices with limited resources is
an important challenge in smart city networks. This article aims to solve the problem
of resource allocation and management in smart cities through reinforcement learning
(RL) algorithms.

Edge computing refers to the computing mode of data processing and services near
data sources or users. With the expansion of urban scale and the growth of data volume,

Electronics 2024, 13, 3007. https://doi.org/10.3390/electronics13153007 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13153007
https://doi.org/10.3390/electronics13153007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0990-5581
https://orcid.org/0000-0002-7331-4727
https://doi.org/10.3390/electronics13153007
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13153007?type=check_update&version=1

Electronics 2024, 13, 3007 2 of 14

traditional centralized data processing methods can no longer meet the needs of real-time
and low latency. Edge computing, as a solution, demonstrates tremendous development
potential. It facilitates the migration of computing and storage resources towards IoT
devices, effectively bridging the latency gap between the IoT system and the underlying
cloud computing framework. Edge computing has a broad application prospect in the con-
struction of smart cities [1]. It can help realize the intelligence, efficiency, and convenience
of cities and improve the quality of life and happiness of urban residents. For example,
edge computing can help to realize intelligent transportation systems. Through real-time
analysis of data collected by road sensors, traffic flow can be optimized and congestion can
be reduced. In terms of urban security, edge computing monitors the security situation of
cities in real time through video monitoring and image recognition technology, and finds
and handles security incidents in a timely manner. The collaboration of heterogeneous
edge computing paradigms significantly enhances the functionality and efficiency of smart
city applications [2]. By integrating cloudlet, mobile edge computing, and fog computing,
it is possible to streamline resource utilization and improve the performance of urban
systems. For instance, through blockchain-based smart contracts and software-defined
networks, real-time traffic management can be optimized, reducing congestion and im-
proving urban mobility. Additionally, edge computing can bolster city security through
continuous surveillance and rapid incident response, enhancing the overall safety and
quality of life for residents. At the same time, the use of intelligent access control systems
and intelligent alarm systems by edge computing can improve the level of urban security.
In addition, smart healthcare, smart education, smart tourism, etc. have greatly improved
the convenience and efficiency of public services.

The development of the internet has brought convenience to people’s lives [3]. How-
ever, with the introduction of new protocols and technologies, the Internet has become
rigid and unable to meet users’ needs for service diversity [4,5]. To address this issue,
T. Anderson et al. [6] proposed network virtualization technology, which can allocate net-
work resources rationally based on dynamically changing user needs. Network virtual-
ization technology is considered one of the most promising technologies for the future
internet [7]. Currently, due to the need to comprehensively consider multiple indicators
of mapping results in practical applications [8], single-domain virtual network mapping
has gradually become unable to meet people’s business needs [9]. Therefore, the concept
of multidomain network mapping emerged. It also plays an important role in the con-
struction of smart cities. It can integrate network resources from different fields to form a
unified virtual network, enabling the interconnection of data and services, thus facilitating
collaboration between various fields. Secondly, by connecting various sensors, devices, and
services to the virtual network, real-time data collection, analysis, and processing can be
realized. This helps to detect and solve problems in urban operations in a timely manner,
improving the response speed and service quality of the city. In addition, multidomain
virtual network mapping also helps to protect the data security of the city. By storing data
in the virtual network, it can strengthen the supervision and protection of data and prevent
data leakage and attacks. At the same time, multidomain virtual network mapping can also
achieve data sharing and exchange, promoting data circulation and cooperation between
various fields.

RL is an important branch of machine learning that aims to explore new actions
using known actions [10,11]. The basic idea is to enable agents to learn how to make
optimal decisions through interaction with the environment. In RL, agents continuously try
different behaviors and adjust their behavior strategies based on the reward information
feedback from the environment, ultimately achieving the optimal decision goal. In recent
years, RL combined with deep neural networks has provided powerful tools for solving
complex decision-making problems.

The main contribution of this paper is to propose a new resource allocation and
management method by combining the edge computing network, RL algorithm, and
service function chain embedding algorithm. The specific innovation points are as follows:

Electronics 2024, 13, 3007 3 of 14

• Distributed-based reinforcement learning algorithm: We designed a RL algorithm that
can make dynamic resource allocation decisions based on the real-time state of the
system. Through a distributed architecture, the algorithm can handle large-scale smart
city networks and has good scalability.

• Embedded algorithm for service function chain: For the embedding problem of the
service function chain, we propose an optimized algorithm. This algorithm can make
intelligent mapping decisions based on the requirements of service functions and the
characteristics of physical resources, thereby improving the overall performance and
stability of the system.

Through conducting three sets of comparative experiments, the significant advantages
of the algorithm proposed in this article in improving long-term average income, long-term
service function chain request (SFCR) acceptance rate, and long-term revenue–cost (R/C)
ratio were verified.

The structure of this paper is as follows: The first part briefly introduces the relevant
background of edge computing and smart cities. The second part is an introduction to
the relevant work of this paper. The third part introduces the established edge computing
network model and service function chain request model. The fourth part provides a de-
tailed introduction to the algorithm implementation of distributed reinforcement learning.
The fifth part presents the performance of the algorithm in simulated environments and
discusses and compares it. The final section summarizes the main work and future research
directions of this paper.

2. Related Work
2.1. Research Status of Edge Computing Networks

With the rapid development of technologies such as the Internet of Things and cloud
computing, edge computing networks were widely used in industry, medical care, trans-
portation, smart home, and other fields. Many compute-intensive and time-delay-sensitive
applications (such as unmanned driving, image recognition, and natural language process-
ing) experienced an explosive growth of service traffic, which placed high requirements
on the computing power of terminal devices. However, due to the limitation of network
resources and computing resources, resource allocation problems became increasingly
prominent. In order to solve the problem of bandwidth resource optimization, many
scholars at home and abroad proposed various methods to reduce the delay of data trans-
mission and optimize the bandwidth resources of mobile networks. Mobile edge computing
(MEC) technology came into being. MEC aimed to meet users’ demand for high resource
utilization and high reliability.

Abdullaev et al. [12] designed a new Task Offloading and Resource Allocation in
IoT-based MEC using the Deep Learning with Seagull Optimization (TORA-DLSGO)
algorithm. The resource management issues in the MEC server were solved, enabling
optimal offloading decisions to minimize system costs. Chen [13] considered the joint
optimization of computation offloading and task caching in a cellular network. It allowed
users to proactively cache or offload their tasks at the MEC server. Liu [14] considered
the impact of multiserver scenarios and task priorities in large networks and proposed a
distributed unsupervised learning-based offloading framework for task offloading and
server allocation. Gao [15] proposed a task scheduler and exploited a Task Deployment
Algorithm (TDA) to obtain an optimal virtual machine deployment scheme; however,
computing migration was not considered, resulting in an inability to respond to problems
when demand exceeded. Yang et al. [16] proposed an energy-sensitive binary offloading
algorithm for reconfigurable-intelligent-surface-assisted wireless powered mobile edge
computing, aiming to optimize the balance between computational efficiency and energy
consumption. Liu [17] developed a multiagent reinforcement learning framework, and
an independent learner-based multiagent Q-learning (IL-based MA-Q) algorithm was
proposed. Wen [18] proposed a task assignment algorithm combining a genetic algorithm

Electronics 2024, 13, 3007 4 of 14

and an ant colony optimization algorithm. The algorithm prolonged the lifetime of the
network and improved the efficiency and advantages of energy saving and load balancing.

2.2. Research Status of Network Resource Allocation Algorithms

Network resource allocation algorithms have always been the focus of research, and in
recent years, with the development of deep reinforcement learning, network resource allo-
cation algorithms based on deep reinforcement learning have also been widely recognized.
Li [19] proposed a resource management framework based on distributed reinforcement
learning (RL), which significantly reduced power consumption and content transmission
delay. In [20], to address the joint optimization problem of D2D communication mode
selection and resource allocation in MMwave and cellular HCNS, a distributed multiagent
deep Q-network algorithm was proposed, and the reward function was redefined according
to the objective to reduce signaling overhead. In [21], a finite-state Markov model based on
fading characteristics achieved reasonable resource allocation by capturing user through-
put in cellular network interactions and allowing all mobile users to efficiently share the
same spectrum resource simultaneously, thus improving fairness for users with lower
transmission costs in the mobile edge computing model. Li [22] introduced an intelligent
offloading mechanism for mobile edge computing based on content caching. Initially, a
compute offload network framework based on content cache in mobile edge computing
was designed. Then, by deducing sufficient and necessary conditions, the optimal contract
was designed to obtain the computing strategy under joint task unloading, resource alloca-
tion, and intelligent mechanisms. Xu [23] proposed a resource allocation algorithm based
on PDQN, a deep reinforcement learning algorithm, to address the resource allocation
problem in collaborative cloud–edge computing with dynamic user demand and multi-
ple cloud service pricing models. Sun [24] designed incentives and cross-server resource
allocation in blockchain-driven MEC, achieving a decentralized, immutable, secure, and
fair resource allocation mechanism. Wang [25] regarded offload decisions, resource alloca-
tion, and content caching strategies as an optimization problem considering total network
revenue and proposed an alternate direction algorithm based on a multiplier to solve the
optimization problem. Additionally, Zhang et al. [26] investigated cooperative resource
allocation problems for multilevel services in MEC networks and proposed a cooperative
resource allocation (FD-CRA) algorithm based on federated learning and deep Q network
(DQN). He [27] proposed an MHRL method for dynamically adaptive management of
vehicle resources, making correct and effective resource allocation decisions for vehicle
requests and addressing some challenges encountered by vehicles in dynamic environ-
ments. Zhang [28] proposed a computation resource allocation scheme for VANETs based
on deep reinforcement learning networks in the context of MEC scenarios. This scheme
effectively allocated computing resources for VANETs in edge computing environments,
demonstrating excellent network performance with low overhead and latency.

2.3. Summary of Related Work

While some excellent work had been performed in resource allocation within edge
computing networks, there had been relatively little consideration of network resource
allocation in existing research. What set this study apart was its focus on optimizing resource
allocation within edge computing networks, employing a virtual network mapping algorithm
based on distributed reinforcement learning. Specifically, we integrated edge computing
networks with RL algorithms and service function chaining embedding algorithms, enabling
the algorithm to dynamically adjust resource allocation in real time according to network
dynamics, thus achieving equitable traffic distribution across nodes and links.

3. Network Modeling

The edge computing network model, as a crucial component of multidomain physical
network mapping, provides an abstract representation of edge computing networks. This
model integrates service function chain embedding technology, effectively transforming

Electronics 2024, 13, 3007 5 of 14

edge computing resources into resources that meet the specific requirements of service
function chains. By optimizing key resource attributes, this model significantly enhances
the data processing efficiency of IoT devices in smart cities and meets strict requirements
for security and privacy. This comprehensive optimized model is applied in multidomain
network architectures, not only providing advantages in real-time data processing and
efficiency but also strengthening data security and privacy protection, thereby providing re-
liable foundational support for smart cities and IoT applications. Our goal is to strategically
allocate resources within the edge computing network, aiming to increase the acceptance
rate of terminal requests while reducing costs and improving average returns. To achieve
this, we have established relevant system models, resource allocation constraints, and
evaluation metrics.

3.1. Modeling Edge Computing Networks

In the edge computing network model, the integration of multidomain physical net-
works with service function chain (SFC) embedding algorithms offers a highly specialized
and precise resource management strategy. Edge computing networks reduce data trans-
mission latency significantly by deploying computational resources closer to end-users and
IoT devices, thereby enhancing service response and data processing efficiency. Moreover,
the design of multidomain physical networks allows dynamic distribution of network
resources across various geographic and logical domains, facilitating flexible scheduling
of edge computing resources. The service function chain embedding algorithm, building
on this, virtualizes physical resources distributed across multiple domains, effectively
supporting diverse network services. This holistic application not only improves resource
utilization but also enhances the scalability and security of the network, especially in
managing complex data and service demands in smart cities. SFC request refers to a type
of request issued within a computer network with the aim of executing a specific service
function chain. When users or applications require completing specific tasks or obtaining
particular services, they send such requests. SFC requests traverse along the network path
and pass through a series of network nodes en route. Each node performs specific service
functions, which are organized in a certain sequence to form the service function chain,
ultimately meeting the requester’s needs. Consistent with prior work [1], we abstract the un-
derlying physical network as an undirected graph, denoted as GS = {NS, LS, ANS, ALS},
where NS represents the set of underlying nodes, LS represents the set of underlying links,
ANSand ALS respectively represent the attributes associated with the underlying nodes
and links. Similarly, we use another undirected graph to represent the service function
chain embedding, denoted as GC = {NC, LC, CNC, CLC}, where NC represents the set
of nodes within the service function chain, LC represents the set of links within the ser-
vice function chain, CNCand CLC, respectively, represent the attributes associated with
the nodes and links within the service function chain. Each time a request is issued, the
underlying network resources need to be greater than the network resources required by
the request, i.e., GC{NC, LC} −→ GS{NS, LS} where and LC ∈ LS. Figure 1 illustrates
an edge computing network model based on virtual architecture. The virtual network
request comprises multiple layers, with each distinct layer describing various network
functionalities and services. Moreover, these layers are utilized to specify the necessary
resources and services required to fulfill specific demands.

3.2. Resource Properties and Constraint Conditions

• Resource Properties

In the SFC request model, optimizing physical network performance and meeting
user requirements is achieved through the reasonable setting and allocation of resource
attributes. Based on the computational requirements of tasks, CPU core numbers are
determined to define the required computational capacity; network transmission rates
are configured according to the required data transmission capacity, thereby determining
network bandwidth requirements or constraints; network latency, transmission delay,

Electronics 2024, 13, 3007 6 of 14

processing delay, etc., are set based on the timeliness requirements of tasks to ensure the
real-time processing of tasks; and different security requirements can be addressed by
introducing security mechanisms such as data encryption, identity authentication, etc.,
thereby protecting network security and data privacy. During the connection of virtual
networks and physical networks, considerations such as bandwidth constraints, latency
constraints, resource capacity constraints, reliability constraints, etc., are necessary. These
constraints can be set based on the resource attributes mentioned above to ensure that
physical network requirements are met while optimizing overall performance.

• Constraint Conditions

The embedding of the SFC involves mapping the service function requests (SFR),
which include service function nodes (SFN) and service function links (SFL), onto physical
network resources. These physical resources encompass data centers, network nodes, and
other types of infrastructure. Each SFN may need to be mapped onto a physical node with
sufficient resources. For this purpose, we define the candidate physical node attribute
candin

p, represented as:
candin

p = {pn1 , pn2 , ..., pnm} (1)

where pni represents an available physical node. This attribute ensures that the SFN can be
mapped to an appropriate physical node.

Figure 1. Mapping framework of the multidomain physical network.

In addition, we must ensure that the location constraints for service function nodes
are satisfied, meaning each SFN can only be mapped to one physical node. Since different
SFNs may perform different subservices, stringing them together can meet the complete
service requirements of the end user. For the same end-user request, each SFN can only
be mapped to one physical node. To connect these service function nodes, the SFL can be
mapped to one or more physical links. These constraints are defined as follows:

Electronics 2024, 13, 3007 7 of 14

|SFN|

∑
k=1

λ
SFNk
pn = 1, SFNk ∈ GRi (2)

|SFL|

∑
k=1

µ
SFLk
pl ≥1, SFLk ∈ GRi (3)

where λ
SFNk
pn and µ

SFLk
pl are binary variables. If λ

SFNk
pn = 1, it indicates that the service

function node SFNk is mapped to the physical node pn. If the service function node
SFNk is not mapped to the physical node pn, then λ

SFNk
pn = 0. Similarly, when µ

SFLk
pl = 1,

it indicates that the service function link SFLk is mapped to the physical link pl; when
µ

SFLk
pl = 0, it indicates that the service function link SFLk is not mapped to the physical link

pl. |SFN| represents the number of service function nodes in the end-user function request
GRi, and |SFN| represents the number of service function links.

Beyond location constraints, the end user function requests must also follow resource
constraint rules. With the candidate physical nodes determined, service function nodes can
only be mapped to physical nodes that meet their resource requirements. Specifically, the
CPU resource capacity of the target physical node should be no less than the CPU resource
demand of the service function node. The storage resource capacity of the target physical
node should be no less than the storage resource demand of the service function node.
These resource constraints are defined as follows:

CPU(pn) ≥ CPU(SFNk), i f λ
SFNk
pn = 1, k = 1, 2, ..., |SFN| (4)

STO(pn) ≥ STO(SFNk), i f λ
SFNk
pn = 1, k = 1, 2, ..., |SFN| (5)

where CPU(pn) and STO(pn) represent the CPU resource capacity of the target physical
node and the storage resource capacity of the target physical node, and CPU(SFNk) and
STO(SFNk) represent the CPU resource demand of the service function node and the
storage resource demand of the service function node, respectively.

Service function request links can only be mapped to physical links that meet their
resource demands, which are defined as

BW(pl) ≥ BW(SFLk), i f λ
SFLk
pn = 1, k = 1, 2, ..., |SFL| (6)

where BW(pl) and BW(SFLk) represent the bandwidth resource capacity of the target
physical node and the storage resource capacity of the target physical node.

3.3. Algorithmic Evaluation Metrics

In order to assess the resource utilization efficiency and performance of the algorithm,
we have established a set of evaluation metrics aimed at comparing with previous research
results, thereby demonstrating the effectiveness of the proposed algorithm in our paper.

• The long-term acceptance ratio

Let Acc_num(GC, t)denote the number of SFC requests received at time t, Arr_num(GC, t)
denote the total number of requests arriving at the SFC up to time t. The calculation formula
for the long-term acceptance rate is as follows:

ACR = limT → ∞ ∑T
t=0 Acc_num(GC, t)

∑T
t=0 Arr_num(GC, t)

(7)

• The long-term average revenue

The ultimate goal of the service function chain embedding algorithm is to improve
network performance and revenue. Similar to previous literature [3], we define the long-

Electronics 2024, 13, 3007 8 of 14

term average revenue as the limit of the average revenue as time T tends to infinity, which
can be expressed as

R = limT → ∞ ∑T
t=0 R(GC, t)

T
(8)

• The long-term average revenue–cost ratio (R/C)

According to the cost calculation formula in [3], the calculation formula for R/C can
be expressed as the following formula:

R/C = limT → ∞ ∑T
t=0 R(GC, t)

∑T
t=0 Cost(GC, t)

(9)

3.4. System Models

In this subsection, we define the reinforcement learning model as an MDP, consisting
of the state space S , the action space A, and the rewardR.

• State Space: The system state represents the real-time status of the physical network,
including real-time computing resources, bandwidth, and other resource information,
as well as real-time node latency, network topology, and other network informa-
tion. Network state st can be defined as st = {CPUt, BWt, DLYt, TLYt}, where CPUt
represents the real-time available computing resources, BWt denotes the network
bandwidth, DLYt denotes the node latency, and TLYt describes the network topology.

• Action Space: The action of the agent is the SFC mapping decision taken at a certain
moment t, including the SFN embedding scheme and the SFL embedding scheme,
defined as A = {AN ,AL}, where AN is a sequence of embedding scheme for SFN,
and AL is for SFL. The embedding scheme is expressed using the following formula:

{AN ,AL} = {(λt,SFNi
pNs

i
), (µ

t,SFLj
pLs

j
)} ←−

{
∀i ∈ [1, |SFN|]and ∑

|SFN|
i λt,SFNi

pNs
i

= |SFN|
∀j ∈ [1, |SFL|]

(10)

where λ
t,SFNi
pNs

i
represents the decision of SFN mapping, if λ

t,SFNi
pNs

i
= 1, and denotes

the ith VNF in the SFC mapping in the physical node pNs
i , and λ

t,SFLj
pLs

j
represents

the decision of SFL mapping, if λ
t,SFLj
pLs

j
= 1, and denotes the jth SFL mapping in

the physical link pLs
j , and if λ

t,SFNi
pNs

i
= 0 or λ

t,SFLj
pLs

j
= 0, this is an embedding failure

that might be caused by current physical node resources being less than the VNF
resource requirements or insufficient link bandwidth. After all VNFs in SFC have
completed mapping, then one can start to consider mapping virtual network links to
physical networks.

• Reward: The reward of an intelligent agent rt is the feedback signal value obtained
from the action taken, which is used to guide the optimization direction of the agent.
In this work, we consider three factors, including long-term acceptance ratio (ACR),
long-term average revenue (R), and long-term average revenue–cost ratio (R/C). The
reward is computed using the following formula:

rt = α · ACR + β · R + η · R/C (11)

where α, β, and η are weights used to adjust the significance of different signal values.

4. Algorithm

In this section, we propose a distributed reinforcement learning (DRL)-based algo-
rithm, which includes an agent and an environment. We use DRL to assist the SFC embed-
ding to the edge computing network. Using this algorithm, we compute the embedding
scheme of the SFC after all virtual nodes are embedded. We first extract the environmental
state matrix of the physical network as input for the agent. Secondly, combined with the

Electronics 2024, 13, 3007 9 of 14

DRL training paradigm, the agent calculates candidate nodes and links based on a series of
relevant constraints proposed above.

4.1. Parameter Settings

Extracting the attributes resources of the nodes to construct the feature matrix is a critical
step. The feature matrix is an important influencing factor for computing the SFC embedding
scheme. We extracted the following four essential and significant attributes of nodes:

1. CPU(Ns
i): The computing resources of the physical node Ni determine its carrying

capacity, and the node with higher computing resources is better capable of meeting
user requirements.

2. SUMbw(Ns
i): Each physical node has at least one link connected to it. SUMbw(Ns

i)
denotes the sum of the bandwidth of all the links connected to node Ns

i . When
the SUMbw(Ns

i) of a node is higher, the virtual nodes it hosts can have better link
embedding options.

3. D(NS
i): The delay performance of a physical node reflects how fast it can process

Virtual Network Functions (VNFs). Nodes with lower delay can handle VNFs with
stringent delay requirements.

4. Deg(NS
i): Degree denotes the total number of links connected to node Ns

i . Physical nodes
with more adjacent links can have a higher possibility of successful link embedding.

4.2. Environment Perception

Combining the four features mentioned in Section 4.1, they can be represented syn-
thetically using a feature vector, whose structure is depicted in the equation below:

Vi =
{

CPUbig(Ns
i big), SUMbwbig(Ns

i big), D(NS
i big), Deg(NS

i big)
}

(12)

Following this, multiple feature vectors can be combined to form a feature matrix,
serving as the training environment for the local agent, with specific features as follows:

M =
[
VT

1 , VT
2 , ..., VT

i , ..., VT
n

]
(13)

Then, using the extracted state matrix from Equation (13) as input for the agent,
calculate the available resources of each node in the physical network through convolution
operation. We designed a five-layer policy network, including an input layer, convolution
layer, softmax layer, filtering layer, and output layer, to serve as the local agent. The
convolution operation is defined by the following formula:

hc
i = ωvi + b (14)

where hi represents the ith output of the convolutional layer, signifying the vector of
available resources of the node. Moreover, ω denotes the weight, and b denotes the bias.

Subsequently, hi is utilized as input to the softmax layer to produce the probability
p of each node being embedded by the requested node. The calculation formula for p is
outlined as follows:

pi =
ehc

i

∑N
k ehc

k
(15)

where N denotes the total number of physical nodes, while pi signifies the probability that
the ith node is embedded by the VNF. Once the probability p of a node being embedded
is determined, the cross-entropy loss can be calculated. The loss is computed using the
following formula:

L(p) = −
N

∑
i

log(pi) (16)

Electronics 2024, 13, 3007 10 of 14

4.3. Local Training

Algorithm 1 delineates the aforementioned process. Line 2 signifies the initialization
of the model by the local agent based on the received global parameters. Lines 3–5 represent
the VNF embedding phase, while lines 7–9 pertain to the link embedding phase. Line 11
calculates the reward according to the embedding scheme. Lines 17–20 encompass the SFC
scheduling phase. Ultimately, the trained parameters θ are uploaded in line 24. The worst
complexity for a single SFC request isO(|S| · |A|+ |Nc| · |Ns|+ |Lc|), where |Ns|, |Nc|, |Lc|
represents the set’s size of the underlying nodes, the nodes, and links within the SFC,
respectively.

Algorithm 1 Local Training

Input: GS, GC, epoch;
Output: Probability of SFC being embedded;

1: while iteration < epoch do
2: for SFC ∈ TrainingSet do
3: M = getFeatureMatrix(ni); //Extract the feature matrix of the substrate network.
4: p = getProbability(M); //Get embedded probabilities.
5: host = select(p); //Select the physical node carrying SFN according to probability.
6: getGradient(host);
7: if is Mapped(∀SFNi ∈ SFC) then
8: Virtual links embedding;
9: end if

10: if isMapped(∀SFNi ∈ GC, ∀SFLi ∈ GC) then
11: Calculate reward;
12: else
13: Clear Gradient;
14: end if
15: end for
16: for ni ∈ NS do
17: if needSchedule(ni) then
18: host = ReEmbedding(ni, p);
19: Virtual links embedding;
20: end if
21: end for
22: iteration++;
23: end while
24: Upload parameter θ

5. Experimental Analysis

In this section, we conducted simulation experiments to showcase the performance of
the algorithm introduced in this paper.

5.1. Experimental Environment and Parameter Settings

The simulation experiment platform utilizes VS Code 2019 + Python 3 + TensorFlow 1.0,
with hardware specifications including an Intel(R) Core (TM) i7-8565U CPU and 8GB of RAM.

We programmatically simulated a medium-sized edge computing network consisting
of 100 nodes and about 600 links, and the detailed physical network parameters and their
values are shown in Table 1.

We utilize reinforcement learning to assist SFC embedding in the edge computing
network, which can be trained and tested according to different target types. In each
training cycle, it tries to receive SFCRs and allocate physical resources to them, as well
as adjust the model weights to maximize the selected targets according to the target type.
Moreover, in the simulation experiments, physical nodes are selected as mapping targets
based on the provided edge computing networks, VNFs, in order to match the real scenario.

Electronics 2024, 13, 3007 11 of 14

This selection can be random or probabilistic. Our simulation experiments evaluate four
types of SFC embedding algorithms: nonlearning, NodeRank algorithms, benchmark
algorithms, and reinforcement-learning-based algorithms.

Table 1. Simulation Parameter Setting.

Parameter Values

Physical nodes 100
Physical links 600
CPU capacity U[50,100]

Bandwidth capacity U[50,100]
Link bandwidth resource U[1,50]

5.2. Evaluation Results

During the testing phase, we evaluated our algorithm’s performance across three
key metrics using the SFCR from the test dataset. We conducted three sets of controlled
trials focusing on long-term average revenue, the long-term SFCR acceptance rate, and
the long-term average revenue–cost ratio, all while imposing time delay constraints on
the algorithm. Furthermore, we compared our algorithm with the non-learning-based
one, the baseline [29], and the SDSN algorithm [30]. The baseline algorithm adopts greedy
node mapping and k-shortest path algorithm, prioritizing the mapping of virtual nodes to
physical nodes with the maximum available resources, and selecting the shortest path of
virtual links for mapping. The SDSN algorithm aims to achieve the minimization of total
latency by selecting appropriate nodes and optimizing path and resource allocation while
considering propagation delay and node processing delay.

5.2.1. Experiment 1: The Long-Term Average Revenue

This experiment evaluates algorithm performance by measuring the long-term average
gain of the SFCR embedding as defined in Equation (2). Figure 2 illustrates the long-term
average revenue of the four algorithms observed on a test network comprising 1000 SFCRs.
Our algorithm achieved the highest revenue, surpassing the non-learning-based, baseline,
and SDSN ones by 8.8%, 7.1%, and 13.7%, respectively. Initially, all four algorithms exhibited
relatively high long-term average revenue, yet a decline was observed as training progressed.
This decline can be attributed to the abundant network resources available at the outset of the
test, which are capable of satisfying the constraints of most SFCR embeddings.

� � � � � �� �� �� ��
����

����

����

����

����

���� o u r s
 n o n - l e a r n i n g - b a s e d
 b a s e l i n e
 S D S N

Th
e lo

ng-
ter

m
ave

rag
e re

ven
ue

t i m e (× 1 0 0 0 m s)
Figure 2. The long-term average revenue.

Electronics 2024, 13, 3007 12 of 14

5.2.2. Experiment 2: The Long-Term SFCR Acceptance Rate

In the second test, we utilize Equation (1) as an evaluation metric. A high SFCR accep-
tance rate indicates the algorithm’s robustness in handling SFCRs and its ability to generate
substantial revenue. Figure 3 illustrates the evolution of the SFCR acceptance rate across
the four algorithms, wherein the rate gradually declines throughout the experiment before
stabilizing within a certain range. The SFCR acceptance rate of our algorithm exceeded that
of the non-learning-based, baseline, and SDSN ones by 5.0%, 5.3%, and 4.7%, respectively.

� � � � � �� �� ��
����

����

����

����

����

����

����

Th
e lo

ng-
ter

m
SF

CR
 ac

cep
tan

ce
rat

e

t i m e (× 1 0 0 0 m s)

 o u r s
 n o n - l e a r n i n g - b a s e d
 b a s e l i n e
 S D S N

Figure 3. The long-term acceptance ratio.

5.2.3. Experiment 3: The Long-Term R/C Ratio

In the final experiment, we compare the long-term average revenue–cost ratios defined
in Equation (3) across the four algorithms. Figure 4 illustrates the fluctuations and dispari-
ties in the long-term average revenue–cost ratio among these algorithms. The algorithm
we proposed demonstrates metric values that are 2.7%, 2.7%, and 3.4% higher than those
of the non-learning-based, baseline, and SDSN ones, respectively. Initially, when network
resources are abundant, all four algorithms yield higher revenue–cost ratios. However,
as the number of SFCRs increases, node and link loads escalate, leading to heightened
network resource consumption and an inability to accommodate new SFCRs.

� � � � 	 �� �� ��
����

����

���	

����

����

����

����

���	

����

����

Th
e lo

ng-
ter

m
R/C

 rat
io

t i m e (× 1 0 0 0 m s)

 o u r s
 n o n - l e a r n i n g - b a s e d
 b a s e l i n e
 S D S N

Figure 4. The long-term average revenue–cost ratio (R/C).

Electronics 2024, 13, 3007 13 of 14

5.2.4. Summary of Evaluation

The three experiments we conducted demonstrate the effectiveness of the proposed
reinforcement-learning-based SFC embedding algorithm in edge computing networks.
When compared with traditional non-learning-based methods, baseline, and SDSN al-
gorithms, the proposed algorithm exhibits significant advantages in terms of long-term
average revenue, long-term SFCR acceptance rate, and long-term revenue–cost ratio. (1) For
long-term average revenue, our algorithm consistently achieves the highest revenue, sur-
passing other methods. This can be attributed to the ability to dynamically adjust resource
allocation based on the real-time state of the network, ensuring optimal resource utilization
and maximizing revenue generation. (2) For the long-term SFCR acceptance rate, our
algorithm has robustness in handling SFC requests and efficiently allocating resources
to meet user demands. (3) For the long-term R/C ratio, our algorithm achieves a higher
revenue–cost ratio, indicating better cost efficiency and profitability.

6. Conclusions

In order to cope with the challenges of resource allocation in edge computing networks,
especially for the embedding requirements of business function chains, this paper delves
into a reinforcement-learning-based resource allocation algorithm. By constructing a
business function chain embedding model, the resource allocation problem is transformed
into an optimization problem, and an efficient reinforcement learning algorithm is designed
to solve it. The experimental results show that the algorithm proposed in this paper
demonstrates obvious advantages in terms of throughput, delay, and fairness compared
with traditional resource allocation methods. Meanwhile, in the process of this algorithm,
we mainly focus on network performance and benefits. Therefore, we will incorporate
resource collaboration, privacy security, and protection issues in edge computing networks
into the enhanced learning framework, and we will aim to optimize our intelligent learning
network and enhance the stability and large-scale network adaptability of the system in
our future work.

Author Contributions: Conceptualization, W.W.; methodology, P.Z.; software, W.W.; formal analysis,
P.Z.; investigation, P.Z. and K.L.; resources, S.C.; data curation, K.L.; writing—review and editing,
S.C.; supervision, K.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by the Natural Science Foundation of Guangdong Province,
China under Grant 2022A1515010999, partially supported by National Vocational Education Teacher
Teaching Innovation Team Characteristic Project under Grant CXTD003, partially supported by the
Shandong Provincial Natural Science Foundation under Grant ZR2023LZH017, ZR2022LZH015,
partially supported by the Open Foundation of Key Laboratory of Computing Power Network and
Information Security, Ministry of Education, Qilu University of Technology (Shandong Academy
of Sciences) under Grant 2023ZD010, and partially supported by the National Natural Science
Foundation of China under Grant 62341130, 62101300.

Data Availability Statement: The raw data supporting this article will be made available by the
authors according to request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mahmood, O.A.; Abdellah, A.R.; Muthanna, A.; Koucheryavy, A. Distributed edge computing for resource allocation in smart

cities based on the IoT. Information 2022, 13, 328. [CrossRef]
2. Cai, Q.; Zhou, Y.; Liu, L.; Qi, Y.; Pan, Z.; Zhang, H. Collaboration of heterogeneous edge computing paradigms: How to fill the

gap between theory and practice. IEEE Wirel. Commun. 2023, 31, 110–117. [CrossRef]
3. Cao, H.; Wu, S.; Aujla, G.S.; Wang, Q.; Yang, L.; Zhu, H. Dynamic embedding and quality of service-driven adjustment for cloud

networks. IEEE Trans. Ind. Inform. 2019, 16, 1406–1416. [CrossRef]
4. Bechtold, S.; Perrig, A. Accountability in future internet architectures. Commun. ACM 2014, 57, 21–23. [CrossRef]
5. Fisher, D. A look behind the future internet architectures efforts. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 45–49.

[CrossRef]

http://doi.org/10.3390/info13070328
http://dx.doi.org/10.1109/MWC.014.2200283
http://dx.doi.org/10.1109/TII.2019.2936074
http://dx.doi.org/10.1145/2644146
http://dx.doi.org/10.1145/2656877.2656884

Electronics 2024, 13, 3007 14 of 14

6. Anderson, T.; Peterson, L.; Shenker, S.; Turner, J. Overcoming the Internet impasse through virtualization. Computer 2005, 38,
34–41. [CrossRef]

7. Houidi, I.; Louati, W.; Ameur, W.B.; Zeghlache, D. Virtual network provisioning across multiple substrate networks. Comput.
Netw. 2011, 55, 1011–1023. [CrossRef]

8. Zhang, P.; Wang, C.; Qin, Z.; Cao, H. A multidomain virtual network embedding algorithm based on multiobjective optimization
for Internet of Drones architecture in Industry 4.0. Softw. Pract. Exp. 2022, 52, 710–728. [CrossRef]

9. Cao, H.; Yang, L.; Zhu, H. Novel node-ranking approach and multiple topology attributes-based embedding algorithm for
single-domain virtual network embedding. IEEE Internet Things J. 2017, 5, 108–120. [CrossRef]

10. Spano, S.; Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Giardino, D.; Matta, M.; Nannarelli, A.; Re, M. An efficient hardware
implementation of reinforcement learning: The q-learning algorithm. IEEE Access 2019, 7, 186340–186351. [CrossRef]

11. Wang, C.; Liu, L.; Jiang, C.; Wang, S.; Zhang, P.; Shen, S. Incorporating Distributed DRL Into Storage Resource Optimization of
Space-Air-Ground Integrated Wireless Communication Network. IEEE J. Sel. Top. Signal Process. 2022, 16, 434–446. [CrossRef]

12. Abdullaev, I.; Prodanova, N.; Bhaskar, K.A.; Lydia, E.L.; Kadry, S.; Kim, J. Task offloading and resource allocation in iot based
mobile edge computing using deep learning. Comput. Mater. Contin. 2023, 76, 1463–1477. [CrossRef]

13. Chen, Z.; Chen, Z.; Ren, Z.; Liang, L.; Wen, W.; Jia, Y. Joint optimization of task caching, computation offloading and resource
allocation for mobile edge computing. China Commun. 2022, 19, 142–159. [CrossRef]

14. Liu, Q.; Li, J.; Wei, J.; Zhou, R.; Chai, Z.; Liu, S. Efficient multi-user for task offloading and server allocation in mobile edge
computing systems. China Commun. 2022, 19, 226–238. [CrossRef]

15. Gao, J.X.; Hu, B.Y.; Liu, J.L.; Wang, H.C.; Huang, Q.Z.; Zhao, Y. Overbooking-Enabled Task Scheduling and Resource Allocation
in Mobile Edge Computing Environments. Intell. Autom. Soft Comput. 2023, 37, 1–16. [CrossRef]

16. Yang, Y.; Gong, Y.; Wu, Y.C. Energy Sensitive Binary Offloading for reconfigurable-intelligent-surface-assisted wireless powered
mobile edge computing. IEEE Internet Things J. 2023, 11, 11593–11605. [CrossRef]

17. Liu, X.; Yu, J.; Feng, Z.; Gao, Y. Multi-agent reinforcement learning for resource allocation in IoT networks with edge computing.
China Commun. 2020, 17, 220–236. [CrossRef]

18. Wen, J.; Yang, J.; Wang, T.; Li, Y.; Lv, Z. Energy-efficient task allocation for reliable parallel computation of cluster-based wireless
sensor network in edge computing. Digit. Commun. Netw. 2023, 9, 473–482. [CrossRef]

19. Li, Z.; Hu, C.; Wang, W.; Li, Y.; Wei, G. Joint access point selection and resource allocation in MEC-assisted network: A reinforce-
ment learning based approach. China Commun. 2022, 19, 205–218. [CrossRef]

20. Zhi, Y.; Tian, J.; Deng, X.; Qiao, J.; Lu, D. Deep reinforcement learning-based resource allocation for D2D communications in
heterogeneous cellular networks. Digit. Commun. Netw. 2022, 8, 834–842. [CrossRef]

21. Lin, Q. Dynamic resource allocation strategy in mobile edge cloud computing environment. Mob. Inf. Syst. 2021, 2021, 8381998.
[CrossRef]

22. Li, F.; Fang, C.; Liu, M.; Li, N.; Sun, T. Intelligent Computation Offloading Mechanism with Content Cache in Mobile Edge
Computing. Electronics 2023, 12, 1254. [CrossRef]

23. Xu, J.; Xu, Z.; Shi, B. Deep Reinforcement Learning Based Resource Allocation Strategy in Cloud-Edge Computing System. Front.
Bioeng. Biotechnol. 2022, 10, 908056.

24. Sun, W.; Liu, J.; Yue, Y.; Wang, P. Joint resource allocation and incentive design for blockchain-based mobile edge computing.
IEEE Trans. Wirel. Commun. 2020, 19, 6050–6064. [CrossRef]

25. Wang, C.; Liang, C.; Yu, F.R.; Chen, Q.; Tang, L. Computation offloading and resource allocation in wireless cellular networks
with mobile edge computing. IEEE Trans. Wirel. Commun. 2017, 16, 4924–4938. [CrossRef]

26. Zheng, J.; Pan, Y.; Jiang, S.; Chen, Z.; Yan, F. A Federated Learning and Deep Q-Network based Cooperative Resource Allocation
Algorithm for Multi-Level Services in Mobile Edge Computing Networks. IEEE Trans. Cogn. Commun. Netw. 2023, 9, 1734–1745.
[CrossRef]

27. He, Y.; Wang, Y.; Lin, Q.; Li, J. Meta-hierarchical reinforcement learning (MHRL)-based dynamic resource allocation for dynamic
vehicular networks. IEEE Trans. Veh. Technol. 2022, 71, 3495–3506. [CrossRef]

28. Zhang, P.; Li, Y.; Kumar, N.; Chen, N.; Hsu, C.-H.; Barnawi, A. Distributed Deep Reinforcement Learning Assisted Resource
Allocation Algorithm for Space-Air-Ground Integrated Networks. IEEE Trans. Netw. Serv. Manag. 2023, 20, 3348–3358. [CrossRef]

29. Yu, M.; Yi, Y.; Rexford, J.; Chiang, M. Rethinking virtual network embedding: Substrate support for path splitting and migration.
ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 17–29. [CrossRef]

30. Cai, Y.; Wang, Y.; Zhong, X.; Li, W.; Qiu, X.; Guo, S. An approach to deploy service function chains in satellite networks. In Pro-
ceedings of the NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018;
pp. 1–7.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MC.2005.136
http://dx.doi.org/10.1016/j.comnet.2010.12.011
http://dx.doi.org/10.1002/spe.2815
http://dx.doi.org/10.1109/JIOT.2017.2773489
http://dx.doi.org/10.1109/ACCESS.2019.2961174
http://dx.doi.org/10.1109/JSTSP.2021.3136027
http://dx.doi.org/10.32604/cmc.2023.038417
http://dx.doi.org/10.23919/JCC.2022.00.002
http://dx.doi.org/10.23919/JCC.2022.07.018
http://dx.doi.org/10.32604/iasc.2023.036890
http://dx.doi.org/10.1109/JIOT.2023.3331269
http://dx.doi.org/10.23919/JCC.2020.09.017
http://dx.doi.org/10.1016/j.dcan.2022.06.014
http://dx.doi.org/10.23919/JCC.2022.06.016
http://dx.doi.org/10.1016/j.dcan.2021.09.013
http://dx.doi.org/10.1155/2021/8381998
http://dx.doi.org/10.3390/electronics12051254
http://dx.doi.org/10.1109/TWC.2020.2999721
http://dx.doi.org/10.1109/TWC.2017.2703901
http://dx.doi.org/10.1109/TCCN.2023.3310151
http://dx.doi.org/10.1109/TVT.2022.3146439
http://dx.doi.org/10.1109/TNSM.2022.3232414
http://dx.doi.org/10.1145/1355734.1355737

	Introduction
	Related Work
	Research Status of Edge Computing Networks
	Research Status of Network Resource Allocation Algorithms
	Summary of Related Work

	Network Modeling
	Modeling Edge Computing Networks
	Resource Properties and Constraint Conditions
	Algorithmic Evaluation Metrics
	System Models

	Algorithm
	Parameter Settings
	Environment Perception
	Local Training

	Experimental Analysis
	Experimental Environment and Parameter Settings
	Evaluation Results
	Experiment 1: The Long-Term Average Revenue
	Experiment 2: The Long-Term SFCR Acceptance Rate
	Experiment 3: The Long-Term R/C Ratio
	Summary of Evaluation

	Conclusions
	References

