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Abstract: In this study, a new data-sharing method is proposed that uses a private InterPlanetary
File System—a decentralized storage system operated within a closed network—to distribute data to
external entities while making its authenticity verifiable. Among the two operational modes of IPFS,
public and private, this study focuses on the method for using private IPFS. Private IPFS is not open
to the general public; although it poses a risk of data tampering when distributing data to external
parties, the proposed method ensures the authenticity of the received data. In particular, this method
applies a type of zero-knowledge proof, namely, the Groth16 protocol of zk-SNARKs, to ensure that
the data corresponds to the content identifier in a private IPFS. Moreover, the recipient’s name is
embedded into the distributed data to prevent unauthorized secondary distribution. Experiments
confirmed the effectiveness of the proposed method for an image data size of up to 120 × 120 pixels.
In future studies, the proposed method will be applied to larger and more diverse data types.

Keywords: IPFS; zero-knowledge proof; circom; zk-SNARKs; private IPFS; data distribution; data
processing; data security

1. Introduction

Decentralized systems are robust because they lack a single point of failure; therefore,
they are widely applied across enterprise sectors including cryptocurrency, supply chain
management, financial services, and digital identity. To store large-sized data such as im-
ages, these systems require storage functions that are inherently decentralized. Blockchain,
commonly used in conjunction, typically handles smaller data sizes such as transaction
histories and operates as a ledger database. The InterPlanetary File System (IPFS) is a
prominent decentralized storage system that stores data across multiple nodes to enhance
data availability. The IPFS has two variants: public IPFS, wherein the data can be stored by
any user with unrestricted access, and private IPFS, wherein a closed network accessible
only within specific organizations or groups is established, offering enhanced privacy
and security.

When storing data in IPFS, understanding the differences between public IPFS and
private IPFS is crucial. Public IPFS allows anyone to access data, while private IPFS is
accessible only within specific organizations or groups, enhancing privacy and security.
When storing sensitive information, such as confidential data, in public IPFS, applying
an appropriate encryption scheme is vital to ensure data protection. By contrast, private
IPFS provides higher security for data storage, because it is accessible only within a
closed network.

Particularly for organizations such as corporations or healthcare institutions, storing
data in public IPFS, despite using strong encryption technologies, carries inherent risks.
Moreover, the potential for data leaks due to operational errors exists persistently in such
cases; although data is encrypted, it is exposed to the world, rendering it vulnerable to
brute force attacks and other security threats.
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Regarding accessibility, public IPFS allows general users to directly access and retrieve
data. However, in private IPFS, data must be received from members of the organization or
group constituting the network. During this process, if data is tampered, then users may
unable to detect it. Therefore, trusting the intermediaries responsible for handling data
transfer in such cases becomes mandatory. To address the aforementioned trust issue, a new
method is proposed herein for distributing data stored in a private IPFS to external entities
while making its authenticity verifiable. The Groth16 [1] protocol of zk-SNARKs, a type
of ZKP, is applied to data stored in a private IPFS to ensure the authenticity of the data.
Moreover, the recipient’s information is embedded into the distributed data to prevent
unauthorized secondary distribution. The proposed method of data sharing is important
because it is tailored to the private IPFS case.

The differences in several aspects, including security and accessibility, when storing
data in public IPFS and private IPFS within the enterprise domain are summarized in
Table 1. This study proposes solutions to the threats associated with private IPFS.

Table 1. Comparison between public and private IPFS in the enterprise domain.

Public IPFS Private IPFS

Trust Model Trustless Requires trust in the operating group

Access Restrictions Accessible by anyone Accessible only within the operating group

Data Leakage Risk Constant risk of leakage due to user error Low risk of leakage within a closed network

Handling of Confidential
Information Requires proper encryption

Data stored in IPFS does not require high-
level encryption itself; there is a trust point
when passing data to users

Brute Force Attack Risk Always present Low

Data Retrieval Method Direct access by users Data received from members of the organi-
zation or group

Threats Requires encryption that prevents decryp-
tion by unauthorized users

There is a risk of tampering when transfer-
ring data to users

The remainder of this paper is organized as follows. Section 2 presents related prior
research. Section 3 outlines the fundamental technologies, i.e., ZKP and zk-SNARKs.
Section 4 describes the structure of the proposed method, while Section 5 outlines the
potential applications of this method. Section 6 presents the implementation of this method,
while Section 7 discusses the experiments performed to verify the effectiveness of the
implementation. Section 8 presents a discussion of the experimental results, while Section 9
presents the conclusions of the paper and an outline of future challenges.

2. Related Studies

Existing decentralized systems use IPFS, particularly in combination with blockchain
technology. Kumar et al. [2] proposed a method for securely managing medical data by
integrating IPFS with a blockchain. Azbeg et al. [3] specifically suggested a system that
managed and stored medical data using private IPFS and a permissioned blockchain by
employing proxy re-encryption to ensure secure decryption by designated doctors. When a
physician receives some patient’s data, he/she obtains the re-encrypted data via a hospital.
Hossan et al. [4] also proposed a system to securely record information for ride-sharing
services using IPFS and a private blockchain.

Focusing on controlling the distribution of data managed by IPFS, Lin et al. [5]
proposed a system for protecting private data using improved IPFS combined with a
blockchain. This system recorded file metadata and accessed permissions on the blockchain,
enabling users to control file sharing. Moreover, the system implemented efficient man-
agement features using smart contracts, thereby enhancing data security and management
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flexibility. Battah et al. [6] developed a system that used multiparty authentication (MPA),
proxy re-encryption, and smart contracts on a blockchain for decentralized access control
of encrypted data stored in IPFS. Huang et al. [7] introduced a trusted IPFS proxy to realize
access control and group key management for encrypted data stored in IPFS. Sun et al. [8]
proposed a system that allowed only individuals with appropriate attributes to decrypt
encrypted data stored in IPFS using a ciphertext policy attribute–based encryption system,
facilitating efficient medical information management. Kang et al. [9] enabled the distribu-
tion of data managed using private IPFS and a private blockchain to external users using
named data network (NDN). Furthermore, Uddin et al. [10] proposed a file-sharing system
that used IPFS and public key infrastructure (PKI) technology without requiring a trusted
third party.

Several studies have used ZKP for data distribution. For instance, Li et al. [11]
proposed a privacy-preserving traffic management system that combined noninteractive
zero-knowledge range proofs with a blockchain. A prototype using Hyperledger Fabric
and Hyperledger Ursa met the data privacy requirements for real-time traffic management.

This study proposes a method for appropriately processing and distributing data
managed within private IPFS to users outside the network, thereby offering a different
approach than those proposed in previous studies. Some studies have adopted proxy re-
encryption as an appropriate method for data storage and distribution in IPFS [3,6]. Using
this method, distributed data can be re-encrypted to be decrypted with the recipient’s
private key. Moreover, when storing data in IPFS, recording the hash value of the pre-
encrypted data on the blockchain allows recipients to verify the correctness of their received
data after decryption. However, this method cannot handle cases where data is processed,
such as embedding the recipient’s name into the decrypted data, as in this study.

3. Zero-Knowledge Proof

ZKP is a cryptographic protocol that allows a prover to prove the validity of a propo-
sition to a verifier without disclosing any additional information other than the validity
of the proposition. The proposition of this study is that the data provided to an external
entity is generated based on a given CID. Our goal is to allow a member of private IPFS
(prover) to prove this proposition to an external entity (verifier as the recipient of the
data) without disclosing any other important information (such as IPFS access rights and
encryption keys).

ZKP, specifically the Groth16 protocol of zk-SNARKs used in this study, begins with a
trusted setup where both parties establish public parameters that are crucial for the secure
generation and verification of proofs. In the ZKP scheme, we first generate a circuit that
describes the process for which a proof is intended. The circuit includes the conditions
to be verified such as the existence of a CID. Through the ZKP scheme, cryptographic
keys—specifically a proving key and a verification key—are created. These keys are crucial
for creating a proof for the circuit and its verification. Using the proving key and input
data, the prover generates a proof that reveals the validity of the output data against the
conditions specified in the circuit. The verifier then uses the verification key to check the
proof and the output data. If the proof is valid, this confirms the integrity of data without
exposing any underlying information.

In this study, Groth16 processing is performed using circom [12,13] and snarkjs [14].
The process flow is summarized in Figure 1.

zk-SNARKs is employed owing to its noninteractive nature and efficiency, which
are particularly advantageous for systems employing smart contracts owing to low com-
putational costs for verifying the proof. Furthermore, zk-SNARKs is known for its high
computational requirements and the need for advanced PC specifications. For instance,
in one of the representative applications of zk-SNARKs, Zcash [15], proof generation
process takes over half a minute for a single anonymous transaction [16].



Electronics 2024, 13, 3025 4 of 11

Figure 1. Zero-knowledge proof using circom.

4. Proposed System

Figure 2 presents an overview of the proposed system.

Figure 2. Process flow of ZKP: an example of image data processing.

Herein, we make the following assumptions:

• Private IPFS is operated by a limited number of members.
• Data are stored in IPFS in an encrypted format using symmetric-key cryptography.
• The encryption key is exclusively held by an individual among the members, i.e., an

administrator.

The proposed system facilitates the creation of a ZKP proof through the circuit by the
encryption key-holding member (equivalent to an administrator). The inputs and outputs
(other than proofs) of this process are as follows:

• Public Input:

– CID of the original encrypted data;
– A filter for embedding the recipient’s name in the data;

• Private Input:

– Encrypted original data;
– Encryption key;

• Output:

– Decrypted data with the recipient’s name embedded.

Note that the ZK-optimized implementation (Section 6.1) adds more information to the
public input. In particular, the internal process of ZKP involves the following steps:

1. Calculating the CID of the original encrypted data to verify a match with the en-
tered CID.
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2. Decrypting the original data using a symmetric-key cryptography.
3. Embedding the recipient’s name into the decrypted image raw data based on the filter

provided in the public input.

In the proposed system, we do not solely focus on image data but use them as example data
to verify the applicability of the proposed scheme. Filters are used to improve the efficiency
of processing inside the circuit. As embedding name data inside the circuit is computa-
tionally intensive, a considerable portion of the image processing is performed outside
the circuit in advance and a filter is created. Using public input and proof, the recipient
can verify that the decrypted data (i.e., output) with their name embedded are generated
from the original data (contained in the private input) managed with the CID. The recipient
can check with at least one member of the network to confirm the existence of the CID in
private IPFS.

In summary, the aforementioned process enables the recipient to verify the received
data by performing the following tasks:

• verify that the received data were generated from the data managed with the CID of
private IPFS,

• confirm using the proof that the entire process was correctly conducted without
directly knowing the encrypted data or the encryption key, and

• verify that the CID exists specifically within the private IPFS by asking at least one
network member.

The novelty of the proposed system is that it allows data authenticity verification by trusting
at least one member of the network even if the recipient do not control the encryption key.
(It is natural for the recipient to trust at least one member of a particular multimember
system. If none of the members can be trusted, then there will be a marginal incentive to
receive data managed by that network).

5. Potential Applications

In the medical industry, patient diagnosis data are managed across multiple med-
ical institutions. Using the proposed system, patients can verify whether the data they
receive are indeed managed in private IPFS to ensure the authenticity. An all-in-one
platform is also proposed herein for the research and development of machine learning
with medical images [17]. On this platform, anonymized medical images are managed
in private IPFS operated by a group of medical institutions. The system allows machine
learning researchers, who are external to the network, to verify whether the image data
are indeed managed in the private IPFS. Moreover, by embedding the information about
machine learning researchers in the image data, medical institutions can mitigate the risk
of secondary distribution.

If the application is not limited to the embedding of recipient’s name, the potential
applications of the proposed system can be further expanded. For instance, consider
a scenario where a specific company establishes private IPFS for sharing confidential
documents among its group companies. If employee data are included, then concealing
private data and distributing them to external entities allows these entities to confirm the
association of employees with the company while ensuring that their privacy is protected.
Furthermore, suppose a university has set up private IPFS to allow only academic staff
access to student performance data. In this case, students can verify that their performance
data received are genuinely managed in the private IPFS.

Thus, the proposed system supports a hybrid case—distributing internal data to
specific external entities as necessary—prevalent in real-world settings.

6. Implementation

The proposed system was implemented to process image data using circom, a
renowned tool specialized for constructing zk-SNARKs circuits. Circom enables the de-
scription of computational processes within a circuit using its unique language, and the
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executable file generated after compilation can be invoked via the JavaScript library, snarkjs.
This arrangement allows describing circuit processes in circom, and external process-
ing and circuit correctness testing are performed using JavaScript. For the zk-SNARKs
scheme, Groth16 was used; it is known for its relatively faster execution speed than other
zk-SNARKs scheme.

In particular, we worked on two types of implementations for image data: a standard
implementation using general cryptographic techniques and a ZK-optimized implemen-
tation using ZK-friendly cryptographic techniques to reduce the computation time of the
circuit. These implementations were used for comparing the required computation times.
ZKP circuits require considerably large computation time, even for calculations that can
be easily handled by computer software (this is particularly noticeable when dealing with
image data). Therefore, computational efficiency is crucial for practical use.

6.1. Standard Implementation

Section 4 describes the data input into the circuit. For simplifying the in-circuit
processing, the original encrypted data were formatted as bitmap image data compliant
with OS/2 standards. The first 54 bytes of the image data store information such as the
width, height, and color depth of images [18]. The color depth is 8 bits and each color
component in RGB is allocated one byte, resulting in a representation of 3 bytes per pixel.

Initially, the system checks whether the encrypted data, entered as a private input,
matches the CID provided as a public input. If they do not match, the system signifies
an error and the image data outputted as the output is a byte sequence where all values
are 0x00. CID serves as crucial mechanism for uniquely identifying files and efficiently
retrieving data from IPFS. CID has two versions: V0 and V1 [19]. Herein, the more flexible
version CID V1 was used. CID includes a hash of the respective data, ensuring different
data will have different CIDs. Typically, CID V1 is calculated using the SHA256 hash
function, and the standard implementation uses SHA256 to compute CID.

The data structure of CID V1 is as shown in Table 2.

Table 2. CID V1 data structure.

Byte Position Description Value in Implementation

First byte CID version 0x01
Second byte multibase prefix 0x55: raw data
Third byte Hash function identifier 0x12: SHA-256
Fourth byte Hash length 0x20: 32 bytes
From fifth byte Hash value SHA-256 hash value (32 bytes)

The encoding for CID is conducted using Base32. Base32 encodes a sequence of bytes
constructed based on this structure to generate CID.

Inside the circuit, the entered CID value is decoded from Base32 and the system
checks whether the extracted hash value matches the SHA256 hash computed from the
encrypted data.

Subsequently, the encrypted data are decrypted. AES-CTR is used as the encryption
algorithm, which is a type of symmetric-key cryptography. The AES-CTR encryption
and decryption in circom-chacha20 [20] was used. For decrypting AES-CTR encryption,
the encryption key and nonce used during encryption are required. They are input into
the circuit as a 256-bit key and a 128-bit nonce, respectively, as private inputs. Moreover,
AES-CTR handles data volumes in multiples of 16. Therefore, if the length of the image
data before encryption is not a multiple of 16, zeros (0x00) are added to the end of the data
to align it with this requirement.

Finally, a filter is applied to the decrypted data to embed the recipient’s name. Im-
plementing text embedding directly within the circuit can substantially increase the com-
putation load; therefore, a filter is created outside the circuit that performs a considerable
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portion of the image processing in advance. The font used for the text representing the
recipient’s name is the Misaki font [21]. The filter is then used to streamline processing
inside the circuit. The filter is a list of numbers where values from 0 to 255 are used to
change the color of each pixel in case it differs from that of the pixels in the original image;
moreover, a value of 300 indicates the color should remain as in the original image. This
filter represents the position on the image where the recipient’s name should be inserted.
Inside the circuit, the specified pixel colors in the decrypted BMP data are changed based
on this filter.

6.2. ZK-Optimized Implementation

ZK-optimized implementation changes the hash function, encryption technology,
and in-circuit processing to the standard ZK-friendly encryption implementation. This
implementation enhances the computational efficiency and does not evaluate the difference
in computation speeds between ZK-friendly encryption and general encryption. Therefore,
in-circuit processing was also modified.

Poseidon hash [22] was used as the hash function for computing CID. Notably, us-
ing the Poseidon hash for CIDs is not officially supported; therefore, it was developed
specifically for this study. Although SHA256 is commonly used in general computations,
it demands considerable computation time within ZKP circuits. The Poseidon hash is
implemented in circom and JavaScript (circomlib [23] and circomlibjs [24], respectively). It
is computed over a finite field with a prime order and can accept up to 16 input variables.
The used order is less than the maximum of 32 bytes but greater than the maximum of
31 bytes. This indicates that each of the 16 inputs must contain data not exceeding this
order. In this implementation, the data targeted for hash computation are divided into
31-byte segments as input values. If the division exceeds 16 segments, the Poseidon hash is
calculated for the first 16 segments. This result is added to the next 15 segments of data for
a subsequent Poseidon hash input. The process is repeated until all the input data are used
for hash computation. Computationally, if the final input does not complete 16 segments,
the missing inputs are set to zero to ensure that the computation always involves 16 inputs.

When generating CID from the Poseidon hash value, the byte sequence should follow
the CID V1 data structure and be Base32-encoded. However, to further reduce computation
time, this implementation omits the Base32 encoding and directly uses the Poseidon hash
value as a substitute for CID. Dividing the input data into 16 segments within the circuit
is computationally intensive; therefore, this division is performed outside the circuit and
given as an input. In this case, the encrypted data byte sequence and the list of values for
calculating the Poseidon hash are provided as public inputs, allowing the verification that
both datasets represent the same information. Recipients can confirm that the data being
computed for the Poseidon hash and the data being decrypted in the circuit are identical
by mutually converting and checking these two values. In this case, as users can obtain the
decrypted data, a concern exists regarding password leakage through brute force attacks or
other means.

For encryption technology, we adopted Poseidon encryption [25] instead of AES-
CTR encryption. Poseidon encryption, implemented in circom and TypeScript (poseidon-
encryption-circom2 [26]), involves receiving the public key of the recipient, generating a
common key, and ensuring secure encryption and decryption by both parties. In this case,
however, a common key is directly generated and used for encryption and decryption. The
circuit is provided with two values representing the coordinates of an elliptical curve and a
nonce value as private inputs for encryption. Moreover, the filter is implemented in the
same manner as in the standard implementation.

7. Evaluation

We created a sample program based on the aforementioned implementations that
uses circom to describe the circuit and uses snarkjs for executing the circuit and verifying
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proofs. As cryptographic libraries, circom-chacha20 [20], circomlib [23], circomlibjs [24],
and poseidon-encryption-circom2 [26] were used.

The standard and ZK-optimized implementations were implemented for each circuit,
and their computation times were compared during execution. White bitmap images
were the target images, and the experiments were conducted using the letter “A” as the
embedded character. As embedding any number of characters does not alter the processing
by the filter, embedding a single character allowed for comparing the computation times.
Furthermore, we varied the image sizes to measure the execution times for each circuit.
The sizes used were 10 × 10, 15 × 15, 30 × 15, 30 × 30, 60 × 30, 60 × 60, 120 × 60, 120 × 120,
and 180 × 120 pixels. The execution environment was Windows 11 with a Ryzen 9 3950X
CPU and 128 GB RAM operating under Ubuntu 22.04 in a WSL2 environment.

Figure 3 shows an example image generated by the circuit, specifically for the 60 × 30 pixel
size using the ZK-optimized implementation. The results for each image size are presented
in Table 3, where nonlinear constraints indicate the number of nonlinear constraints in the
circuit, build time is the time required to compile circom and output the circuit, and proof
gen time is the time required to generate proofs using the circuit. As standard implementa-
tion uses AES-CTR encryption, data with 0x00 are appended at the end to ensure that the
input size is a multiple of 16.

Figure 3. An image generated by the circuit for a 60 × 30 image size by ZK-optimized implementation.

Table 3. Comparison of the execution time of the circuit.

Pixel Image Size
[Byte]

Nonlinear
Constraints

Build Time
[ms]

Proof Gen
Time [ms]

Standard
10 × 10 384 558,341 668,220 14,377
15 × 15 784 1,095,292 1,316,666 25,545
30 × 15 1440 1,980,688 1,696,370 35,161
30 × 30 2816 3,867,989 3,657,578 65,785
60 × 30 5456 7,453,300 7,864,583 126,262

ZK-optimized
10 × 10 376 35,407 128,979 3076
15 × 15 775 72,725 173,210 4032
30 × 15 1435 134,663 275,630 5900
30 × 30 2815 263,450 470,872 9733
60 × 30 5455 509,375 850,612 17,571
60 × 60 10,855 1,013,483 1,257,418 29,044

120 × 120 43,255 4,036,913 6,754,928 96,580

In standard and ZK-optimized implementations for 60 × 60 pixel and 180 × 120 pixel
image sizes, the system ran out of memory and the computation could not be completed.
In ZK-optimized implementation, the number of nonlinear constraints was reduced to
approximately one-tenth that of the standard implementation for the same image size.
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This reduced the build and proof generation times. However, the maximum manage-
able image size was still only up to 120 × 120 pixels, which is considerably small for
practical applications.

8. Discussion

Although ZK-friendly cryptographic technologies were used and in-circuit processes
were optimized during ZK-optimized implementation, the maximum manageable image
size was approximately 120 × 120 pixels. This limits the practical utility to considerably
small image sizes. However, research aimed at enhancing the performance of ZKPs is
ongoing, and future technological advancements may enable handling larger image sizes.
For instance, Zhang et al. [27] achieved a tenfold acceleration of zk-SNARKs using ASICs.
Ma et al. [16] similarly used a graphics processing units to accelerate the proof generation
time, achieving up to 48.1 times faster performance compared with traditional methods.
Moreover, methods to simplify computational processes have been proposed, such as the
“folding” method. This method compresses the propositions being proved [28]. As speed
enhancements are being progressively studied, memory consumption will also likely be
optimized. This will potentially allow handling of larger image sizes in the future.

Furthermore, we found that our proposal method can handle data sizes approximately
10 KB. Although directly applying our proposal to realistic image data (ranging from
several MBs to dozens of MBs) is challenging, splitting data into chunks by modifying the
encryption and embedded strings might make the application feasible.

Moreover, our implementations requires a value based on the size of the original
data to be processed (encrypted) as an argument during circuit generation. Therefore,
a circuit must be generated for each data. The circuit generation time (build time) increases
considerably with image data size; for instance, even in ZK-optimized implementation,
generating a circuit for a 120 × 120 image size requires more than 112 min (6,754,928 ms).
However, once the circuit is generated, the proof generation time under the same conditions
is short, approximately 97 s (96,580 ms). In other words, once a circuit is generated, proof
generation is not time intensive. This fact does not pose any practical issues in cases
wherein the same image is distributed to various people.

In ZK-friendly implementations, encrypted data is inputted as a public input. Han-
dling encryption keys for images requires careful consideration. Data managed in private
IPFS are encrypted. However, if encryption keys are leaked, the encrypted data could be
decrypted. Therefore, specific users managing private IPFS should become administrators
to carefully manage the keys or a consortium-type blockchain could be established on the
same network to set and manage access rights appropriately.

9. Conclusions

A new method was proposed herein to distribute data stored in private IPFS to external
entities while making its authenticity verifiable. The method applied a type of ZKP, zk-
SNARKs, to verify the CID of data and embed the recipient’s name. This approach enables
external entities to verify that the received data are generated from the original data in
private IPFS without requiring details such as IPFS access rights and encryption keys.

A standard implementation using conventional cryptographic techniques and a ZK-
optimized implementation using ZK-friendly cryptographic schemes were implemented to
enhance the computational efficiency of the proposed method. Experiments with a sample
program confirmed the effectiveness of the proposed method for an image data size of up
to 120 × 120 pixels.

This proposed method extends the usable range of decentralized storage systems to
a hybrid case—distributing internal data to specific external entities as necessary. This
study paves a new way for sharing sensitive information across different sectors within
and outside a group. However, for the wide practical applicability of the proposed method
to larger and more diverse data types, such as images and videos, processing speed must
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be improved and data splitting methods must be used, which are within the scope of our
future studies.
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