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Abstract: Network intrusion detection systems are an important defense technology to guarantee
information security and protect a network from attacks. In recent years, the broad learning system
has attracted much attention and has been introduced into intrusion detection systems with some
success. However, since the traditional broad learning system is a simple linear structure, when
dealing with imbalanced datasets, it often ignores the feature learning of minority class samples,
leading to a poorer recognition rate of minority class samples. Secondly, the high dimensionality
and redundant features in intrusion detection datasets also seriously affect the training time and
detection performance of the traditional broad learning system. To address the above problems,
we propose a deep belief network broad equalization learning system. The model fully learns the
large-scale high-dimensional dataset via a deep belief network and represents it as an optimal low-
dimensional dataset, and then introduces the equalization loss v2 reweighing idea into the broad
learning system and learns to classify the low-dimensional dataset via a broad equalization learning
system. The model was experimentally tested using the CICIDS2017 dataset and fully validated
using the CICIDS2018 dataset. Compared with other algorithms in the same field, the model shortens
the training time and has a high detection rate and a low false alarm rate.

Keywords: network intrusion detection system; broad learning system; imbalanced datasets;
equalization loss v2; CICIDS2017; CICIDS2018

1. Introduction

With the rapid development of modern computer technology and network informa-
tion technology, networks affect every aspect of our lives, network attacks have become
increasingly complex, and network security has never been more important. Although
the Internet has brought people a lot of convenience, it also faces many new challenges.
Network security problems are becoming increasingly serious, such as phishing websites,
distributed denial-of-service attacks, and network worms threatening network security.
Network intrusion detection systems (NIDSs) were proposed by Anderson [1] in 1980.
The working principle of an intrusion detection system is mainly to monitor and filter
network behaviors by analyzing host audit data, network traffic data, and other character-
istics, identifying abnormal accesses in network communications, and notifying network
administrators promptly, to achieve the purpose of ensuring network information security.

In recent years, due to the booming development of artificial intelligence, machine
learning algorithms can better handle complex data for automated learning compared with
traditional intrusion detection systems and have better adaptability and generalization.
Therefore, more and more researchers have introduced machine learning technology into
the intrusion detection system [2] and achieved successes [3]. However, traditional ma-
chine learning models perform poorly when dealing with complex and high-dimensional
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data [4], and the robustness of the machine learning model constrains the performance of
the model [5]. Deep learning can automatically extract and fully learn the complex features
in the data to achieve high accuracy and robustness, and thus, deep learning techniques are
widely used in intrusion detection systems [6]. However, the deep learning model training
process is computationally resource-intensive, with long training times and high energy
consumption [7]. In addition, deep learning models are usually black-box models that
lack interpretability, making it difficult to understand and explain their internal decision-
making process, which hampers the performance of intrusion detection systems. Moreover,
the robustness of deep learning models also constrains the security of intrusion detection
systems. Abbas et al. [8] conducted an in-depth study on the robustness of the models and
achieved some success. More and more scholars [9] are beginning to adopt new techniques
in the field of intrusion detection.

Recently, Chen et al. [10] proposed a new randomized neural network named the broad
learning system (BLS), which is based on a flat network architecture. This model is different
from the extend-to-depth deep learning structure in that it does not need to use gradient
descent to update the weights, and the network structure is small in size and therefore
computationally faster [11]. In addition, the BLS weight update is based on pseudo-inverse
operations with better model interpretability and scalability. Therefore, some people have
introduced BLS into intrusion detection systems with good results [12]. However, on the
one hand, NIDS datasets tend to be severely imbalanced, and traditional BLS models cannot
handle imbalanced datasets well, leading to very poor detection performance for minority
classes of attacks, which is fatal for intrusion detection systems detecting attacks. On the
other hand, NIDS datasets tend to have high dimensionality and contain more redundant
information, which can lead to more time consumption and lower detection performance
of the BLS model. Therefore, certain measures must be employed to address these issues to
improve the detection performance of the model.

For the problem of dataset imbalance in intrusion detection, the traditional solution
is to change the number of minority class samples or majority class samples by over-
sampling or under-sampling to equalize the samples. For example, the synthetic minority
over-sampling technique (SMOTE) [13] increases the number of minority class samples by
synthesizing new minority class samples to balance the number of samples of different
classes in the dataset. However, the samples generated by SMOTE may expand the original
sample space and change the distribution of the sample data, leading to poor classification
or even confusion of the model in the boundary region, and often causing more time cost
due to the introduction of new samples. For the problem of high dimensionality of datasets
in intrusion detection, the traditional method is based on the principal component analysis
(PCA) dimensionality reduction [14]. Although it can reduce the dimensionality of the
dataset, as a linear dimensionality reduction method, it can only find the linear correlation
structure in the data, and for the non-linear structure of intrusion detection datasets, PCA
cannot effectively capture this information, and its dimensionality reduction is achieved by
projecting the data to a new low-dimensional space that often results in a serious loss of
information in the original data.

To address the above problems, we propose a deep belief network broad equaliza-
tion learning system (DBELS), in which the deep belief network (DBN) performs data
dimensionality reduction on the NIDS dataset to eliminate redundant information. The
equalization loss v2 (EQL v2) idea is introduced into the BLS, and the model balances
the different classes of samples by adjusting the positive and negative gradient factors
to enhance the performance in detecting attack samples of minority classes and classifies
low-dimensional datasets to achieve the purpose of classifying and detecting attacks. The
main contributions of this paper are as follows.

• We introduce the EQL v2 idea into the BLS and propose a new model by adding
positive and negative gradient factors and recalculating its weights, which improves
the poor learning ability of the BLS model for minority class samples by adjusting the
positive and negative gradient factors and mitigates the defect of the BLS model in



Electronics 2024, 13, 3014 3 of 27

that it is not good at dealing with the imbalanced dataset, to improve the performance
of detecting minority class samples.

• We evaluated two types of DBN-based dimensionality reduction models—the tra-
ditional DBN model and the DeBN model that introduces the idea of EQL v2—and
experimentally compared the effects of the two dimensionality reduction models on
the classification effect.

• We conducted many experiments on the DBELS model based on the publicly available
benchmark dataset CICIDS2017, giving detailed experimental setups including binary
and multi-classification, and evaluating the model in terms of accuracy, recall, false
positive rate, time, and the receiver operating characteristic curves, finding obvious
advantages over other models. We also tested the effect of hyperparameters on the
model through many experiments and conducted comparative analyses with other
state-of-the-art models.

• We further validated the fitness and scalability of the proposed model with the CI-
CIDS2018 dataset. The performance and usefulness of the proposed model were
evaluated by comparative analysis with other models.

The rest of this paper is organized as follows: Section 2 reviews the current research
on intrusion detection systems based on the BLS, data dimensionality reduction, and
data imbalance. In Section 3, we describe the details of the proposed DBELS. Detailed
experimental results are reported and analyzed in Sections 4 and 5. Section 6 concludes
this paper.

2. Related Works

This section focuses on the current state of research and the shortcomings of the
broad learning system (BLS)-based network intrusion detection system (NIDS). We give
traditional solutions to the limitations of the traditional BLS and analyze the advantages
and disadvantages of these methods.

2.1. NIDS Based on BLS

The BLS model is a shallow network model that transforms and learns features
by mapping nodes and enhancement nodes and calculates the model weights quickly
by pseudo-inverse operations, which makes it simple and quick to train. When it was
proposed, broad learning aroused widespread interest, and its applications are being
investigated in many research fields, such as computer vision, image processing, medical
data analysis, and natural language processing. There are also some works in the field of
network intrusion detection. Li et al. [15] proposed a hybrid intrusion detection model
based on the recurrent neural network (RNN) and BLS, and the experimental results
show that the model based on the BLS has a better training effect and a shorter training
time. Laura et al. [16] implemented the cascade of feature mapping nodes, a cascade of
enhancement nodes, and a cascade of feature mapping nodes and enhancement nodes.
The authors concluded that the cascade of enhancement nodes requires a longer training
time than other BLS variants. Subsequently, they proposed a DDoS detection system based
on broad learning for communication networks [17]. The authors concluded that the best
detection performance can usually be achieved by using a cascaded BLS. Li et al. [18]
proposed a tri-broad learning system (TBLS) based on the BLS model, which learns features
from three dimensions of temporal granularity, data content, and spatial granularity of the
dataset. Experimentally, it was proved that the TBLS model can achieve better detection
performance by learning features from the three dimensions.

Although the BLS model has achieved some success in the field of intrusion detection,
as a shallow neural network, it relies too much on the topology, number of samples, and
class information of the training samples, and is unable to cope with imbalanced datasets.
This leads to it paying too much attention to the majority class samples, and it almost
ignores the learning of the minority class samples when learning classification, which
leads to poor detection performance on imbalanced datasets, especially for the minority
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class samples, which are worse or even undetectable. Second, high-dimensional datasets
increase the complexity of BLS models and increase computational and storage costs.
In addition, the higher the data dimensionality, the greater the influence of noise and
redundant features, which may mask useful information and reduce the accuracy and
stability of the BLS model. Therefore, certain techniques are needed to adapt the BLS to
imbalanced and high-dimensional datasets for intrusion detection.

2.2. NIDS Based on Data Imbalance

Data imbalance refers to the fact that in the real world, different classes of data have dif-
ferent distributions, where certain types of data are significantly underrepresented, which
has a serious negative impact on model classification. The datasets of intrusion detection
are often highly imbalanced, which is fatal to the training and detection performance of the
model; for example, in the case of CICIDS2017, the normal behavior of Benign accounts for
82.248%, and the abnormal behavior of Attack accounts for only 17.752%. Attack samples
of DoS/DDoS account for 14.571%, Port Scan accounts for 2.607%, Brute Force accounts for
0.389%, Web Attack accounts for 0.096%, and Botnet accounts for 0.088%; thus, it is obvious
that the normal class of samples is much more than the attack class of samples, which will
cause the model to learn the majority-class samples too much. In response to the imbalance
of intrusion detection datasets, some scholars have already conducted in-depth studies.
Wu T et al. [13] addressed imbalanced data in network intrusion detection using k-means
clustering and the synthetic minority over-sampling technique (SMOTE). They clustered
data, identified minority-class clusters, and applied SMOTE to generate synthetic samples,
demonstrating effectiveness in experiments. Ahmad T et al. [19] developed a hybrid model
combining feature selection and pattern mining. They used rule-based analysis for di-
mensionality reduction, SMOTE for balancing data, and adaptive boosting (AdaBoost) for
learning, effectively detecting minority-class samples. With deep learning advancements,
Hao X et al. [20] used GANs to create synthetic datasets, enhancing classifier performance
on minority classes through realistic data generation.

However, most of the methods used to solve the data imbalance problem in intrusion
detection are based on generating data, whether it is generating minority-class samples
by over-sampling or reducing majority-class samples by under-sampling, which balances
the different samples by changing the number of the dataset; however, this changes the
data distribution of the original data, which may affect the model’s effect of learning to
classify the dataset. In addition, the over-sampling method will increase the number of
datasets, which will increase the extra computational cost of the model and cause extra
time consumption. In recent years, Jin et al. [21] proposed equalization loss v2 (EQL v2),
which is guided by positive and negative gradients and re-adjusts the weights to balance
the learning of each type of task and enhance the learning of minority-class samples, and
has achieved certain results. Since it does not change the distribution and number of the
original samples and adjusts the weights so that the model learns each class of samples
in a more balanced way, this is of great significance for solving the imbalance problem
of intrusion detection systems, and introducing this idea into the BLS is conducive to
enhancing the detection performance of the model in the face of imbalanced datasets.

2.3. NIDS Based on Data Dimensionality Reduction

Researchers have proposed some solutions to cope with the high-dimensionality
problem in the field of intrusion detection. Zhang B et al. [14] proposed an intrusion
detection method using an enhanced principal component analysis (PCA) combined with
the Gaussian plain Bayesian algorithm. By weighting the primary feature vectors in PCA,
the method reduces data contamination. This approach, followed by the Bayesian algo-
rithm for detection, significantly decreases detection time compared to using classifiers
alone. Shen Z et al. [22] introduced an enhanced naive bayes classification algorithm that
integrates principal component analysis with linear discriminant analysis to reduce sam-
ple space dimensionality and refines Bayesian computation by incorporating attribute
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correlation. This approach allows the classifier to account for both attribute frequency
and correlation issues, addressing real-time and accuracy challenges in intrusion detec-
tion with numerous features. Salo F et al. [23] developed a feature-processing integration
technique that combines information gain and principal component analysis to extract a
low-dimensional optimal subspace. They then merge multiple classifiers using support vec-
tor machines, instance learning algorithms, and multilayer perceptron decision strategies,
employing a probability mean combination rule for voting. Testing across various datasets
demonstrated that this method not only achieves high accuracy but also significantly
reduces computational costs, making it more effective for large-scale data detection.

However, most of the current solutions to the problem of high dimensionality in
NIDS datasets are machine learning algorithms, which reduce the dimensionality of the
dataset to a certain extent, but still have greater limitations in the face of non-linear, high-
dimensionality features, resulting in a lower detection rate of the model. Since deep
learning algorithms are effective in learning high dimensionality, and non-linear features
can autonomously complete the learning and feature extraction of raw data without too
much human intervention, deep learning algorithms have been introduced into large-scale
intrusion detection systems, which can better complete the extraction and dimensional-
ity reduction of data features. The deep belief network (DBN), as a representative deep
learning model, was proposed by Geoffrey Hinton et al. [24] in 2006. From the raw data,
it can learn the multi-layered abstract feature representations that effectively capture the
complex structure and changing patterns of the data. This hierarchical feature extraction
process helps to map high-dimensional input data to a low-dimensional representation
space while preserving the important information of the data for dimensionality reduction.
Compared with traditional dimensionality reduction methods, DBN dimensionality reduc-
tion not only better maintains the structure and relevance of the data but also adaptively
learns the non-linear relationships in the data, which improves the expressive ability and
classification performance of the reduced data. Therefore, the DBN is superior in the task
of dimensionality reduction for intrusion detection models.

3. Methodology

This section constructs the deep belief network broad equalization learning system
(DBELS) based on BLS, EQL v2, and DBN in detail in three stages: data preprocessing, data
dimensionality reduction, and model classification.

3.1. DBELS Architecture

The framework of DBELS is shown in Figure 1, which is divided into three stages.
The first stage is data preprocessing, which mainly processes the original data into a
data form suitable for the dimensionality reduction of the DBN. The CICIDS2017 dataset
contains 79 features containing many redundant features that hamper the model training
and classification. In this paper, data preprocessing includes two parts: data cleaning and
data standardization. The purpose of data cleaning is to reduce redundant features by
calculating the contribution of features to the classification through correlation coefficients,
eliminate the bad values of the data, and avoid its negative interference effect on the model.
The purpose of data standardization is to make the model focus on different features of the
data in a balanced way, while ignoring the influence of features with different weights on
the model due to the size of the value. Due to the serious data imbalance in the CICIDS2017
dataset, the over-sampling method SMOTE can be used to increase the minority attack
samples when the DBN reduces dimensionality to alleviate the problem of too few samples
for the minority class.

The second stage is DBN dimensionality reduction, which aims to represent the
original high-dimensional data as optimal low-dimensional data. The DBN dimensionality
reduction model we use adopts a classic structure, which maximizes the retention of core
features while reducing the feature dimensions as much as possible. The model fully trains
each restricted Boltzmann machine (RBM) through pre-training, adjusts the whole DBN
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structure through weight fine-tuning, and fully learns the features of the standardized
dataset, which is represented as an optimal low-dimensional dataset. The third stage uses
the broad equalization learning system (BELS) to classify the optimal low-dimensional
data. The BELS model equalizes the model’s learning of the minority-class samples by
adjusting the positive and negative gradient factors and increasing its weights to enhance
the detection and recognition class of the minority-class samples.
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3.2. Deep Belief Network
3.2.1. Restricted Boltzmann Machine

The restricted Boltzmann machine [24] is the basic structure of the DBN, which is a
shallow neural network and consists of a two-layer structure of visible and hidden layers.
Connections in an RBM are undirected, and there are no connections between neurons in
the same layer; its structure can be seen in Figure 2. Commonly used RBMs are generally
binary. Whether they are in the hidden layer or the visible layer, their neuron takes the
value of 0 or 1 only. The working principle of an RBM is based on the energy function, and
the energy function of the visible layer and hidden layer are given by

E(v, h) = −∑
i

bivi − ∑
j

cjhj − ∑
i,j

vihjwij (1)

where i belongs to the visible layer and j belongs to the hidden layer, b and c are model
biases, w is weight of the model, the first part represents the contribution of the nodes of
the visible layer to the energy of the system, the second part represents the contribution of
the nodes of the hidden layer to the energy of the system, and the last part represents the
contribution of the energy of the system due to the interaction between the visible layer
and the hidden layer.
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The RBM defines the joint probability density of the visible and hidden layers in terms
of an energy function. The joint probability of the visible layer and hidden layer is given as

p(v, h) =
1
Z

e−E(v,h) (2)

where Z is the partition function, which is used to normalize the probability distribution
and ensure that the sum of the probability distributions is equal to 1:

Z = ∑
v,h

e−E(v,h) (3)

With the joint probability density of the visible and hidden layers, summing over h
yields the marginal density distribution of the visible layer:

p(v) =
1
Z ∑

h
e−E(v,h) (4)

During the RBM model training process, the hidden layer variable h1 is sampled and
computed using the posterior probability p(h1|v), and the new visible layer variable v1 is
sampled by the posterior probability p(v1|h1); subsequently, the new hidden layer variable
h2 is sampled again in a repetitive manner to obtain the visible layer v2. The above steps
are repeated several times until the parameters converge or reach the predefined number
of iterations, the joint probability distribution is close to the smooth distribution, and the
RBM training is completed.

3.2.2. Training of Deep Belief Network

The deep belief network [24] is a deep neural network stacked by multiple RBMs. The
DBN structure is shown in Figure 3. During the training process, the DBN first uses an
unsupervised greedy layer-by-layer training algorithm for each layer of the RBM, except
for the first and last layers of the DBN structure, where each layer of the RBM hidden layer
serves as the visible layer of the next layer of the RBM, to transfer feature information and
learning information (this phase is also called the pre-training phase of DBN). After the
pre-training is completed, a small amount of labeled data are attached to the last layer of the
DBN model, and supervised training is performed on each layer of the RBM. The backward
propagation algorithm propagates the error information to each layer of the RBM and uses
the maximum likelihood function for the objective function, which can optimize the whole
DBN, thus obtaining the optimal low-dimensional representation of the original data.
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3.3. Broad Learning System

The carrier of a broad learning system [10] is a random vector function linked neural
network. Compared with the deep learning method, the BLS has only two layers of neural
network, and its structure is in the form of width extension. Its model structure is shown
in Figure 4. Firstly, the BLS maps the input data into a feature node matrix through the
mapping function. Secondly, the feature node matrix forms an enhancement node matrix by
using the enhancement function. Then, the feature mapping nodes and the enhancement
nodes are used together as the input of the hidden layer. Finally, the pseudo-inverse
operation is used to calculate the weight matrix between the hidden layer and the output
layer to achieve the purpose of training the BLS model.
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Figure 4. The structure of BLS.

Suppose that the input data X = [x1, x2, . . . , xn] belong to R(N ∗ M) and the output
matrix, Y = [y1, y2, . . . , yn], belongs to R(N ∗ C), where N is the total data sample, M is
the sample dimension, C is the number of categories of the data sample, Z1, Z2, . . . , Zn
is the feature node matrix, H1, H2, . . . , Hn is the enhancement node matrix, and W is the
output weight matrix between the hidden layer and the output layer.

The specific procedure of the BLS is as follows. First, the sample data X are mapped
by group i features to obtain the group i feature node matrix Zi, where i ∈ (1, 2, . . . , n):

Zi = φi(XWei + βei ) ∈ RN×qi = 1, 2, · · · , n (5)
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where φi is the activation function, q is the number of feature nodes corresponding to each
feature mapping, Wei is the weight matrix of the ith feature mapping, and βei is the bias
matrix of the ith feature mapping. Both Wei and βei are randomly generated. Then, all
feature node matrices are integrated to obtain the total feature node matrix:

Zn = [Z1, Z2, · · · , Zn] ∈ RN×nq (6)

Second, the total feature node matrix Zn undergoes group j enhancement mapping to
obtain the group j enhancement node matrix Hj, where j ∈ (1, 2, . . . , m), is as follows:

Hj = ξ j

(
ZiWhj

+ βhj

)
∈ RN×r j = 1, 2, · · · , m (7)

where ξ j is the activation function, r represents the number of enhancement nodes corre-
sponding to each group of enhancement transformations, Whj

is the group j enhancement
mapping weight matrix, and βhj

is the group j enhancement mapping bias matrix. The
total enhancement node matrix is obtained by integrating all enhancement node matrices:

Hm = [H1, H2, · · · , Hm] ∈ RN×mr (8)

Then, the feature mapping nodes are merged with the enhancement nodes as inputs
to the BLS, defined as A:

A = [Zn|Hm] ∈ RN×(nq+mr) (9)

Finally, the predicted value of the broad learning algorithm can be given as

Ŷ = [Zn|Hm]W = AW (10)

where W is the weight matrix of feature nodes and enhancement nodes to the output layer.
To minimize the error between the predicted value Ŷ and the true value Y and to find

a suitable W, the BLS model is optimized with the following function:

arg min
W

FBLS =∥ Y − Ŷ ∥2
2 +λ ∥ W ∥2

2=∥ Y − AW ∥2 +λ ∥ Wm ∥2 (11)

where the first term is used to control the minimization of the training error, the second
term is used to prevent the model from overfitting, and the value λ denotes the further
constraints on the sum of the squared weights; we take derivative of the above function
and let it take the value of zero, obtaining W as

W = (AT A + λI)
−1

ATY (12)

where A is the mapping and enhancement matrix, λ is a penalty factor, I is an identity
matrix, and Y is the true label.

3.4. Equalization Loss v2

The basic idea of equalization loss v2 [21] is to equalize the degree of learning of the
model for different classes of samples by weighting the positive and negative gradients
of each classifier according to the cumulative gradient ratios of the positive and negative
gradients of the classifier, respectively. In solving the problem of imbalanced datasets,
a classic strategy is the focal strategy, and Eqlv2 is improved on this basis. However,
EQL v2 offers distinct advantages over focal loss, particularly in handling class imbalance
without introducing bias towards minority classes. Unlike focal loss, which adjusts the
loss contribution based on prediction difficulty, EQL v2 dynamically balances gradients
during training, reducing overfitting on rare categories while maintaining focus on common
classes. This approach enhances model stability and performance across varied datasets,
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providing a more nuanced response to imbalance challenges. The positive and negative
gradients for the output Z of each classifier concerning the loss L are

∇pos
zj (L) = 1

|I| ∑
i∈I

yi
j(pi

j − 1) (13)

∇neg
zj (L) = 1

|I| ∑
i∈I

(1 − yi
j)pi

j (14)

where I is the total number of samples, pi
j is the probability that the ith sample is predicted

to be of class j, and yi
j is the value of the One-Hot truthful labeling matrix in which the ith

sample is of class j.
EQL v2 weights are updated by first defining gj as the ratio of the cumulative positive

gradient to the negative gradient of task j up to iteration t. In this iteration, the weights of
the positive gradient qt and the negative gradient rt can be computed as follows:

q(t)j = 1 + α
(

1 − f (g(t)j )
)

(15)

r(t)j = f (gt
j) (16)

where f is a mapping function as

f (x) =
1

1 + e−γ(x−µ)
(17)

The positive gradient q(t)j and negative gradient r(t)j are obtained and then they are
applied to the positive and negative gradients of the current batch, respectively, and the
reweighted gradient is

∇pos′
zj (L(t)) = q(t)j ∇pos

zj (L(t)) (18)

∇neg′
zj (L(t)) = r(t)j ∇neg

zj (L(t)) (19)

Finally, the ratio gt+1
j of the accumulated positive gradient to the negative gradient of

the iteration t + 1 update is computed and denoted as

gt+1
j =

∑T
t=0

∣∣∣∇pos′
zj (L(t))

∣∣∣
∑T

t=0

∣∣∣∇neg′
zj (L(t))

∣∣∣ (20)

EQL v2 chooses the gradient statistic as a measure of whether a task is in a balanced
training state, balancing the model based on how easy or difficult each classification is for
the model to train, rather than simply considering the number of its positive and negative
samples. Introducing the idea of gradient-guided weighting to DBN and BLS helps the
model to be trained with more attention to the features of minority classes of samples, thus
making the model more comprehensive and balanced in evaluating each class of samples.
The model adjusts the optimal weight contribution of the iteration based on the impact of
different categories of samples on the performance of the classification.

3.5. Broad Equalization Learning System

The W of the broad equalization learning system is solved as follows; based on the
EQL v2 positive and negative gradients, the sample positive and negative gradients can be
given as follows:

p(W) = YT(AW − 1) (21)

n(W) = (1 − YT)AW (22)
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where A is the feature matrix of the mapped and enhancement nodes, Y is the true label,
and W is the weight matrix.

The gradient function can be constructed from the positive and negative gradients as

G(W) = λp[YT(AW − 1)]
2
+ λn[(1 − YT)AW]

2
(23)

where λp is the positive gradient factor and λn is the negative gradient factor. The smaller
G(W) is, the greater the probability of positive samples, and the smaller the probability of
negative samples. Adjusting the parameters λp and λn can adjust the learning effect of the
model on different samples to achieve equalization of the degree of contribution of each
class of samples to the model learning classification.

Based on the BLS loss function,

L(W) = (AW − Y)2 + λW2 (24)

where λ is the penalty factor; then, the optimization objective of the BELS is the EQL v2
gradient function and the BLS loss function:

argmin : F(W) = (AW − Y)2 + λW2 + λp[YT(AW − 1)]
2
+ λn[(1 − YT)AW]

2
(25)

Among them, the first part is the loss function, which is used to control the classifica-
tion error of the model. The second part is the penalty term, which mainly prevents the
model from overfitting. The third part is the gradient term, which is used to balance the
learning degree of different samples and alleviate the poor performance of the model in
detecting samples of minority classes.

The existing F(W) is expressed as ∂F(W)
∂W by taking the partial derivative of W:

W = [λp ATYYT A + λn AT(J1 − Y)(J2 − YT)A + AT A + λI]
−1

(λp ATYYT J3 + ATY) (26)

where J is a matrix with all elements equal to 1, λp is a positive gradient factor, λn is a
negative gradient factor, the positive and negative gradient factors are used to control the
learning degree of the model on different samples, and λ is a penalty factor to avoid the
overfitting of the model caused by the excessively large W.

4. Experiments

This section presents the detailed experiments. We analyze in detail the effect of
hyperparameters on the model. We employ grid search to fix the positive and negative
gradient factors within appropriate ranges, seeking the optimal parameter combination
that maximizes the detection performance of the model. To evaluate the effectiveness
of the proposed method, we conduct complete ablation experiments. Finally, we give a
comparative analysis of the proposed model with other state-of-the-art methods.

4.1. CICIDS2017 Datasets

The CICIDS2017 dataset [25] proposed by the Canadian institute for cybersecurity
is one of the important benchmark datasets for evaluating intrusion detection models.
The authors used the behavior profile system to analyze the abstract behavior of human
interactions based on different protocols, constructing 25 abstract behaviors of users and
generating natural friendly background traffic. The dataset contains benign and new
common attacks and includes seven types of network attacks, namely denial-of-service
attacks, secure shell brute force attacks, botnet attacks, distributed denial-of-service attacks,
web application attacks, heartbleed exploits, and penetration testing attacks. The sample
distribution and features of the dataset are shown in Table 1.
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Table 1. Class distribution of CICIDS2017 dataset.

Category Label Sample Feature

Benign Benign 2,273,097 Dest Port, Flow Duration, Tot Fwd|Bwd Pkts, Tot
Len Fwd|Bwd Pkts, Fwd|Bwd Pkt Len

Max|Min|Mean|Std, Min|Max Pkt Len, Pkt Len
Mean|Std|Var, Avg Pkt Size, Avg Fwd|Bwd Seg
Size, Flow Bytes|Pkts, Fwd|Bwd Pkts, Fwd|Bwd

Avg Bulk Rate, Fwd|Bwd Avg Bytes|Pkts, Flow IAT
Mean|Std|Max|Min, Fwd|Bwd IAT

Total|Mean|Std|Max|Min, Down-Up Ratio,
Active|Idle Mean|Std|Max|Min, Fwd|Bwd PSH

Flags, Fwd|Bwd URG Flags, Init Win Bytes
Fwd|Bwd, Fwd|Bwd Header Len, Act Data Pkt

Fwd, FIN|SYN|RST|PSH|ACK|URG|CWE|ECE
Flags, Min Seg Size Fwd, Subflow Fwd|Bwd

Pkts|Bytes, Label

DoS/DDoS

DoS Hulk, DDoS,
DoS GoldenEye, DoS

Slowloris,
DoS Slowhttptest,

Heartbleed

380,699

PortScan PortScan 158,930

Brute Force FTP-Patator, SSH-Patator 13,835

Web Attack
Web Attack—Brute Force,

Web Attack—XSS,
Web Attack—SQL Injection

2180

Botnet Bot 1966

Total - 2,830,707 79

4.2. Implementation Details

The DBELS model parameters were set as in Table 2, including the training parameters
of the DBN dimensionality reduction model, the BELS activation function, the number of
nodes in each of the mapping groups, the number of nodes in each of the enhancement
groups, and the penalty coefficient, λ. The DBN dimensionality reduction model consisted of
a stack of three RBMs, (49,64), (64,32), and (32,16). All the experiments were conducted using
a 64-bit Intel(R) Core (TM) i7-11700 CPU with 32 GB RAM in the Windows 11 environment.
The models were implemented in Python v3.9.16 using the PyTorch v2.1.0 library.

Table 2. The parameters of DBELS.

Parameter Pre-Training Fine-Tuning Description

Epochs 30 100 -
Learning rate 0.0001 0.00001 -

Batch size 64 128 -
Optimiser SGD Adam -
Gibbs step - - 5

Mapping|Enhancement group node count - - 16
Mapping|Enhancement activation function - - Relu

λ - - 0.001

4.3. Performance Metrics

The evaluation metrics for intrusion detection mainly include accuracy, recall, and
false positive rate (FPR). In the formula, the true positive (TP) represents the number of
samples correctly identified as positive, the true negative (TN) is the number of samples
correctly identified as negative, the false positive (FP) is the number of negative samples
incorrectly identified as positive, and the false negative (FN) is the number of positive
samples incorrectly identified as negative. The accuracy denotes the ratio of the number of
samples correctly classified by the model to the total number of samples:

Accuracy =
TP + TN

TP + TN + FP + FN
(27)
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The recall denotes the proportion of positive cases in the sample that are correctly
predicted, also known as the detection rate:

Recall =
TP

TP + FN
(28)

The false positive rate is the proportion of truly negative samples that the model
incorrectly classifies as positive:

FPR =
FP

FP + TN
(29)

4.4. Analysis of Hyperparameters
4.4.1. Effect of λp and λn on Binary Classification

For the two parameters λp and λn in the DBELS model, their effects on the performance
of the model in different classification tasks were explored. Their effects on the performance
of accuracy, recall, and time in the binary classification task are shown in Figure 5. For
accuracy and recall, the performance tends to increase with decreasing λp and λn. Different
parameter combinations lead to larger differences because the model is more sensitive to the
two parameters in the binary classification task, and as the order of magnitude improves,
the performance of the model changes drastically. The experiments show that when λp is
around 10−5 orders of magnitude and λn is around 10−4 orders of magnitude, the model
can maintain higher accuracy and recall, at around 0.99 and 0.98, respectively. For the
training time of the model with the change in λp and λn, the training time fluctuates slightly
above and below 1.6 s, indicating that the model training time in the binary classification
task is not sensitive to the positive and negative factors.
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4.4.2. Effect of λp and λn on Multi-Classification

In the multi-classification task, its effect on the accuracy, recall, and time performance
are shown in Figure 6. For accuracy, the model is almost insensitive to λn and almost tends
to be stable as λn changes; when 10−3 < λp < 10−2, the accuracy increases as λp increases.
For recall, as λp and λn increase, the recall of the model tends to increase. When the λp
value’s order of magnitude is 10−2 and the λn value’s order of magnitude is about 10−3,
recall grows to a maximum of about 0.95. For the model training time with the change in
λp and λn, the time of the model fluctuates from 1.4 s to 1.6 s and almost stabilizes, which
shows that the training time is not sensitive to the positive and negative factor parameters.
To achieve a better overall performance, the order of magnitude of λp is around 10−4, and
the order of magnitude of λn is around 10−3, which can make the accuracy stabilize to 0.96
and the recall stabilize to 0.95.
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4.4.3. Effect of Mapping and Enhancement Groups on Binary Classification

The experiments explored the effects of DBELS model enhancement groups and
mapping groups on the performance of the model for different classification tasks. For
the binary classification task, the effects of enhancement groups and mapping groups on
accuracy, recall, and training time are shown in Figure 7. For accuracy and recall, the model
floats more with the change in parameters because the binary classification task model is
more sensitive to these two parameters. With the increase in the mapping matrix Z and the
enhancement matrix H, its input matrix A increases, and the model detection performance
is highly dependent on the matrix, A. For training time, it increases with the increase in
enhancement groups and mapping groups, because the input matrix A increases with the
increase in parameters. From the experimental results, it is known that when enhancement
groups and mapping groups are selected as 1, it can ensure both less training time and
higher accuracy and recall.
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4.4.4. Effect of Mapping and Enhancement Groups on Multi-Classification

For the multi-classification task, the effects on accuracy and recall are shown in Figure 8.
With the increase in enhancement groups and mapping groups, the accuracy and recall
almost tend to stabilize, indicating that for the multi-classification task, these two metrics of
the DBELS model are not sensitive to the mapping and enhancement groups. The training
time shows an upward trend in time consumption both with the increase in mapping
groups and enhancement groups. The reason is that the increase in mapping groups and
enhancement groups increases the size of the mapping matrix Z and the enhancement
matrix H, resulting in an increase in matrix A, increasing the burden on and consumption
of the model. It can be concluded that since the increase in enhancement groups and
mapping groups has less impact on the detection performance of the model and increases
the consumption of time cost when enhancement groups and mapping groups are selected
as 1, the accuracy and recall maintain a higher performance and the time consumption
is minimized.
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4.5. Ablation Studies

To evaluate the effectiveness of the proposed method, we performed ablation exper-
iments based on three dimensionality reduction models and two classification models.
The three dimensionality reduction models are traditional PCA, traditional DBN, and
DeBN with the introduction of EQL v2. The classification methods are traditional BLS and
our improved BELS, respectively. We evaluated the detection performance of a total of
eight methods under a binary classification task and multi-classification task based on the
CICIDS2017 dataset. All the experiments were conducted in the same environment with
identical forms of data processing, and the detection performances of different models are
shown in Tables 3 and 4. The recognition rate of each sample under different classification
tasks is shown in Tables 5 and 6.

Table 3. The performance of different methods on binary classification.

Method
Algorithm Evaluation Metric

BLS BELS PCA DBN DeBN Accuracy Recall Time(s)

BLS ✓ 0.88105 0.63062 1.83126

PBLS ✓ ✓ 0.86780 0.59044 0.75575

DBLS ✓ ✓ 0.91531 0.73711 0.60949

DeBLS ✓ ✓ 0.29939 0.58103 0.60531

BELS ✓ 0.96670 0.92483 4.86849

PBELS ✓ ✓ 0.92279 0.85250 1.64884

DBELS ✓ ✓ 0.99240 0.98579 1.63914

DeBELS ✓ ✓ 0.98896 0.97516 1.57186

The ✓ in the table indicates that the method contains the algorithm.

Table 4. The performance of different methods on multi-classification.

Method
Algorithm Evaluation Metric

BLS BELS PCA DBN DeBN Accuracy Recall Time(s)

BLS ✓ 0.97450 0.47382 1.74388

PBLS ✓ ✓ 0.93755 0.29756 0.51006

DBLS ✓ ✓ 0.99286 0.65797 0.51341

DeBLS ✓ ✓ 0.98936 0.67712 0.50913

BELS ✓ 0.97060 0.52527 5.00825

PBELS ✓ ✓ 0.93848 0.47024 1.77999

DBELS ✓ ✓ 0.98719 0.80346 1.49983

DeBELS ✓ ✓ 0.95790 0.94741 1.63619

The ✓ in the table indicates that the method contains the algorithm.
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Table 5. The recall of each sample on binary classification.

Category
Method

BLS PBLS DBLS DeBLS BELS PBELS DBELS DeBELS

Benign 0.99983 0.99934 0.99983 0.16582 0.98655 0.95613 0.99554 0.99551
Attack 0.26141 0.18154 0.47439 0.99625 0.86312 0.74888 0.97604 0.95480

Table 6. The recall of each sample on multi-classification.

Category
Method

BLS PBLS DBLS DeBLS BELS PBELS DBELS DeBELS

Benign 0.99094 0.99252 0.99787 0.99665 0.99057 0.95042 0.98886 0.95903
Botnet
ARES 0 0 0 0.13660 0 0 0 0.94845

Brute Force 0 0 0.98480 0.98655 1 0 0.99766 0.98830
DoS/DDoS 0.91515 0.79286 0.97416 0.95507 0.87920 0.89234 0.98244 0.94544
Port Scan 0.93683 0 0.99101 0.98787 0.85313 0.97871 0.99093 0.98709

Web Attack 0 0 0 0 0 0 0.86085 0.85613

4.5.1. Performance Analysis on Binary Classification

In the binary classification task, the traditional BLS structure is less effective in recog-
nizing the CICIDS2017 dataset, mainly due to the high-dimensional redundant information
in the dataset that affects the classification performance, resulting in lower accuracy and
recall, especially the lack of attention to the minority-class samples in the imbalanced
dataset. After the introduction of EQL v2, the accuracy and recall of the BELS model signif-
icantly improved, indicating that EQL v2 enhances the ability to recognize minority-class
samples in dealing with the imbalance problem. The deep belief network broad learn-
ing system (DBLS) model reduces the data redundancy through the DBN dimensionality
reduction, which improves the accuracy and recall, which were improved by 0.034 and
0.106, respectively. The DeBLS model overly focuses on minority-class samples during
DeBN dimensionality reduction, resulting in a decrease in the detection performance for
majority-class samples.

DBELS has the highest detection performance in the binary classification task, and
the introduction of EQL v2 on top of the DBLS improves the accuracy and recall by
0.077 and 0.249, respectively, indicating that the combination of DBN dimensionality
reduction and EQL v2 significantly improves the model performance. Although the DeBELS
model introduces EQL v2 to the DeBN dimensionality reduction dataset and improves
the model performance by adjusting the parameters of positive and negative gradient
factors, the accuracy and recall slightly decreased by 0.004 and 0.01, respectively, compared
with DBELS, which reflects the negative impact of overlearning abnormal samples on
classification performance. For the principal component analysis broad learning system
(PBLS) model, after the PCA dimensionality reduction, accuracy and recall decreased by
0.014 and 0.040, respectively, compared with the BLS, mainly due to more information
loss during PCA dimensionality reduction and the inability to deal with imbalanced
datasets efficiently. The principal component analysis broad equalization learning system
(PBELS) model had an accuracy of 0.923 and a recall of 0.853, compared with PBLS, with
an improvement of 0.055 and 0.262, indicating that EQL v2 can still significantly improve
the detection performance of minority-class samples even when PCA dimensionality
reduction is ineffective. However, the PBELS reduced accuracy and recall by 0.070 and
0.106, respectively, compared with DBELS, further demonstrating that DBN dimensionality
reduction outperforms PCA dimensionality reduction in binary classification tasks.
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4.5.2. Performance Analysis on Multi-Classification

In the multi-classification task, the traditional BLS performed poorly, with an accuracy
of 0.975 and a recall of only 0.474, mainly due to the severe imbalance of the dataset that
affects the classification performance. The BELS model after the introduction of EQL v2 had
an improved recall of 0.051, mainly because EQL v2 improves the data imbalance problem,
which allows the model to increase the weight of the attack samples for minority classes and
thus improves the detection rate. The DBLS model, after dimensionality reduction by DBN,
had an improved accuracy of 0.018 and an improved recall of 0.184, which is attributed to
the fact that the DBN dimensionality reduction reduces the data redundancy, mitigates the
negative impact of raw data, and improves the detection performance of the model. The
DeBLS model improved recall by 0.02 compared with DBLS, which is attributed to the fact
that DeBN learns more about the minority-class samples, eliminates redundancy between
different samples, and at the same time retains the key features of the minority-class samples,
which improves the classification and detection performance. The DBELS model improved
by 0.018 in DBN dimensionality reduction, and with the introduction of EQL v2, accuracy
improved by 0.017 and recall improved by 0.278; compared with DBLS, recall improved
from 0.658 to 0.803, which is attributed to the fact that EQL v2 balances the learning weight
of the minority-class samples and increases the focus on the minority-class samples.

The accuracy for the DeBELS model of 0.957 and recall of 0.947 was the best per-
formance in the multi-classification task, and recall was significantly improved by 0.27
compared with DeBLS, which is because the improved BLS model is better able to deal
with unbalanced datasets and enhances the ability to recognize minority-class attacks. The
recall of DeBELS improved by 0.144 compared with DBELS, and the overall classification
performance improved significantly. The accuracy of the PBLS model decreased by 0.037
and the recall decreased by 0.176 after PCA dimensionality reduction, since PCA dimen-
sionality reduction leads to more loss of information, which affects the multi-classification
effect. The accuracy of the PBELS model was 0.938 and recall was 0.470; compared with
PBLS, accuracy and recall were improved by 0.001 and 0.173, respectively, indicating that
the introduction of EQL v2 improves the detection rate of minority-class samples. However,
compared with DeBELS, the accuracy and recall of PBELS were reduced by 0.019 and 0.477,
respectively, which indicates that DBN dimensionality reduction is much better than the
PCA dimensionality reduction model in terms of detection performance, and once again
proves the superiority of the proposed model in multi-classification tasks.

4.5.3. Time-Cost Analysis

The comparison of the training times for the different models is shown in Figure 9.
For binary classification and multi-classification, the training time of the traditional BLS
was about 1.8 s, reflecting the advantage of shallow networks with lower time costs in
model classification. The training time of BELS was about 5 s, and the time increase was
because the introduction of EQL v2 requires the additional performance of multiple matrix
operations. The training time of the DBLS model was about 0.5 s, which is a significant
reduction compared with the BLS model, indicating that the high-dimensional data have
a significant negative effect on the model training time, and the reduced dimensionality
of the dataset reduces the training time to 25% of the original one. The training time of
DeBLS was also about 0.5 s, which indicates that the introduction of EQL v2 after the
dimensionality reduction of DBN has almost no effect on the training time. The training
time for DBELS was about 1.5 s, which is greatly reduced compared with BELS, thanks to
the dimensionality reduction of the DBN model for high-dimensional data. However, there
was an increase compared with DBLS due to some additional computations required by
the improved BELS model. The training time of DeBELS was about 1.6 s, which is almost
the same as that of DBELS, indicating that the introduction of the low-dimensional dataset
with EQL v2 does not have a significant impact on the training time, and there is a slight
increase in the cost of time due to a small number of additional computations of the positive
and negative gradient matrices in comparison with DeBLS.
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The results show that the hybrid DBN and BLS-based models DBELS and DeBELS
maintained low time consumption compared with the traditional BLS models, following
the advantages of the shallow BLS networks that are computationally fast and easy to
train. Although the PCA dimensionality reduction model also reduces some of the training
time, its detection performance is greatly degraded, again confirming the advantages
of the DBN-based dimensionality reduction model. The proposed model is comparable
with the traditional deep learning model, which has a significant advantage in time cost
consumption, which is conducive to saving a certain amount of computational resources in
practical applications.

4.5.4. Results Analysis for Recall of Each Sample on Binary Classification

The detection rate of Benign and Attack samples under the binary classification task
is shown in Table 5. The traditional BLS performed poorly in detecting Attack samples
with a recall of only 0.261, which is due to the overlearning of the majority-class samples
when dealing with imbalanced datasets, resulting in a low detection rate for minority-class
samples. With the introduction of the BELS model with EQL v2, the detection rate of Attack
significantly improved to 0.863, which significantly improves the identification of minority-
class samples. The DBLS model with DBN dimensionality reduction improved the detection
rate of Attack by 0.213, which suggests that DBN dimensionality reduction reduces the data
redundancy and has a positive impact on the subsequent model classification. In the DeBLS
model, the detection rate of Attack was as high as 0.996, but the detection rate of Benign
was only 0.165, which shows that DeBN dimensionality reduction focuses excessively on
minority classes of samples, resulting in a decrease in the recognition performance of the
majority of classes of samples.

The DBELS model, after dimensionality reduction by the introduction of EQL v2, had a
detection rate of 0.996 for Benign and 0.976 for Attack, which improved the detection rate of
the two classes of samples by 0.009 and 0.113, respectively, compared with the BELS model.
Because DBN dimensionality reduction reduces the redundant features and improves
the classification performance of the model, compared with DBLS, DBELS significantly
improved the detection rate of Attack from 0.474 to 0.955, which is attributed to the fact
that EQL v2 balances the sample weights so that the model focuses on each class of samples
in a more balanced way. The detection rates of Benign and Attack for the DeBELS model
were 0.995 and 0.955, respectively, and compared with DeBLS, the Benign detection rate
was substantially higher and the Attack detection rate was slightly lower, but EQL v2
improved the detection performance by making the model more balanced in focusing on
each class of samples. Compared with DBELS, the detection rate of Benign for DeBELS was
almost unchanged, and the detection rate of Attack slightly decreased, which is attributed
to the overlearning of minority-class samples brought by DeBN, but the classification still
performed well through the adjustment of positive and negative gradient factors.
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The detection rate of Attack for the PBLS model was only 0.182 after the PCA di-
mensionality reduction, which is a decrease from that of the BLS model of 0.080. PCA
dimensionality reduction leads to information loss, which negatively affects the classifi-
cation detection effect of minority-class samples. The Attack detection rate of the PBELS
model was 0.749, which improved by 0.567 compared with the PBLS. The introduction of
EQL v2 makes the model focus on each class of sample in a more balanced way, which
improves the detection performance of the minority-class samples. Despite the improve-
ment of the PBELS model, its Attack detection rate was still 0.227 lower than that of
DBELS, which further proves the superiority of the DBN dimensionality reduction model
in detection performance.

4.5.5. Result Analysis for Recall of Each Sample on Multi-Classification

The detection rates of different methods for each type of sample under the multi-
classification task are shown in Table 6. The traditional BLS did not work well when
dealing with the unbalanced CICIDS2017 dataset, and although it had better detection
performance for a larger number of samples (e.g., Benign, DoS/DDoS, Port Scan), it was
poor in detecting samples of a few classes (e.g., Botnet ARES, Brute Force, Web Attack). This
is because the BLS model is unable to balance the contributions of various classes of samples
when dealing with unbalanced datasets, resulting in a very low detection rate for minority-
class samples. The introduction of the BELS model with EQL v2 significantly improved
the detection rate of Brute Force attacks, which in turn improved Attack identification.
However, Botnet ARES and Web Attack were still undetectable because the features of
these minority-class samples are highly similar to other samples, which the model is
unable to differentiate, leading to false positives. The DBLS model eliminates certain
data redundancies after dimensionality reduction by DBN, which enhances the detection
performance. The detection rate of Brute Force was improved to 0.985, but Botnet ARES
and Web Attack were still not detected. This indicates that dimensionality reduction alone
cannot solve the problem of unbalanced datasets, especially for classes with a very small
number of samples.

The DeBLS model further improved the detection performance, and most of the
attack types were detected, including Botnet ARES. This is because DeBN dimensionality
reduction learns more about the minority-class samples and preserves their key features,
but Web Attack was still undetectable, which requires further focus on the minority-class
samples. The DBELS model showed a significant improvement in the detection rate of
most attack types compared with BELS and DBLS, especially Web Attack, from 0 to 0.856.
This is because DBN dimensionality reduction reduces the data redundancy, while EQL
v2 makes the model focus better on the minority-class samples. However, Botnet ARES
was still not detected, which suggests that DBN dimensionality reduction is not enough
to solve the problem. The DeBELS model maintained a high detection rate on all attack
types. Compared with DeBELS, the detection rate of Botnet ARES improved from 0.137 to
0.948, and Web Attack improved from 0 to 0.856. This is because the introduction of EQL
v2 improves the ability to better recognize and learn the minority-class samples, which
significantly improves the detection rate. DeBELS further improved the detection rate of
Botnet ARES compared with DBELS because DeBN dimensionality reduction preserves
the key features of the minority-class samples at a finer granularity and mitigates the data
imbalance problem.

The PBLS model using PCA dimensionality reduction only detected the highest
number of DoS/DDoS attacks, while Port Scan, Botnet ARES, Brute Force, Web Attack,
and other attacks were not detected. Compared with the BLS model, Port Scan could
not be detected due to the loss of information caused by PCA dimensionality reduction,
which affects the multi-classification effect. After the introduction of EQL v2 to the PBELS
model, the detection rate of Port Scan improved to 0.978, but the other few classes of attacks
(e.g., Botnet ARES, Brute Force, and Web Attack) still went undetected. This suggests
that PCA dimensionality reduction leads to the loss of key features. Compared with
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DeBELS, the detection performance of PBELS was worse, which indicates that DBN-based
dimensionality reduction outperforms traditional PCA dimensionality reduction in terms
of detection performance.

4.6. Analysis of ROC-AUC

Figure 10 shows the receiver operating characteristic (ROC) curves for the DBELS
binary classification. The overall average ROC curve has an area under the curve (AUC)
of 0.9949, indicating that the DBELS classifier performed excellently on the entire dataset
and is close to being a perfect classifier. Secondly, the ROC curves for the two categories
(Attack and Benign) can be observed, each of them with an AUC of 0.9916, which indicates
that the classifier also had high performance when considering each category individually,
especially when dealing with a minority number of samples. The AUC close to 1 implies
that the classifier has a very high true positive rate (TPR) in its predictions for the category
while maintaining a relatively low FPR. This means identifying as many true positive
samples as possible while keeping the misdiagnosis rate as low as possible. Taken together,
the DBELS classifier had excellent performance on the entire imbalance dataset for both
minority-class samples and majority-class samples.

The DeBELS multi-classification ROC curve is shown in Figure 11. The overall average
ROC curve has an AUC of 0.9760, which indicates that the classifier performed well on the
whole dataset. The Benign, Botnet ARES, Brute Force, DoS/DDoS, and Port Scan detections
performed well; their AUC areas were all more than 0.9700, although Web Attack had the
lowest AUC area of 0.9100, but it is already better than other models at the same level.
Overall, after the introduction of the EQL v2 positive and negative gradient factors, by
adjusting the parameter weights, the model can pay more attention to minority classes of
samples in the face of imbalanced datasets, thus improving detection performance.
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4.7. Comparison with State-of-the-Art Methods
4.7.1. Binary Classification

The false alarm rate and time cost of all the algorithms were compared on the binary
classification task, as shown in Figure 12. For FPR, the proposed model had a lower
false alarm rate of 0.014, which was better than the other models. This indicates that the
proposed model incorrectly labels normal situations as abnormal less often and correctly
identifies and classifies normal situations more often, as compared with other methods. For
the model training time, the proposed model required less training time and detection time
in the binary classification task, with a time consumption of around 1 s. The time cost of
the model is much lower than the deep learning model and has an advantage over other
machine learning algorithms, which can significantly reduce the time cost and ensure faster
training of the model for large-scale datasets.
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The binary classification detection performance of the different models of recent years
is given in Table 7. The proposed model had higher accuracy, recall, and lower FPR in binary
classification, which indicates that the proposed model can detect normal and abnormal
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behaviors well. Compared with traditional machine learning models, the proposed model
outperforms the logistic regression (LR) and naive bayes (NB) in accuracy, recall, and
FPR. Compared with other BLS-based models, accuracy and recall are better than TBLS.
Compared with deep learning models, the proposed model outperforms most of the models,
and the performances of the fusion of statistical deep neural network (FS-DNNs) and multi-
objective evolutionary convolutional neural network (MECNN) are slightly higher than
the proposed model; however, since both models are based on deep learning models, their
model size and training time cost are much higher than the BLS-based model. Considering
the bagging ensemble learning deep neural network (Bagging-DNN) model, its accuracy is
lower than the proposed model, and its recall is slightly higher than the proposed model,
but in addition to the higher space and time complexity brought by its deep learning model,
the false alarm rate is also higher than the proposed model. In summary, the proposed
model has better detection performance and a lower false alarm rate in binary classification
and has obvious advantages over the other models.

Table 7. The comparison with state-of-the-art methods of binary classification.

Method Accuracy Recall FPR

Our study 0.992 0.986 0.014
LR 0.934 0.827 0.173
NB 0.307 0.580 0.420

DCAE 0.925 0.925 -
TBLS(W) [18] 0.982 0.975 -

DNN [18] 0.868 - -
CNN [18] 0.844 - -
LSTM [18] 0.365 - -

2D-CNN [26] 0.980 - -
CNN-LSTM [27] 0.930 0.768 -

FS-DNN [28] 0.998 0.999 0.012
MECNN [29] 0.998 0.998 -

Bagging-DNN [30] 0.987 0.999 0.021
FL-NIDS [31] 0.943 0.947 0.061

FedProx-AE [32] 0.935 - 0.017

4.7.2. Multi-Classification

The false positive rate and time cost of all the other algorithms on the multi-classification
task are shown in Figure 13. The FPR graphs show that the proposed model had only a
0.012 false positive rate, which is lower than the other models. This means that the model
can recognize different categories of attacks better and misclassify less often during the
multi-classification task and perform the task of detecting and identifying attack samples
better. The model required less training time and detection time compared with other
models, offering advantages in handling large-scale data and enhancing its suitability for
real-world dataset environments.

The multi-classification detection performance of different models in recent years is
given in Table 8. The proposed model has higher accuracy and recall and lower FPR under
multi-classification task, which indicates that the proposed model can detect both normal
and abnormal behaviors well and detect each specific class of attacks better. Comparing
the traditional machine learning algorithms, we see that the proposed model outperforms
LR and NB in terms of accuracy, recall, and FPR. Compared with other BLS models, the
TBLS(W) model has a slightly higher accuracy and recall than the proposed model, since,
for the TBLS, the authors only selected the dataset of a single day, Wednesday, for model
training and testing. It only accounts for 30% of the total dataset, and the attack types are
all DoS/DDoS type attacks, which are better balanced compared with the total dataset, and
the detection performance of the model will be affected to some extent.
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Table 8. The comparison with state-of-the-art methods on multi-classification.

Method Accuracy Recall FPR

Our study 0.958 0.947 0.012
LR 0.934 0.301 0.057
NB 0.286 0.746 0.126

GA-ANN 0.815 - -
GSPSO-ANN 0.840 - -
TBLS(W) [18] 0.978 0.977 -
BiGAN [33] 0.823 0.763 0.142

MFFSEM(W) [2] 0.999 0.999 0.013
DNN [34] 0.946 0.846 -

MECNN [29] 0.997 0.791 -
AdaBoost [35] 0.889 0.234 -

SDAE-SVM [36] 0.954 0.444 -
GRU [37] 0.985 0.742 -
LSTM [38] 0.989 0.748 -

CFS-BA(W) [39] 0.999 0.999 0.120

Compared with the other machine learning algorithms, for the multi-dimensional
feature fusion and stacking ensemble mechanism (MFFSEM) and correlation-based feature
selection bat algorithm (CFS-BA) models, the detection performances are better than that
of the proposed model, but their FPRs are higher than the proposed model, which will lead
to them overly misjudging normal behavior as an attack. The two models are also trained
with the same dataset of only one day, Wednesday. Compared with the long short-term
memory (LSTM) model, its accuracy is slightly higher than the proposed model, but its
recall is much lower than the proposed model, which means that the LSTM model fails to
recognize the attacks well. In summary, compared with other models, the proposed model
has advantages such as better detection performance and a lower false alarm rate when
performing the multi-classification task.

5. Model Validation

Network traffic in real environments is large and complex; to evaluate the DBELS
model better and simulate the effect of real environments, we selected the CICIDS2018
dataset to test and validate the model’s performance in different data environments. The
CICIDS2018 dataset is a widely used dataset in cybersecurity research and was created
by the Canadian institute for cybersecurity research, which simulates real-world network
traffic, including normal traffic and many types of attacks. Compared to the CICIDS2017
dataset, its size has increased by about four times and contains more than eight million
traffic records; however, it also has a serious data imbalance. The dataset contains over
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eight million traffic records with up to 80 features per sample. These data cover both
normal traffic and a wide range of attack traffic, with sample types mainly including
Benign, DoS/DDoS, Brute Force, Botnet and Infiltration. The diversity and complexity of
the sample types in the CICIDS 2018 dataset make the dataset a better reflection of real-
world cyber threats, which makes it possible to comprehensively evaluate the performance
and generalization capabilities of intrusion detection systems.

The model validation experiments using the CICIDS2018 dataset included data pre-
processing and data dimensionality reduction, and the form of the operations remained
consistent with CICIDS2017. The models for their comparison experiments include BLS,
DT, NB, MLP, and CNN. To ensure the validity of the experiments, the data preprocessing is
the same, and all the experiments are conducted in a consent environment. The evaluation
metrics for the comparison experiment included accuracy, recall, false positive rate, and
training time. The performance of different models under the binary classification task
is shown in Table 9, and the performance under the multiple classification task is shown
in Table 10.

Table 9. The performance of different methods on binary classification for the CICIDS2018 dataset.

Method
Evaluation Metric

Accuracy Recall FPR Time(s)

Our study 0.981 0.956 0.044 5.295

BLS 0.958 0.931 0.069 18.826

DT 0.917 0.862 0.138 16.770

NB 0.791 0.742 0.258 2.556

MLP 0.963 0.933 0.067 861.788

CNN 0.957 0.926 0.074 949.476

Table 10. The performance of different methods on multi-classification for the CICIDS2018 dataset.

Method
Evaluation Metric

Accuracy Recall FPR Time(s)

Our study 0.946 0.923 0.016 4.731

BLS 0.953 0.702 0.031 12.729

DT 0.891 0.499 0.060 17.266

NB 0.828 0.860 0.047 2.694

MLP 0.934 0.485 0.046 1025.025

CNN 0.966 0.785 0.026 916.550

The results show that our proposed model outperforms most other models in accuracy,
recall, FPR and time cost under different classification tasks. For the binary classification
task, compared to the traditional BLS structure, accuracy and recall are improved by 0.023
and 0.025, respectively, and the false alarm rate is decreased by 0.025. Compared to the
traditional machine learning algorithms DT and NB, both of them have a significant im-
provement in the detection performance, while the false alarm rate is decreased significantly.
For the deep learning algorithms MLP and CNN, the detection performance is improved
and the model training time is reduced significantly. For the multi-classification task, the
proposed model also maintains high detection performance and low model training time,
and compared to the NB model, it has a significant advantage in detection performance,
although the model training time is slightly improved. Compared with the CNN model,
although the accuracy slightly decreases by 0.02, it is better than the CNN model in terms
of recall, FPR, and model training time.
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From the above experimental results, it can be concluded that the proposed model can
still show better detection performance when facing the CICIDS2018 dataset with a larger
and more complex scale, which further indicates that the model has a certain degree of
scalability and adaptability. The scale of this dataset is greatly increased compared to the
CICIDS2017 dataset; however, the proposed model can still maintain low time consump-
tion, which further verifies that the model has a certain degree of adaptability and lightness
for real complex environments. Our proposed model consistently demonstrates strong de-
tection performance and low time consumption across various datasets, whether for binary
or multi-class classification. This efficiency is crucial for real-world applications, where
maintaining high accuracy and speed is essential. Additionally, the model’s adaptability to
different data environments and robustness against diverse threats enhances its practical
value. Its scalability ensures it can handle increasing data volumes, making it a versatile
solution in dynamic cybersecurity landscapes.

6. Conclusions

In this paper, based on the BLS model and introducing the EQL v2 reweighting idea,
we propose a DBELS model, which aims to solve the problem of the traditional BLS facing
low detection rates for high-dimensional and imbalanced datasets in the field of NIDSs,
as well as the low recognition of minority-class attacks. First, the model fully learns
the large-scale high-dimensional dataset through DBN, fully trains each RBM structure,
captures the optimal structure and key information of the high-dimensional dataset, and
represents it as an optimal low-dimensional dataset. Subsequently, the BELS model is
applied to learn the classification of the low-dimensional dataset, and the learning degree
of the model on the minority-class samples is improved by adjusting the positive and
negative gradient factors to increase the classification weight of the model and enhance
the recognition of the minority-class attacks. The DBELS is fully tested experimentally
using the CICIDS2017 dataset and our proposed model outperforms other algorithms
in accuracy, recall, FPR, and time. Finally, the utility of the proposed model is further
tested and validated with the CICIDS2018 dataset. The results show that our proposed
DBELS model has significant advantages for solving the problem of high-dimensional
and imbalanced network intrusion detection data and alleviates the problems of long
training time of intrusion detection systems and low recognition of minority-class attacks,
which makes it a practical intrusion detection method. We plan to introduce initialization
strategies and flow-learning techniques in the future to improve the stability and detection
performance of the BLS. Furthermore, we plan to use advanced algorithms to enhance the
robustness of the model and improve its adaptability and anti-interference capabilities.
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