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Abstract: Small object detection in traffic sign applications often faces challenges like complex
backgrounds, blurry samples, and multi-scale variations. Existing solutions tend to complicate the
algorithms. In this study, we designed an efficient and simple algorithm network called StarCAN-
PFD, based on the single-stage YOLOv8 framework, to accurately recognize small objects in complex
scenarios. We proposed the StarCAN feature extraction network, which was enhanced with the
Context Anchor Attention (CAA). We designed the Pyramid Focus and Diffusion Network (PFDNet)
to address multi-scale information loss and developed the Detail-Enhanced Conv Shared Detect
(DESDetect) module to improve the recognition of complex samples while keeping the network
lightweight. Experiments on the CCTSDB dataset validated the effectiveness of each module. Com-
pared to YOLOv8, our algorithm improved mAP@0.5 by 4%, reduced the model size to less than half,
and demonstrated better performance on different traffic sign datasets. It excels at detecting small
traffic sign targets in complex scenes, including challenging samples such as blurry, low-light night,
occluded, and overexposed conditions, showcasing strong generalization ability.

Keywords: StarCAN-PFD; CAA; PFDNet; DESDetect; small object detection; complex samples

1. Introduction

Detecting small targets with multiple scales and blurriness poses significant challenges
for current recognition algorithms. Among these, road traffic sign detection algorithms are
an essential research area in modern computer vision technology, aiming to automatically
and accurately locate and classify traffic signs on the road. Numerous scholars have
conducted in-depth research to enhance the network security [1], real-time capabilities [2],
and recognition performance [3,4] of these algorithms. Compared to other object detection
applications, distinguishing traffic signs is particularly challenging.

Current mainstream recognition algorithms designed by scholars are based on different
colors [5], fixed symbols [6], and fixed categories [7]. However, traffic sign images are
usually very small and may be affected by complex backgrounds and occlusions caused by
weather and road conditions. Additionally, the rapid movement of vehicles leads to scale
changes during image capture, further increasing the difficulty of recognition. Classifiers
in traditional machine learning methods Traditional machine learning methods’ classifiers
need help with these complex issues. The emergence of deep learning methods based on
convolutional neural networks (CNNs), particularly the YOLO object detection algorithm,
offers solutions to these challenges. Developing an algorithm that can accurately and
quickly detect small objects in complex backgrounds, occlusions, blurry images, and at
different scales would provide a new research paradigm for detection in various fields.
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To address the above challenges with difficult samples, some researchers have adopted
explicit data augmentation techniques [8], multi-scale feature integration [9], or pyra-
mid feature hierarchies [10] to extract features rich in scale information. For example,
Mengtao et al. [11] designed the YOLO-X network using the concept of multi-branch con-
volutional reparameterization, which improved the network’s ability to extract symbol
features. Geng [12] and Zeng [13] combined high-performance networks such as Faster and
EfficientViT with attention mechanisms to achieve accuracy and lightweight performance.
However, these improved models often sacrifice the information processing capabilities
of the feature extraction network and rely on complex manual adjustments, especially in
the design for detecting small targets in autonomous driving scenarios. This paper aims to
avoid the path of network complexity by proposing a simplified and clear network struc-
ture. The goal is to improve both lightweight performance and accuracy while providing
a new paradigm for various fields with the proposed improved network.

In this context, this paper proposes the StarCAN-PFD network, with the specific
improvements and innovations as follows: (1) Redesign the backbone network based on
element-wise multiplication to achieve a balance between model accuracy and lightweight
structure with a simple network design. (2) Proposing the Multi-Scale Feature Aggregation
(MSFA) module and network, which captures information across three layers of scales. This
mechanism overcomes the challenge of detecting small targets with varying scales through
a focus-diffusion process, enhancing detection accuracy. (3) Redesign the detection head
network based on shared convolution and detail-enhancing convolution to improve the
ability to discern details in challenging samples, such as those that are blurry, overly dark,
or occluded. This redesign significantly enhances recognition accuracy while achieving
a lightweight model. In application testing, it successfully identifies difficult samples that
mainstream algorithm networks typically miss, significantly reducing instances of missed
detections and false detections.

The rest of this paper focuses on the design and experimental validation of the efficient
detection network StarCAN-PFD. In Section 2, the rationale and relevant theories behind
the proposed network are explained. Section 3 details the specific design of the network.
Section 4 outlines the experimental datasets, parameter settings, and evaluation metrics.
Section 5 presents the results of comparative experiments and ablation studies. Finally,
Section 6 summarizes the algorithm and discusses future work.

2. Related Work
2.1. Small Object Detection

Deep learning methods for object detection are generally divided into region-based
detection and single-stage detection. Region-based object detection algorithms, such as
the R-CNN series [14–16], extract candidate regions from an image, classify and identify
these candidates, and adjust their coordinates. However, with the increasing demand for
lightweight and accurate models, single-stage detection algorithms like YOLO and SSD [17]
have become more suitable for small object detection. They directly regress the position and
classification probability of the target box, offering superior recognition speed compared to
region-based detection.

Autonomous driving traffic recognition differs from conventional detection tasks
because it often involves distant small targets, making it a small object detection task.
Depending on the environment, existing definitions of small object detection are mainly
categorized into relative and absolute scales. The relative scale approach defines small
objects based on their relative proportion to the image. Specifically, it considers the relative
area of all object instances within the same category, where the median ratio of the bounding
box area to the image area ranges from 0.08% to 0.58% [18]. The absolute scale approach
defines small objects based on their absolute pixel size. Typically, it refers to objects with
a resolution smaller than 32 pixels by 32 pixels [19].

Traditional methods have fewer optimizations designed explicitly for small object
characteristics. This, coupled with the increased detection difficulty due to the inherent
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properties of small objects, leads to generally poor performance in small object detection.
Traffic signs, in particular, are challenging to recognize due to their limited usable features.
YOLO and SSD algorithms, along with their improved versions, have been widely ap-
plied to small object detection in complex scenarios such as traffic sign detection. Their
recognition performance is now comparable to region-based detection methods. For in-
stance, validation analysis by Zhang et al. [20] on the CCTSDB dataset found that YOLOv5
achieved an map@0.5 value 16.65% higher than the highest region-based detection method,
Sparse R-CNN, and had an FPS value 115.01 higher than the highest FPS region-based
method, Dynamic R-CNN. Among similar single-stage algorithms, YOLOv5’s map was
27.1% higher, and FPS was 101.13 higher than SSD. Various studies, such as those by
He [21], Wu [22], and Li [23], have shown that YOLO algorithms perform optimally in
different datasets like TT100k (Tsinghua-Tencent 100K), SIMD (Satellite Imagery Multi-
vehicles Dataset), and GRDDC2022 (Road Damage Detector). Despite the performance
improvements in these algorithms, which have maximized the recognition accuracy for
small object detection, the unique characteristics of targets in the traffic recognition field
still result in many missed and false detections.

Numerous studies have confirmed the superiority of the YOLO framework in ob-
ject recognition. Based on this, we chose the high-performance YOLOv8 as the overall
framework for the design of our research algorithm.

2.2. Efficient Feature Extraction Network and Attention Mechanism

Efficient network structures aim to achieve an ideal balance between computational
complexity and performance. In recent years, numerous innovative concepts have been
introduced to enhance network efficiency, and these have also been applied to the field
of object detection. For instance, lightweight networks based on depthwise separable
convolutions, such as MobileNet [24], have been used in applications like pest [25] and
disease detection [26], facial expression recognition [27], and road damage detection [28].
However, due to information loss during the ReLU operations across different dimensions,
Hao’s [29] introduction of Ghost, similar to depthwise separable convolution in YOLOv4,
also suffers from weak feature extraction capabilities. These network algorithms may not
be well-suited for detecting challenging small targets in complex environments. Other inno-
vative networks include the lightweight EdgeViTs based on Vision Transformers (VIT) [30],
FasterNet [12,31], and various heavily handcrafted designs to achieve performance results.
Guang [13] incorporated the EfficientViT network concept into the YOLOv5 backbone
to enhance feature extraction performance. However, the combination of multiple new
modules, such as DSConv, MBConv, and EfficientViT, increased the optimization difficulty
of the backbone network. While effective, these approaches often contradict the principle
of pursuing simplicity and efficiency in network design and can hinder generalization
research across diverse network structures. Xu et al. [32] proposed a simple yet efficient
network, StarNet, combining basic convolution modules with star operations (element-wise
multiplication). Unlike existing network structures, StarNet avoids complex architectures
and meticulously chosen hyperparameters. It demonstrates the ability to implicitly process
high-dimensional features while operating in low-dimensional spaces, resulting in excellent
performance in practical applications. StarNet achieves a detection accuracy of 0.9% higher
than EdgeViT-XS and operates over twice as fast. The specific structure of StarNet is shown
in Figure 1.

Using lightweight feature extraction networks for object detection often results in
a loss of accuracy. Introducing new network modules and attention mechanisms into the
feature extraction network is a common method to improve feature extraction capability.
For instance, Guang [13] achieved performance improvements by fine-tuning the positions
of CBAM attention mechanisms in conjunction with EfficientViT. Li et al. [33] integrated
CBAM (Convolutional Block Attention Module) into the YOLOv3 backbone, allowing the
network to autonomously learn the weight of each channel, enhancing critical features
while suppressing redundant ones, thereby achieving an 8.50% mAP improvement.
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Given the efficiency and lightweight nature of the StarNet network, it not only achieves
lightweight and accuracy improvements but also provides ample deployment space for
embedding new modules to achieve higher performance enhancements.

Figure 1. Structure of the StarNet network.

2.3. Recognition of Difficult Small Target Samples

For the challenging task of extracting features from difficult small targets, such as
multi-scale, blurry, and occluded objects, various methods have been explored, including
data augmentation [34], multi-scale feature integration [35], Feature Pyramid Network
(FPN) enhancement [36] and redesign, and multi-scale convolution kernels [37]. These
methods still need to adequately solve the problems when deployed in autonomous driving
due to network complexity or poor real-time recognition performance.

The widely used YOLO v8 adopts the concept of multi-scale feature fusion, utilizing
the structure of FPN (Feature Pyramid Networks) [38] + PAN (PANet) [39] for feature
fusion. FPN is a top-down unidirectional structure that enriches the semantic information
of features but overlooks localization information. To compensate for this loss, PAN adds
a bottom-up path on top of FPN, combining low-level and high-level features. However,
this combination can cause small-scale target features to be overshadowed by medium-
and large-scale target features, increasing the risk of missing or misclassifying small-scale
targets. The FPN+PAN structure achieves a complementarity of semantic and localiza-
tion information, but it also increases computational complexity and may result in the
loss of some original feature information after multiple upsampling and downsampling
processes. This can lead to a neglect of fine details in low-level feature maps, reducing
accuracy. The specific structures are shown in Figure 2. In practical application testing,
these network detection systems still exhibit instances of false detections and missed de-
tections with challenging samples, resulting in suboptimal performance in the field of
autonomous driving.

Figure 2. The neck network structures. (a) FPN pyramid structure (b) FPN+PAN pyramid structure.

This study aims to leverage the existing advantages of pyramid networks for feature
enhancement. We intend to design a stronger model that preserves challenging feature
details and contextual information while ensuring the model remains lightweight. This
approach addresses the challenge of recognizing many difficult small target samples in
autonomous driving.
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3. The Proposed StarCAN-PFD Network

Detecting small traffic signs in complex autonomous driving scenarios often encoun-
ters issues such as missed detections and poor detection performance. Additionally, rec-
ognizing multi-scale objects can lead to the loss of contextual information. Although the
StarNet network outperforms existing network algorithms in terms of performance and
maintains a simple and clear structure, it does not address these issues. This paper re-
designs an efficient multi-scale feature detail detection network, StarCAN-PFD, to achieve
effective detection of small traffic signs in complex scenarios. The aim is to maintain the
original network’s efficiency and simplicity while improving the detection of challenging
samples in autonomous driving. The overall network structure is shown in Figure 3.

Figure 3. Structure of the StarCAN-PFD network.

In the backbone part of the network, we leverage the efficiency of star element-wise
multiplication and embed the Context Anchor Attention (CAA) [40] mechanism to en-
hance feature extraction capability, resulting in the StarCAN network. Additionally, we
propose a feature-focused diffusion pyramid structure called PFDNet for the neck, fo-
cusing on multi-scale features. Additionally, in the head, we introduce a lightweight
detail-enhanced detection head (DESDetect) based on the collaborative effect of shared
convolution and DESConv.

The design of StarCAN is not only easy to extend and adjust but also adaptable to vari-
ous computational resources and application scenarios. Through its structure and processes,
it efficiently extracts and processes image features, providing strong support for image
classification tasks. In Section 5.2, we conducted ablation experiments, demonstrating its
advantages and potential applications in image classification.

3.1. StarCAN BackBone

The StarCAN network structure is extremely simple, consisting of an initial Stem layer
and four feature extraction stages. The image sequentially passes through the Stem layer
and the four stages, progressively extracting features and outputting feature maps at each
stage, thereby achieving efficient image classification.

Firstly, the 3-channel input image passes through the Stem layer, where an initial
feature extraction is performed using a convolutional layer and a ReLU activation function,
producing an initial feature map with 32 channels and halved spatial resolution. In each
stage, downsampling is performed using a convolutional layer with a stride of 2, halving
the spatial resolution of the feature map while doubling the number of channels. Each stage
includes a StarCAA Block module. Each Block consists of depthwise separable convolution,
a regular convolution layer, batch normalization, a ReLU activation function, the Context
Anchor Attention (CAA) mechanism, and a Drop Path for random depth dropping. These
Blocks progressively extract and process feature maps, converting low-level features into
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high-level features, thus providing rich feature representations for the final classification
task. The complete structure of the StarCAN network is shown in Figure 4.

Figure 4. Structure of the StarCAN network and the StarCAA Blocks.

3.1.1. StarCAA Blocks

StarCAA Blocks are the core modules of the StarCAN network, highlighting the
roles of element-wise multiplication and the CAA attention mechanism and incorporat-
ing multiple convolution operations and attention mechanisms. The process begins with
a depthwise separable convolution (DWConv) to efficiently extract initial features while
reducing computational complexity. Next, two parallel convolution layers transform the
features, and a ReLU activation function applies nonlinear mapping. At this stage, element-
wise multiplication merges the outputs of the two convolution layers, producing more
representative features. Following this, another layer of depthwise separable convolution
and pointwise convolution (g) further refines the feature map. The channel attention mech-
anism (CAA) is then introduced, adaptively recalibrating feature responses by assigning
different weights to each channel, thereby highlighting important features and significantly
enhancing the discriminative power of the feature map. Additionally, the introduction of
Drop Path improves the network’s robustness and generalization ability. Finally, the input
feature map is added to the processed feature map to achieve residual connection, further
enhancing network performance.

By integrating these components, the Block module aims to gradually extract and
enhance relevant features, thereby improving the network’s overall feature representation
and classification performance. This multi-layer stacking method implicitly transforms
input features into exceptionally high nonlinear dimensions while operating in a low-
dimensional space.

3.1.2. The Context Anchor Attention (CAA)

The Context Anchor Attention (CAA) mechanism is integrated within the StarCAA
Blocks, as illustrated in Figure 4, sharing the input parameters of the backbone network. The
CAA mechanism uses global average pooling and one-dimensional depthwise separable
convolution to capture relationships between distant pixels and enhance features in the
central region. The specific structure of this attention module is depicted in Figure 4.
The attention mechanism starts with the input feature map, which is processed through
an average pooling layer to generate local region features Xpool:

Xpool= AvgPool2d(X, 7, 1, 3), (1)
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The pooling layer is configured with a kernel size of 7, a stride of 1, and a padding of 3.
Within the average pooling layer, the input feature maps are aggregated and dimensionality-
reduced. Aggregation relies on computing the mean of local areas to summarize features,
smoothing the feature maps, and reducing the impact of noise, thus extracting more
robust features. This approach mitigates the model’s tendency to overfit local noise and
details, enhancing its generalization capability, which is particularly beneficial in noisy
environments such as autonomous driving. Dimensionality reduction decreases the feature
map dimensions, reducing data volume and computational load, thereby improving the
efficiency of subsequent convolution operations. The padding and stride settings ensure
that the pooled feature map retains the same size as the input, preserving global information.
This enables the model to consider global context information when processing local
features. After average pooling, the feature maps contain less redundant information,
reducing computational complexity and enhancing the model’s efficiency. Lowering the
computational resource demands of the model is crucial for the subsequent calculation of
attention factors.

Next, the pooled feature map Xpool undergoes a 1 × 1 convolution operation, resulting
in an intermediate feature map X1.

X1= Conv1(X pool), (2)

Subsequently, the intermediate feature map X1 sequentially passes through depthwise
separable convolutions in the horizontal and vertical directions to capture contextual
information from different orientations, generating the feature map Xv.

Xh= DWConv1×kh
(X 1

)
, Xv= DWConvkv×1(X h), (3)

Typically, depthwise separable convolutions (DWConv) decompose a standard convo-
lution into two simpler operations: depthwise convolution and pointwise convolution. We
define the parameter count of a standard convolution as O

(
K2·Cin·Cout·H·W

)
. The computa-

tional complexity of a depthwise separable convolution is O
(

K2·Cin·H·W + Cin·Cout·H·W
)

.
Here, K represents the kernel size, Cin and Cout are the numbers of input and output chan-
nels, respectively, and H and W are the height and width of the feature map. This design
significantly reduces the number of parameters, especially when Cin and Cin are large.
The parameter count after decomposing into depthwise and pointwise convolutions is
much lower than that of standard convolutions, thus reducing the model’s parameter
count and lowering the risk of overfitting. Depthwise separable convolutions can signif-
icantly improve the model’s inference and training speed while maintaining similar or
even higher accuracy.

The two depthwise separable convolutions in the CAA attention mechanism are
designed to be lightweight while recognizing long-distance pixel correlations. Unlike
traditional k × k 2D depthwise convolutions, these use a pair of 1D depthwise convolution
kernels to achieve a similar effect as standard large-kernel depthwise convolutions, thus
reducing both parameters and computational load. The reconfigured horizontal (kh)
and vertical (kv) kernel sizes capture relevant information in the horizontal and vertical
directions of the input feature map, respectively. This operation extracts edge and shape
information in different directions of the feature map more effectively, enhancing the
ability to establish relationships between distant pixels without significantly increasing the
computational cost due to the dual depthwise separable convolution design.

Next, the feature map Xv undergoes a second 1 × 1 convolution operation to extract
high-level contextual features further, resulting in an enhanced feature map X2. This
enhanced feature map is then passed through a Sigmoid activation function to generate the
attention factor A. Finally, the input feature map is multiplied element-wise by the attention
factor A, producing the enhanced output feature map Y. By weighting the original input



Electronics 2024, 13, 3076 8 of 23

feature map, important features are enhanced while unimportant features are suppressed,
thereby improving the model’s ability to focus on crucial parts.

X2= Conv2(X v), A = σ(X 2), Y = A ⊙ X , (4)

Through the aforementioned multi-stage processing and weighting mechanism, the
CAA module effectively integrates multi-scale contextual information, significantly en-
hancing the overall performance of the neural network in various computer vision tasks.

3.2. Multi-Scale Focus and Diffusion Pyramid Network

To address the issues of frequent upsampling and downsampling in YOLO networks,
which lead to the loss of original feature information and poor multi-scale feature perfor-
mance, we were inspired by the PKINet module designed by Xin et al. [40] for recognizing
remote sensing images with large-scale variations and complex backgrounds. We pro-
posed the Pyramid Focus and Diffusion Network (PFDNet) for small traffic sign detection.
PFDNet employs a focus–diffusion–focus mechanism to propagate features with rich con-
textual information across different detection scales, helping to capture more contextual
information and improve detection performance.

3.2.1. Multi-Scale Feature Aggregator Block

We designed the parallel Multi-Scale Focus Aggregator (MSFA) Block to accept feature
inputs from three backbone network layers: P5, P4, and P3. The module initially defines
three input channels (inc) to receive feature maps of different scales. The first convolution
layer sequence includes an upsampling layer and a 1 × 1 convolution layer. The second
convolution layer uses a scaling factor e to choose between a 1 × 1 convolution or retaining
the original input. We introduced the ADown (downsampling) [41] module for the third
downsampling convolution layer, which reduces information loss compared to the conven-
tional 2 × 2 convolution module. For the input feature maps, X1, X2, and X3, the specific
definitions are as follows:

X′
1= Conv1(Upsample(X1)), X′

2= Conv2(X2), X′
3= Conv3(ADown(X3)), (5)

As shown in Figure 5, the ADown module uses an average pooling strategy for
downsampling. The downsampled feature map is split into two parts along the channel
dimension. The second part undergoes additional max pooling, followed by convolution,
batch normalization, and activation operations. The processed parts are then concatenated
along the channel dimension, allowing the output to retain more contextual information.

Figure 5. Structure of the ADown model.

To fully utilize these multi-scale features, we apply a set of parallel depthwise con-
volutions to the concatenated feature map to capture multi-scale contextual information.
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The three processed feature maps are then concatenated along the channel dimension. The
function is defined as follows:

Xcat= Concat
(
X′

1, X′
2, X′

3
)
, (6)

The concatenated feature map is processed using depthwise convolution layers with
multiple different kernel sizes and then summed. Finally, the summed feature map is
further processed through a pointwise convolution layer and added to the original feature
map to generate the final output feature map. Figure 6 illustrates the structure of the
PWConv (The pointwise convolution).

Figure 6. Structure of the PWConv.

The specific structural design of the MSFA Block is illustrated in Figure 7. According
to this structure, the MSFA extracts features from the input feature map through multi-scale
feature fusion and depthwise convolution (DWConv) operations. By combining multi-scale
features with pointwise convolutions, it captures feature information at different scales,
thereby enhancing the network’s expressive capabilities.

Figure 7. Structure of the MSFA Block.

The definitions of the MSFA Block are as follows:

MSFA(x) = x + PWConv
(
∑4

i=1 DWConvi(x)
)

(7)

where x represents the input feature map, DWConvi represents the depthwise separable
convolution operation, and PWConv represents the pointwise convolution operation.

3.2.2. PFDNet

We designed the Pyramid Focus and Diffusion Network (PFDNet) based on the
MSFA Block. The goal of this pyramid network is to achieve multi-scale feature extraction
and fusion.
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Firstly, the FocusFeature module processes three feature maps of different scales
through upsampling, downsampling, and convolution operations. Parallel depthwise
convolutions are used to capture multi-scale information, generating a comprehensive
feature map. This architecture ensures that each scale’s feature map contains rich contextual
information by performing multiple focus and diffusion operations. This enhances the
feature representation capability, thereby improving the accuracy of object detection and
classification. The specific pyramid network design is shown in Figure 8.

Figure 8. Structure of the PFDNet.

3.3. DESDetect

Target images captured in dynamic driving and natural scenes often exhibit significant
visual quality degradation or color distortion [42], compromising performance in advanced
visual tasks such as small target detection. Existing solutions [43] usually come with high
computational costs and substantial GPU memory usage. Therefore, developing efficient
and accurate detection models suitable for resource-constrained environments is crucial for
current target detection applications. In traffic sign recognition, traditional detection heads
often suffer from information loss during transmission due to the small and variable nature
of traffic signs. This lack of information sharing between detection heads can affect the final
detection rate. To address these issues, we propose a novel lightweight shared convolution
detection head, DESDetect-Head (Detail-Enhanced Conv Shared Detect Head).

The DESDetect-Head is built on the foundation of Group Normalization Convolution
(GNConv), which has been shown to reduce computational complexity while maintain-
ing efficient processing and improving detection capability. We further utilize GNConv
to enhance the detection head’s classification and localization abilities. However, tradi-
tional GNConv methods have limitations in capturing fine-grained details essential for
precise target localization. To overcome this, we introduce DEConv (Detail-Enhanced
Convolution) [44] as a key enhancement component in the detection head.

DEConv integrates multiple parallel convolution layers, including Central Difference
Convolution (CDC), Angular Difference Convolution (ADC), Horizontal Difference Con-
volution (HDC), and Vertical Difference Convolution (VDC). In DEConv, conventional
convolution is used to obtain intensity-level information, while differential convolutions
enhance gradient-level information. By integrating traditional local descriptors into the
convolution layer, the DEConv output can be obtained by simply adding the learned
features together.

Deploying five parallel convolutional layers will undoubtedly increase the number
of parameters and inference time. Chen noted that when multiple 2D kernels of the same
size, stride, and padding are applied to the same input and their outputs are summed
to obtain the final output, the corresponding positions of these kernels can be added to
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yield an equivalent kernel for the final output. Based on this characteristic, they simplified
the parallel convolution deployment to a single standard convolution. The output Feout,
with the same computational cost and inference time, is directed to a regular convolution
layer. In the backpropagation phase, the kernel weights of the five parallel convolutions
are updated separately using the chain rule of gradient propagation. During the forward
propagation phase, the kernel weights of the parallel convolutions are fixed, and the
transformed kernel weights are calculated by summing the corresponding positions. This
method allows for the acceleration of training and testing processes during the forward
propagation phase. For details on the reparameterization steps, refer to Figure 9.

Figure 9. Reparameterization of the concrete implementation process. (a) Backpropagation process;
(b) forward propagation reparameterization.

We can simplify this process into the following formula:

Feout= DEConv(Fein) =
5

∑
i=1

(Fein ∗ Ki)= Fein ∗
(

5

∑
i=1

Ki

)
= Fein ∗ Kad (8)

In Formula (8), Ki represents the i-th convolution kernel in DEConv, corresponding
to the five specific convolutions mentioned above. Fein represents the input features, and
Feout represents the output features. The equivalent convolution kernel Kad is the sum
of all parallel convolution kernels. ∗ represents a convolution operation. Compared to
ordinary convolution layers, DEConv can extract richer features while maintaining the
same parameter scale and not introducing additional computational cost and memory
burden during the inference phase.

This extends the capabilities of standard convolution by encoding detailed spatial
relationships and edge information into the feature map, significantly enhancing the
representation capability of the detection head. The specific structural design of this
detection head is shown in Figure 10.

The DESDetect-Head achieves synergistic optimization by combining the advantages
of shared convolution with the enhanced feature extraction capabilities of DEConv. Shared
convolution excels in handling global information and reducing computational complexity,
while DEConv plays a crucial role in capturing fine-grained information and enhancing
feature representation. This synergy enables the detection head to recognize better and
locate complex traffic sign features, ensuring superior generalization across different object
categories and environmental conditions. Additionally, the use of DEConv helps mitigate
the issue of inconsistent target scales often encountered in shared convolution architectures,
ensuring robust detection performance for varying target sizes.
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Figure 10. Structure of the DEConv Block here.

By integrating the strengths of shared convolution and DEConv, the DESDetect-Head
significantly improves the accuracy and reliability of traffic sign recognition. This method
enhances the model’s ability to discriminate complex object features and promotes its
generalization in diverse environments, offering significant practical value. The structure
of the DESDetect-Head is shown in Figure 11. However, adding the DEConv structure
on top of the shared convolution will inevitably increase the model’s complexity. We will
conduct module experiments and discuss the results in Section 5.3.3.

Figure 11. Structure of the DESDetct.

4. Experimental Design
4.1. Experimental Dataset

In this study, we selected the CCTSDB 2021 [20] public dataset as the primary experi-
mental data. The rationale for selecting this dataset is that autonomous driving application
scenarios are often complex and variable. Current mainstream traffic-related datasets rarely
focus on difficult samples, such as those under adverse weather conditions. Based on this,
Zhang enhanced the original CCTSDB 2017 dataset by adding data from special weather
conditions and replacing many simple samples with difficult ones to simulate complex
road environments better, closely aligning with real-world applications. They specifically
collected and categorized samples under different weather conditions, including sunny,
cloudy, night, rain, foggy, and snow. Among these samples, there are many specific exam-
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ples with blurring and occlusion, making the dataset more complex and experimentally
valuable compared to others.

The dataset includes three categories of traffic signs: indicative, prohibitory, and
warning signs. It provides a comprehensive public data source for traffic sign recognition
research. The images exhibit highly variable brightness and weather conditions, including
night, snowy days, rainy days, evenings, and foggy conditions. The dataset contains
17,856 images of traffic signs, with nearly 40,000 traffic signs in total. These are classified
into three main categories: warning signs, indicative signs, and prohibitory signs. The
dataset serves as a paradigm data source for small target detection in multi-scale, complex
environments with various backgrounds, occlusions, and blurriness. The resolution ranges
from 1000 × 350 to 1024 × 768. We divided the dataset into training, validation, and testing
sets with a ratio of 7:2:1.

To further validate the network’s performance, we also selected the TT100k, RoadSign,
and GTSDB datasets as auxiliary validation sets. These four datasets are all public and
contain real-world images of traffic signs. The annotated traffic sign targets meet the
conditions for small target detection, with TT100k, RoadSign, and GTSDB focusing on
small sample target detection, facilitating the evaluation of the model under different
conditions. The input size for the model was uniformly set to 640 × 640 across all datasets.

4.2. Experimental Environment and Parameters

The hardware environment for this experiment is based on an RTX 4090 GPU and
a 16 vCPU AMD EPYC 9654 96-Core Processor CPU for training and testing. We used
PyTorch 1.8.1 as the deep learning framework, with CUDA version 11.3 and Python
version 3.8.

During the training phase, to better compare model performance and avoid the
incomparability caused by differences in pre-trained weights, we used the Stochastic
Gradient Descent (SGD) optimizer. For data feature extraction, we performed online
augmentation of the data images based on parameters to expand the research samples and
increase data diversity, thus improving the model’s generalization ability. The experimental
parameters and data augmentation settings are shown in Table 1.

Table 1. Experimental and data augmentation parameters.

Experimental Parameters Value Data Augmentation Parameters Value

Initial Learning Rate 0.01 hsv_h (Hue Adjustment) 0.015
Minimum Learning Rate 0.0001 hsv_s (Saturation Adjustment) 0.7

Epoch 300 hsv_v (Brightness Adjustment) 0.4
Batch size 16 Translate (Translation Range) 0.1

Momentum 0.937 Scale (Scaling Range) 0.5
Weight Decay 0.0005 Mosaic (Mosaic Probability) 1

Works 8 Erasing (Random Erasing Probability) 0.4

4.3. Eval

In this study, ensuring detection accuracy, speed, and a light weight in the model is
crucial for small target detection applications. We use precision (P), recall (R), and mean
Average Precision (mAP) to measure the detection accuracy of the algorithm. Based on the
binary classification metrics, the confusion matrix is shown in Table 1. We use frames per
second (FPS) to measure the detection speed of the algorithm. Evaluation metrics include
the number of parameters (parameters) and giga floating-point operations per second
(GFLOPS), which measure the execution time of the model. The number of parameters
also assesses the model’s size and complexity. Precision (P) measures the accuracy of
the model, with the intersection over union (IoU) set to 0.7. This means that the model’s
prediction is considered correct if the IoU between the ground truth and the predicted box
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is greater than 0.7. The specific setting of the IOU value directly impacts the detection
rate and accuracy. In typical image recognition experiments, IOU is seldom examined
in detail. However, since autonomous driving systems must accurately recognize and
detect traffic signs in various complex environments to ensure safety and reliability, both
false negatives and false positives can lead to irreparable accidents. Therefore, this study
aims to improve recognition accuracy by increasing the IOU value for typical tasks to 0.7.
This higher threshold might increase false negatives, but the proposed algorithm strives
to overcome this challenge and achieve simultaneous improvements in detection rate and
accuracy. Detailed experimental and prediction results demonstrating these improvements
are provided in Sections 5 and 6.

The calculation formula is given in Equations (9)–(12).

IOU =
area(B P ∩ BT)

area(B P ∪ BT)
(9)

where BP is the predicted box, and BT is the ground truth box.
Precision (P), recall (R), and mean Average Precision (mAP) are calculated using the

formulas shown in Equations (9)–(11).

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

mAP =
∑ AP
Nclass

(12)

where TP (True Positive) is the number of correct positive predictions, TN (True Negative)
is the number of correct negative predictions, FP (false positive) is the number of incorrect
positive predictions, and FN (false negative) is the number of incorrect negative predictions.
The AP value is the area under the P-R curve, AP represents the sum of AP values for all
categories, and Nclass represents the total number of categories.

5. Experimental Results and Analysis
5.1. Algorithm Performance Comparison

To evaluate the detection performance of our algorithm, we compared StarCAN-
PFD with SSD, YOLOv5, YOLOv8, YOLOv8-MobilenetV4, YOLOv8-Ghost, and YOLOv8-
EfficientViT. To highlight the advantages of StarCAN’s simplified network, we validated
these methods with different backbone networks on the CCTSDB dataset. Additionally,
we generated P-R curves to display the effectiveness of the algorithms on this dataset
graphically. The specific results are shown in Figure 12.

Based on the comparative experimental results in Table 2, we found that the StarCAN-
PFD algorithm has the highest mAP@0.5, precision, and recall compared to other object
detection networks. Specifically, StarCAN-PFD improves mAP@0.5 by 9.9%, 4.0%, and 4.0%
over SSD, YOLOv5, and YOLOv8, respectively. Compared to other innovative network
backbones, StarCAN-PFD (ours) shows an increase in evaluation precision by 1.8%, 2.8%,
and 3.8%.

In terms of model size, the StarCAN-PFD model is less than half the size of other
algorithms, demonstrating its lightweight nature. The FPS of StarCAN-PFD is comparable
to YOLOv8, indicating that it improves accuracy while maintaining sufficient inference
speed to meet application requirements.
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Figure 12. Model P-R curve analysis. (a) Comparison of multiple models’ mAP@0.5 results; (b) com-
parison of multiple models’ mAP@0.5:0.95 results.

Table 2. Comparative experimental results.

Algorithm Backbone mAP@0.5 mAP@0.5:0.95 P R FPS Size

SSD VGG16 0.846 0.564 0.863 0.821 92.3 13.2
YOLOv5 CPSDarknet53 0.905 0.622 0.93 0.827 246.3 5.0
YOLOv8 CPSDarknet 0.905 0.611 0.921 0.825 279.4 5.9

YOLOv8-mobilenetv4 MobileNetv4 0.927 0.697 0.929 0.879 279.6 11.2
YOLOv8-Ghost GhostNet 0.907 0.692 0.911 0.876 274.0 3.6

YOLOv8-EficientViT-CBAM EficientViT 0.897 0.668 0.908 0.854 67.7 8.4
YOLOv8-StarNet Starnet 0.912 0.639 0.930 0.836 334.6 6.0

StarCAN-PFD(Ours) StarCAN 0.945 0.723 0.946 0.879 278.6 2.9

5.2. Ablation Study

To validate the performance of our algorithm, we conducted ablation experiments on
various modules, including StarCAN, PFDNet, and DESDetect head. In the table below,
a “

√
” indicates that the method was used in the model, and a “—” indicates that the

method was not used. We used the YOLOv8 network as the baseline model for comparison.
As shown in Table 3, each improvement contributes to an increase in detection accuracy,
demonstrating the scientific validity and effectiveness of the proposed methods.

Table 3. Ablation experiment results.

Model StarCAN PFDN DESDect mAP@0.5 P R FPS Params/106 GLOPs

0 — — — 0.905 0.921 0.825 279.4 3.01 8.1
1

√
— — 0.924 0.942 0.851 322.6 2.21 6.5

2 —
√

— 0.912 0.941 0.827 274.9 3.04 9.4
3 — —

√
0.937 0.944 0.865 312.0 2.36 6.5

4
√ √

— 0.927 0.946 0.848 264.9 1.73 6.2
5

√
—

√
0.935 0.938 0.871 270.9 1.57 4.9

6 —
√ √

0.942 0.946 0.879 252.4 2.36 7.4
7

√ √ √
0.945 0.962 0.882 278.6 1.20 4.7

In the ablation experiments, Group 0 uses the YOLOv8 network. Group 1 utilized the
efficient star-shaped feature extraction network, StarCAN, which significantly improved
accuracy and inference speed. According to the results, mAP@0.5 increased by 1.9%,
precision (P) improved by 1%, recall increased by 2.4%, parameters decreased by 26.6%,
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and GFLOPS reduced by 19.8%. Compared to the baseline model, its size is reduced,
making the lightweight effect more apparent, and FPS increased by 15.5%. This validates
the performance and value of the efficient and simple star-shaped network.

In Group 2, we independently validated the parallel pyramid network. Adding the
PFDN pyramid network resulted in a slight improvement in mAP@0.5 by 0.7%, preci-
sion by 2%, and recall by only 0.2%. Compared to the high computational cost of the
FPN+PAN pyramid network, the PFDN pyramid network, with the MSFA module, intro-
duced additional upsampling, downsampling, and multiple parallel depthwise convolution
operations, significantly increasing parameters and computation. Parameters increased by
0.9% and GFLOPS by 16.0%, with minimal change in FPS. Increasing the model complexity
contradicts our initial goal. We aim to achieve better results through the combination with
other modules.

In Group 3, we evaluated DESDetect and found it contributed the most significant
performance improvement. Due to the lightweight effect of shared convolution, both
parameters and GFLOPS decreased, while DEAConv enhanced the feature detail processing
capability. With the synergistic effect of DEAConv and shared convolution, mAP@0.5
increased by more than 3.2%. FPS increased by 11.8%, achieving improvements in model
accuracy, speed, and lightweight characteristics. We will further analyze its contributions to
accuracy and lightweight performance in Section 5.3.3, focusing on the role of the detection
head’s module structure.

In Group 4, we added the PFDN pyramid network to the Group 1 model, resulting in
a 2.2% increase in mAP@0.5 compared to the baseline model. Both parameters and GFLOPS
decreased significantly, with the model size reduced by 40.7%. The modular design allowed
for sharing depthwise separable convolution parameters, enabling multi-feature fusion
to share information across different scales. This reduced the computational load of each
convolution operation, further lowering overall parameters and computational costs. In
Group 5, using DESDetect on the StarCAN backbone network, mAP@0.5 increased by
nearly 3% compared to the baseline model, with a 47.8% reduction in parameters, a 39.5%
reduction in GFLOPS, and a model size compression of nearly 40%. In Group 6, combining
PFDN and DESDetect, we observed a strong synergistic effect, with mAP@0.5 increasing
by 3.7% compared to the baseline model.

Group 7 represents our proposed StarCAN-PFD network, achieving an mAP@0.5 of
94.5%, which is a four percentage point improvement over the baseline model. Parameters
and computational load decreased by 61.1% and 41.9%, respectively, with the model size
reduced by half. This demonstrates the effectiveness of the overall network and individual
improvements in detecting small traffic targets in complex scenarios.

5.3. Module Comparison Experiment
5.3.1. Comparison of Backbone Network Structure

To better illustrate the recognition accuracy and computational load of the StarCAA fea-
ture extraction network, this study compares it with the main feature extraction networks.

The specific results of the parameter count and computational load comparison are
shown in Figure 13. Based on the results, we found that our StarCAA backbone feature
network has nearly half the FLOPs and parameters of YOLOv5, YOLOv8, EfficientViT, and
MobileNetV4. Compared to the Ghost network, the total FLOPs increased by approximately
0.428G, and the computational load increased by 28.412k. However, in the experiments
shown in Tables 2 and 3, the mAP@0.5 improved by 1.7%, significantly enhancing detec-
tion accuracy. After redesigning the StarNet network, we found that adding a minimal
amount of computational load resulted in improved accuracy. Comparing the results
in Tables 2 and 3, we observed a 1.2% improvement in mAP@0.5, with the FPS remaining
almost unchanged. Regarding the accuracy comparison of the backbone networks, we
found that among the latest improved algorithms for these backbone networks, StarCAN
achieved the highest precision with an mAP@0.5 value of 0.924. Therefore, our StarCAN
backbone network can effectively balance accuracy and computational efficiency.



Electronics 2024, 13, 3076 17 of 23

Figure 13. Main backbone network FLOPs and parameters. (a,b) show the FLOPs and parameters
of the backbone extraction networks for YOLOv5 and YOLOv8, respectively. (c–e) illustrate the
FLOPs and parameters of the leading innovative networks. (f) The original Starnet feature extraction
network. (g) presents the computational complexity of the StarCAN network proposed in this study,
based on Starnet.

5.3.2. Attention Mechanism Experiment

In this study, we added an attention mechanism to the core Star Block of the efficient
star-shaped StarNet network. Unlike traditional studies that add attention layers to the
Backbone or head, we chose to modify a single module within the efficient network
rather than increasing the overall complexity. We conducted comparative experiments
on the CCTSDB dataset to evaluate the effectiveness of adding attention mechanisms in
different positions.

Based on the results in Table 4, we found that in this experiment, adding the CAA
attention mechanism in the backbone and head was less effective than the proposed
StarCAA Block scheme. This proves the effectiveness of our method. Adopting simple
structural adjustments in a more streamlined network may be more advantageous than
extensive complex manual tuning. Further in-depth research and experiments are required
to provide reliable and generalizable conclusions.

Table 4. Comparison of attention mechanism positions.

Attention Position mAP@0.5 Params/106 GLOPs

Starblock 0.924 2.21 6.5
Backbone 0.920 2.30 6.7

Head 0.916 2.69 8.1

5.3.3. DESDetect Head Experiment

The DESDetect head proposed in this study is designed to enhance the discrimination
ability of complex object features by incorporating DEConv convolution on top of LSCD’s
shared convolution. We conducted comparative experiments by embedding DEAConv and
shared convolution into the original Detect head separately.

Based on the results in Table 5, we found that adding only the Shared Convolution
module increased mAP@0.5 by 0.9%, reduced parameters by 26.6%, and reduced GFLOPS
by 24.6% compared to the baseline model. Using only the DEConv module increased
mAP@0.5 by 2.6%, but both parameters and GFLOPS slightly increased. Combining shared
convolution and DEConv achieved the best performance, with mAP@0.5 reaching 0.937,
indicating the superior performance of the DESDetect head in detecting small traffic targets.
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Table 5. DEAConv comparison experiment.

Module mAP@0.5 Params/106 GLOPs

Shared Conv 0.914 2.21 6.5
DEConv 0.931 3.10 8.4

Shared Conv + DEConv 0.937 2.69 6.5

Comparing the contributions of individual modules, Shared Conv significantly im-
proved the model’s lightweight nature but provided only a slight increase in accuracy. In
contrast, DEConv enhanced long-distance information and central features, achieving the
highest accuracy improvement among all experiments, thereby validating the detailed
explanation of its role provided earlier in this paper. This edge information extraction and
feature enhancement capability showed a stronger advantage in the autonomous driving
field, which often involves many difficult samples. The combined use of DEConv and
shared convolution significantly mitigated the increase in model complexity that typically
accompanies accuracy improvements. This combination enhanced feature extraction capa-
bility by dynamically adjusting anchors and strides, allowing the detection head to adapt to
different input shapes and using DFL layers to decode bounding boxes, further improving
localization accuracy and enhancing the model’s ability to detect complex object features.

5.4. Performance on Other Datasets

To test the generalization capability of StarCAN-PFD on different traffic small object
datasets, we selected three datasets, TT100k, GTSDB, and Roadsign, for comparative validation.

Based on the results in Table 6, we found that compared to the baseline model,
StarCAN-PFD significantly improved accuracy, especially on the TT100k and GTSDB
datasets, which lack more challenging difficult samples. In the context of autonomous
driving road sign detection, our algorithm demonstrated excellent generalization ability in
detecting various target objects in different traffic environments. These results validate its
effectiveness in detecting traffic targets in complex scenarios, providing the potential for
further generalization studies in other complex environments.

Table 6. Results on Different Datasets.

Dataset
YOLOv8 StarCAN-PFD

mAP@0.5 P R mAP@0.5 P R

TT100k 0.875 0.894 0.795 0.912 0.907 0.834
GTSDB 0.744 0.905 0.674 0.801 0.946 0.700

Roadsign 0.866 0.920 0.809 0.908 0.919 0.878

6. Discussion
6.1. Further Analysis of Difficult Sample Recognition Performance

The proposed StarCAN-PFD will demonstrate generalized detection performance
when dealing with multi-scale and adverse weather conditions in practical applications. We
validated this advantage on the CCTSDB dataset. In the IoU threshold range of 0.5 to 0.95,
to achieve more precise detection results, we set the intersection over union (IoU) threshold
to 0.7. Our experimental results indicate that increasing the IoU threshold in this manner
does not reduce the detection rate. On the contrary, due to our algorithm’s enhanced ability
to recognize difficult samples, the detection rate actually improved. The specific detection
accuracy was 94.6%, with a recall rate of 87.9% and an average precision (mAP@0.5) of
approximately 0.942. This performance is significantly superior to mainstream object
detection algorithms.

In Figure 14, we conducted prediction experiments on foggy, night, snowy, blurry, and
overexposed samples. According to the experimental results, we found that StarCAN-PFD
demonstrated relatively stable prediction results under these five complex conditions,
offering superior overall detection performance. Although, in specific scenarios, YOLOv8
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achieved the highest accuracy for blurred samples and the GhostNet achieved the highest
accuracy for foggy conditions, both had significant issues with missed detections, leading
to poorer overall performance. Under various conditions, StarCAN-PFD consistently
maintains high accuracy and successfully identifies more challenging samples. This stability
in achieving high accuracy is particularly evident in situations prone to missed detections,
such as at night and in snowy conditions. Therefore, our algorithm is highly suitable for
challenging and difficult environments.

Figure 14. Structure of the DESDetect. (a–e) show the results under different conditions: foggy, night,
blurry, snowy, and sunny days. Groups 1, 2, and 3 represent the visual prediction results of YOLOv8,
YOLOv8-Ghost, and our StarCAN-PFD algorithm, respectively.
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Figure Group A (Foggy Samples): We observed that both YOLOv8 and YOLOv8-
Ghost missed detections, only identifying the left traffic sign. In contrast, the StarCAN-PFD
model successfully detected all relevant signs. For accuracy in recognition, YOLOv8-
Ghost achieved the highest accuracy in identifying the traffic sign on the left side of the
figure. The Ghost backbone network might have higher accuracy in foggy conditions with
an increased IoU threshold. However, due to its higher miss detection rate, the overall
detection performance could be better. Additionally, the accuracy of 0.80 achieved by our
model is sufficient to meet application requirements.

Figure Group B (Night Samples): In the night samples, YOLOv8 failed to recognize the
distant, low-brightness, blurry warning sign. Our method, compared to YOLOv8-Ghost,
identified it with an 18% higher confidence score.

Figure Group C (Blurry Samples): In the blurry samples under a highway overpass,
both YOLOv8 and YOLOv8-Ghost missed the rightmost prohibition sign and the second
warning sign on the left. In contrast, our model successfully detected these signs, demon-
strating their practical value despite not achieving the highest detection accuracy. While
its specific accuracy is slightly lower than that of YOLOv8, its stable performance meets
application requirements. YOLOv8-Ghost, on the other hand, showed poor performance
with low accuracy in detecting blurry samples.

Figure Group D (Snow Samples): In the snow samples, YOLOv8-Ghost had missed de-
tections, while our algorithm achieved a 12% higher confidence score compared to YOLOv8.

Figure Group E (High-Exposure Sunny Samples): In the high-exposure sunny samples,
all three algorithms correctly detected the prohibitory sign, with our algorithm showing
the highest detection confidence.

These experiments demonstrate that the proposed StarCAN-PFD presents an efficient
algorithmic network without overly complex structures or extensive manual tuning. The
performance validation in various complex scenarios also provides more room for other
researchers to generalize and improve network algorithms.

6.2. Limitations and Challenges of the Study

Although ablation and comparative experiments have demonstrated the superiority of
our algorithm, autonomous driving systems still face challenges in real-world applications
due to varying lighting conditions, weather changes, traffic sign styles, and hardware
deployments. These factors can all affect model performance. Like other studies, the design
of certain structures in this experiment involves trade-offs between accuracy and efficiency.
These potential issues require detailed discussion and further research.

In the specific design of the algorithm network, we developed the StarCAN feature
extraction network. By simply adding the CAA structure, we sacrificed a small amount
of space to achieve a significant improvement in accuracy. This balance between effi-
ciency and accuracy is a common challenge faced by researchers. Although the added
parameters and computational load are relatively low, future research should explore more
simplified adjustments.

The same issues are evident in the designs of PFDNet and DESDetect. For challenging
samples in complex environments and multi-scale variations, we must maintain the model
complexity to overcome these challenges. Although we simplified the model through
parameter sharing in the backbone network, shared convolutions, and reparameteriza-
tion, achieving significant reductions in parameters and computational load compared
to mainstream algorithms, these experiments are based on fixed research environments.
Future work must test hardware deployments to verify their generalization superiority
across different hardware devices. Additionally, during the algorithm design process, the
adjustments in these schemes need to fully align with the principle of StarCAN, which aims
to achieve both accuracy and efficiency improvements with the simplest structure. This
area requires collaborative exploration by more researchers to identify the most efficient
network structure paths.
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The design of DESDetect has potential limitations. While the combination of multi-
level convolution and shared convolution enhances feature extraction capabilities and
lightweight characteristics, the added convolutional layers and parameters may slow down
inference speed during hardware deployment and pose a risk of overfitting. Dynamic
adjustments of anchors and strides increase detection flexibility and accuracy but also carry
the risk of slowing down inference speed. Despite showing stable and favorable results
on the validation and test sets in our experiments, DESDetect requires further extensive
data research to improve system reliability due to the complexity of autonomous driving
environments. In summary, although DESDetect demonstrates good performance, its
practical application requires careful consideration of potential performance fluctuations
caused by environmental changes.

The dataset used in this study is one of the latest and most comprehensive datasets
for autonomous driving under complex weather conditions. Additionally, we performed
data augmentation to increase the data volume further. However, we must consider that
the complexity of environmental scenarios requires more extensive real-time experiments.
In some challenging conditions, such as extreme weather, unusual lighting conditions,
or highly cluttered scenes, there may still be a need for greater diversity. Moreover, the
dataset requires more detailed classification. We plan to collaborate with more researchers
in the future to expand the traffic sign samples in these complex scenarios. This will ensure
a more thorough evaluation of our algorithm and verify its applicability to a wide range of
real-world conditions.

Addressing these limitations and challenges is crucial for further improving the ap-
plicability and reliability of the algorithm in autonomous driving and other complex
recognition tasks. Future research will focus on the issues mentioned above, combining
breakthrough discoveries from other scholars to conduct deeper investigations. This will
help in developing more robust and efficient models.

7. Conclusions

To address issues such as occlusion, blur, and low-light conditions in complex road
scenes, as well as the challenges of small-scale target missed detections and multi-scale
sample variations, this study combines the YOLOv8 framework with the StarNet net-
work to design a new efficient algorithm. This new network can accurately identify
challenging samples.

In the backbone feature extraction network, we designed a new framework based on
the simple and efficient concept of StarNet. We introduced the CAA attention mechanism
to construct the StarCAA module, allowing for improved accuracy in a lightweight de-
ployment. Compared to existing complex handcrafted networks, this feature extraction
network reduces computational and parameter costs by half compared to mainstream
backbones like CPSDarknet and EfficientViT while maintaining high performance. Due to
its simplicity, it exhibits excellent generalization capabilities. In the neck, we designed the
PFDNet (Pyramid Focus and Diffusion Network) pyramid network, which preserves more
contextual information through focus and diffusion mechanisms. The shared convolution
and integrated DEAConv convolution modules in the detection head work synergistically
to enhance the information processing capabilities of complex samples, reducing missed
detections of challenging samples such as blurry and low-light conditions. The overall
network structure achieves optimal lightweight results through shared parameters.

Ablation experiments on the backbone network, pyramid network, detection head,
and modules demonstrate the effectiveness of the proposed method. Further comparative
experiments with high-performance network algorithms also verify the superior perfor-
mance of our algorithm. Compared to YOLOv8, our algorithm shows a 4% improvement
in mAP@0.5, reduces the model size to less than half of mainstream models, and exhibits
better performance across different traffic application datasets. This algorithm achieves pre-
cise detection of traffic signs in complex autonomous driving scenarios while maintaining
generalization capabilities.
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There is still room for improvement in the proposed model. Future work will consider
further tuning of additional modules within the simple network structure to enhance de-
tection speed and generalization capabilities without compromising the existing detection
performance. This will enable the model to be applied not only to autonomous driving
target detection in complex environments but also to explore its advantages in other fields
through experimental investigations.
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