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Abstract: Face swapping or face replacement is a challenging task that involves transferring a
source face to a target face while maintaining the target’s facial motion and expression. Although
many studies have made a lot of encouraging progress, we have noticed that most of the current
solutions have the problem of blurred images, abnormal features, and unnatural pictures after face
swapping. To solve these problems, in this paper, we proposed a composite face-swapping generation
network, which includes a face extraction module and a feature fusion generation module. This
model retains the original facial expression features, as well as the background and lighting of the
image while performing face swapping, making the image more realistic and natural. Compared
with other excellent models, our model is more robust in terms of face identity, posture verification,
and image quality.

Keywords: image processing; face fusion; convolutional neural network; generative adversarial
network

1. Introduction

In recent years, deep learning has significantly empowered the field of computer
vision, particularly in the processing of digital images [1,2]. Through deep neural networks,
especially convolutional neural networks, significant progress has been made in various
tasks of computer vision, including image classification, target detection, image segmen-
tation, and image generation. Among them, the rise of generative network models has
shown great potential in image generation, image restoration, and data enhancement, and
more and more researchers are focusing on this field, and the face-swapping task is one
of the research directions. Face swapping refers to the seamless replacement of features
from one face to another, maintaining the characteristics of the target image such as facial
expression, pose, and background. The technique has a wide range of applications in areas
such as portrait appearance modification, video compositing, film production, privacy
protection, facial animation, and augmented reality. With the continuous development and
improvement of the technology, this technology will bring more innovative application
scenarios and possibilities.

Face swapping is a challenging task in computer vision, involving the transfer of a
source face’s identity to a target face while preserving the target’s facial attributes (such as
facial expression, head pose, and background lighting). Early face-swapping techniques
relied primarily on traditional image processing techniques and manual editing. Techniques
such as image alignment and fusion, image sharpening, and distortion required extensive
manual adjustments to ensure natural and realistic results. This may include adjusting
the transparency of the fused region, correcting mismatched features, and smoothing
transitions. For instance, Bitouk et al. [3] developed an automatic face replacement system
that uses face detection software to extract facial features, in the established face graphic
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library, select similar candidate images from a facial graphic library, overlapping, matching,
and mixing after their coordinates, and adjusting the facial color and lighting to facilitate
the replacement of the facial features of the environment fusion. Timothy et al. [4] designed
an active appearance model to model a bunch of images containing control points or masks
into another more convenient method to transform faces through feature coverage. Volker
et al. [5] used 3D modeling to estimate the three-dimensional shape and texture and all
related scene parameters based on a single image. Manual interaction is reduced to clicking
on a set of about seven feature points to exchange facial features. Aseem et al. [6] designed
an interactive computer-aided framework called digital photomontage, which uses graph-
cut optimization and gradient domain fusion to synthesize graphic features. Despite
these advancements, early techniques were limited by algorithm accuracy and required
extensive manual processing, and their synthesized images usually have poor realism and
naturalness in the face of complex facial feature processing, as well as inefficiency.

The advent of deep learning technology has brought revolutionary innovations and
efficient performance advantages, greatly promoting the development of face-swapping
tasks. These methods learn facial feature representations from large-scale face datasets
using deep convolutional neural networks (CNNs) [7,8], achieving better results than tradi-
tional techniques. Iryna et al. [9] described face swapping as a style migration problem,
training a CNN to transfer the appearance of a target identifier from an unstructured
collection of photographs, by describing this face-swapping problem as a style migration
problem, thus achieving the purpose of face-swapping. Yuval et al. [10] used a standard
fully convolutional network, trained on a 3D face dataset for face feature alignment, seg-
mentation, and 3D shape estimation, followed by Poisson blending [11] to merge the source
faces into the target image. Li et al. [12] proposed the Attribute-Conditioned Face Swapping
Network, using an Image Enhancement Network (IEN) to restore high-resolution images
from low-resolution images and a Face Exchange Module (FEM) to swap the faces, and
designed a multi-domain feature fusion module (MDFFM) to integrate the identity feature,
context feature, IEN feature, and attribute vector to obtain the final image. Although
the CNN-based face swap model solves the problems of automation and efficiency, the
swapped faces still have problems such as distorted facial features, abnormalities, blurred
images, and poor quality.

With the emergence of generative adversarial networks (GANs) and the fact that they
can successfully generate realistic fake face images after extensive research, researchers
have begun to try to apply this technology to face-swapping tasks. Conditional GANs
(cGANs) are used to transform images depicting real data from one domain to another
and have inspired a variety of facial re-enactment schemes. Among them, the DeepFakes
project utilizes cGAN to perform face swapping in videos, making it widely available to
non-experts and receiving a lot of public attention. Among the projects, DeepFaceLab [13]
and Faceswap [14] are the most outstanding. DeepFaceLab provides the necessary tools and
an easy-to-use way to perform high-quality face swapping. It also provides a flexible and
loosely coupled structure for those who need to enhance their pipeline with other functions
without writing complex boilerplate code. Faceswap can replace faces in images or videos,
and its generation effect is also excellent. At the same time, it can manually modify and
train a variety of data to achieve better face-swapping results. Yuval et al. [15] proposed the
face-swapping generative adversarial network (FSGAN), which combines recurrent neural
network (RNN) with Poisson optimization and Poisson mixing loss, using a face blending
network to achieve a seamless blending of two faces while preserving the target skin
color and illumination conditions. Xu et al. [16] proposed a simple feedforward network
FaceController to generate high-fidelity faces. They used 3D prior technology to separate
the face identity, expression, and background and then embedded all the information into
the adversarial network through the identity-style module for image generation. However,
they still implicitly use 3D facial representations or rely on latent feature spatial domain
separation for face swapping, which results in a significant loss of feature information and
limits the quality of the generated image.
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In summary, we proposed an efficient composite model for face-swapping tasks in
this paper. The model solves the problem of feature information loss during face swapping,
retains the original expression features, and its generated images are more realistic.

Our approach outperforms the best models available at this stage in terms of preserv-
ing the original face feature information, background, illumination, naturalness, and image
quality. The key contributions of this paper are as follows:

1. We design a composite face-swapping generation network model to solve the feature
loss and image blurring problems in the face-swapping process. The model includes
two main modules: the facial feature extraction module, and the face feature fusion
generation module.

2. To address the problem of unnatural facial feature fusion and poor image quality in
face change tasks, we innovatively used a combination of variational autoencoders
(VAEs) [17] and GANs to improve image quality post-face swap.

3. Our proposed model is experimentally validated to be more robust in face recognition,
pose verification, and image quality assessment compared with other good models.
In the validation of the assessment of image quality, our proposed model reduces the
difference to 0.46 in the FID image quality score and obtains an excellent score of 0.91
in the SSIM score.

2. Related Works

The first task of face-swapping is the detection and recognition of faces [18]. The
traditional methods, which typically recognize faces using one- or two-layer representa-
tions, employ filtered responses, feature code histograms, local descriptors, and feature
transformations, which are less accurate for face recognition. Worse still, most of the
traditional methods are unable to address unconstrained facial variations such as lighting,
pose, expression, or camouflage. Therefore, these scurrying approaches often suffer from
unstable performance or recognition errors in real-world applications. In the convolutional
neural network-based approach, face recognition has made significant progress due to
the widespread use of deep neural networks and the efficient processing power they have
demonstrated. In DeepFace [19] and DeepID [20], face recognition is categorized as a
multi-class classification problem and deep CNN models are introduced to learn features
on large multi-identity datasets. In arcface [21], Additive Angular Margin Loss is proposed
on the basis of SphereFace and CosFace for further increasing the intraclass compactness
and interclass differentiation of extracted features to improve the discriminative ability of
face recognition models. RetinaFace [22] utilizes joint extra-supervised and self-supervised
multi-task learning to perform pixel-level face localization on faces of different scales to
achieve accurate and efficient face localization in the wild. FaceNet [23] trains deep CNNs
on nearly 200 million face images, and learns Euclidean spatial embeddings by using the
ternary loss to achieve state-of-the-art performance.

The face-swapping task has long been a research interest in the computer graphics and
computer vision communities. In the face swap task, a large number of distinctive modeling
methods have emerged from long-term exploration and research, which are mainly divided
into two research directions: 3D face feature-based methods and GAN-based methods. The
3D-based method, the earliest facial exchange method, requires manual participation in
defining facial feature points. Later, a fully automatic facial feature coordinate alignment
method was proposed Structural information, such as 3D models and landmarks, provides
powerful prior knowledge. Justus et al. [24] proposed the face2face network, a method
for real-time facial re-enactment of monocular target video sequences. They used a 3D
deformable facial model (3DMM) [25] of two faces to achieve transfer of facial expressions
from the source to the target face. However, 3D model-based approaches often fail to
accurately reproduce expressions due to the limited expressive power of 3D face datasets.
Generative adversarial networks (GANs) [26] have been shown to generate fake images
with the same distribution as the target domain. Although it can successfully generate
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realistic appearances, training a GAN can be unstable, and this limits its application to
low-resolution images.

However, subsequent methods have improved the stability of the training process [27].
Zhu et al. [28] proposed CycleGAN, which introduces cycle consistency loss to map images
generated from the source domain back to the source domain, allowing the training of
unsupervised universal transformations between different domains. Li et al. [29] Proposed
the FaceShifter algorithm, a two-stage framework to achieve high-fidelity and occlusion-
aware face-changing technology. It extracts target attributes at various spatial resolutions
through a multi-level attribute encoder, and the generator adaptively integrates the face
identity and attributes when synthesizing the face to generate a highly realistic replacement
face. Chen et al. [30] introduced the ID Injection Module (IIM) to transfer the identity
information of the source face to the target face at the feature level, solving the problem
of identity restrictions, and at the same time using training loss constraints to prevent
the target face attributes from being influenced by the source face. Wang et al. [31] de-
signed a network, AP-Swap, consisting of a global residual attribute preserving encoder
(GRAPE) and a landmark-guided feature entanglement module (LFEM). By performing
landmark-based attribute preservation operations, the granularity of facial attributes is
effectively preserved, which is used to improve the quality of the face-swapped image.
Li et al. [32] proposed FaceSwapper, a network consisting of a decomposition represen-
tation module and a semantics-guided fusion module, which separates face identity and
attribute information using an attribute encoder and an identity encoder. In addition,
semantic information was introduced in the semantically guided fusion module to control
the swapping region and to model pose and expression more accurately. These research
methods have improved the quality of face-swapping to some extent, but there are still
some problems such as feature anomalies after face-swapping, image blurring, and image
quality degradation. For this reason, we propose a composite face-swapping generative
network model in this paper to enhance the performance of face-swapping tasks. In the
network, a feature extraction module with an attention layer is designed to improve the
facial feature extraction capability, and a facial feature fusion generation module combining
a Variational Autoencoder (VAE) network and a generative adversarial network (GAN) is
innovatively constructed to solve the feature fusion anomalies, image quality degradation,
and instability problems in the face-swapping task.

3. Methods

We designed a composite face-swapping generation network model, as shown in
Figure 1. The network consists of two parts, the facial feature extraction module and the
face feature fusion generation module. In the face-swapping task, we first need to detect
and identify the face in the image and extract it. The face image is scanned using 3D feature
points to determine the face region for cropping and alignment. Then, the corresponding
face features are extracted by the facial feature extraction network. Afterward, the two-
channel parallel generation network in the face feature fusion module realizes the high-
quality face-swapping image generation.
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Figure 1. Our proposed composite face swap generation network framework. The framework
contains two modules: (1) facial feature extraction module; (2) facial feature fusion module.

3.1. Facial Feature Extraction Module

The facial feature extraction module is shown in Figure 2. Firstly, the source and target
images are preprocessed. Here, a 3D feature point detector is used for face alignment and
pre-cropping of the face part of the image to obtain the preprocessed images It and Is. The
design of the feature extraction network module considers high efficiency and flexibility, so
it borrows from the U-Net [2] framework. Since the original U-Net has the defect of losing
contextual information, in our design of the face feature extraction module, we add the
attention layer [5] after the convolutional layer, and output the accurate face feature maps,
Ft and Fs, after Skip Connections, and computation of the deconvolutional layer.
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Figure 2. Facial feature extraction module. This module consists of a three-dimensional feature point
detector responsible for the preliminary extraction of the face part in the image, and a face feature
extraction network containing an attention layer extracts facial features.

In the face feature extraction network, the feature extraction loss contains reconstruc-
tion loss and feature matching loss. whose function is:

LFE = λ1Lreconstruction + λ2Lfeature matching

= 1
N ∑N

i=1 ∥ Ii − Îi ∥
2
+ 1

N ∑N
i=1 ∥ Fi − F̂i ∥

(1)

where Ii is the i-th input image, and Îi is the i-th image reconstructed after extracting feature
through the U-Net and attention layer. Fi is the feature of the i-th input image, F̂i is features
reconstructed after extracting features through the U-Net and attention layers, and N is the
number of images in the batch.

3.2. Facial Feature Fusion Generation Module

The module, shown in Figure 3, consists of a dual generative network based on VAE
and GAN. It mainly fuses the cropped face features to achieve the perfect face swap. In the
VAE-based face feature fusion generation network, it first performs feature blending on
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Fs and Ft computed from face feature extraction. After that, the feature map is encoded
in the encoder and the decoder extracts the data from the latent space layer for feature
reconstruction, since the VAE-generated image has some blurring quality problems. For
this reason, we add a sharpening layer to further sharpen the features after completing
the generation of the face fusion image, to enhance the image quality. A loss function
combining reconstruction loss and KL divergence loss is used to stabilize the network
during feature training. Its loss equation is:

LVAE = Lreconstruction + LKL (2)
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algorithms and VAE (Variational Autoencoder) network to stably generate face images. The GAN
framework in the lower part includes a generator composed of ResNets and a discriminator composed
of local and global convolutional networks to improve the quality of generated face images.

In the GAN-based facial feature fusion generation network, we reconstructed the
generators and discriminators in the GAN framework. In the generator part, the ResNet
is used as the main network for the reconstruction and generation of the fusion of face
features Ft and Fs, and the size of the feature convolutional sensory field of view is crucial
for the generation of face feature texture in the fusion generation training. Here, we
add a dilated convolution [33] layer instead of the upper and lower sampling layers to
increase the feature sensory field of view, and at the same time, reduce the excessive and
useless convolutional computation. In the construction of the discriminator, consider
that the discriminator is only to discriminate the quality of the image generated by the
generator, so there is no need to design anything too complex as compared to the generator.
Here, we use a discriminator composed of global and local convolutional networks to
discriminate the feature authenticity of the image generated after face swapping. In the
discriminator, the global convolutional network consists of multiple convolutional layers
and one fully connected layer. All convolutional layers use 2 × 2-pixel spans to reduce
the image resolution. The local convolutional network uses a similar architecture, except
that the input image block size is half that of the global discriminator. The authenticity of
the swapped face is finally confirmed by integrating the global and local convolutional
network outputs into the sigmoid activation function computation. Its network loss can be
expressed as:

Lgan(D, G) = Ex∼pdata (x)[log D(x)] +Ez∼pz(z)[log(1 − D(G(z)))] (3)
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where D represents the discriminator, G represents the generator, and z is the corrupted
image.

Finally, the composite face-swapping generation network loss is:

LFG = Lvae + Lgan (4)

4. Experiments
4.1. Trainning and Implementation Details

Datasets. In model training and testing, we selected a variety of datasets for exper-
iments. CelebA-HQ [34]: The CelebFaces Attributes—High Quality dataset comprises a
total of 30,000 high-quality images generated from the celeba dataset after denoising and
super-resolution by a generative adversarial network. FFHQ [35]: The Flickr-Faces—High
Quality dataset is a high-quality image set containing 70,000 PNG images with a resolution
of 1024 × 1024, which are crawled from Flickr and automatically aligned and cropped
using dlib, and it contains considerable diversity in terms of age, ethnicity, and image
background. FaceForensics++ [36]: These data are derived from 977 YouTube videos, all
of which contain trackable frontal surfaces and are unobstructed, and were processed
using four automated face processing methods, Deepfakes, Face2Face, FaceSwap, and
NeuralTextures, to create a face forgery dataset consisting of 1000 raw video sequences
comprising a face forgery dataset.

Implementation Details: In the composite face-swapping generative network, sev-
eral network modules are involved, each of which needs to be trained individually. For
the training of the face feature extraction module, the learning rate is set to 0.0001, and
1000 rounds of training are performed to achieve excellent feature extraction performance.
For the face feature fusion module, both VAE and GAN are trained for 100,000 rounds,
where the learning rate of VAE is set to 0.0001, and in GAN, the learning rate of the genera-
tor is 0.00001 and the learning rate of the discriminator is 0.0001. For data selection, the
face image datasets of CelebA-HQ and FFHQ with a uniform image size of 512 × 512 are
used for the training of the facial feature extraction module and the facial change fusion
generation module. In addition, for the video dataset, we refer to and borrow the rele-
vant experimental setup of FaceShifter, and align and crop the face; the cropped image is
256 × 256 in size and covers the entire face and some background areas. Each video in the
video dataset FaceForensics++ is uniformly sampled and processed at 10 frames per second
to obtain 10,000 aligned faces. Manual checking of aligned faces was also performed to
prevent detection errors. After data cleaning, all of the corresponding frame images in the
video are processed and extracted for testing. The experimental configuration environment
is shown in Table 1.

Table 1. Experimental environment configuration.

Configuration Information

Operating Systems Windows 10

Development Languages Python 3.11

Frameworks Pytorch 2.1.0 + CUDA 11.8

CPU AMD 5800X

GPU NVIDIA RTX 3090 24 G (x2)

Memory 48 GB

4.2. Competing Methods

At this stage, most face swap networks encounter issues after facial feature changes.
Most of the generated face images have some problems, such as image blurring, abnormal
face features, insufficient feature fusion with a sense of tearing, and inability to maintain
the overall appearance of the original face, as shown in Figure 4. Compared with other
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excellent models, in the composite model we proposed, the image generated after changing
the face preserves the overall appearance of the original face while integrating new facial
features, with higher clarity and naturalness.
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Figure 4. Comparison of image features generated after face swap.

After the face swap, how can we determine whether the face swap was successful?
We cannot accurately verify it with the naked eye, so we introduced identity retrieval and
posture. We verify whether the face identity after the face swap is successfully integrated
and whether the face posture has changed. In the quantitative comparison of model metrics,
to validate the effectiveness of our proposed composite network model, we quantitatively
compared the ID retrieval and pose of the face with those of excellent models from other
studies. We adopted the method proposed by Faceshifter to extract the identity vector and
used cosine similarity to measure the identity distance. Faces were exchanged using the
same source and target in FaceForensics++. For each exchanged face in the test set, the
nearest face in the original video frame was identified, and its correspondence to the correct
source video was checked. The accuracy of this identity determination is referred to as ID
retrieval. Additionally, we used a pose estimator to estimate the poses in the generated and
original frames and computed their average L2 distances.

In the ID detection and pose evaluation comparison experiments, we studied and
compared the emergence of superior models at this stage. Each was tested 10 times, and
the average scores were selected for model performance comparison. As presented in
Table 2, our proposed composite network model performs excellently compared with other
network models in both ID detection and pose evaluation comparison experiments, in
which the ID retrieval accuracy is improved to 97.82, the L2 distance is reduced to 1.55
in pose assessment, and the model performance is better than other network models. As
shown in Figure 5, when handling the cross-gender face-switching task with different skin
colors and facial expression features, our designed network model maintains the original
overall expression features while switching faces, making the face-switching task natural
and unobtrusive.

Table 2. Performance comparison of different models.

Methods ID Retrieval Pose

Faceswap [14] 54.19 5.73
FSGAN [15] 60.34 5.28

Deepface [13] 81.96 4.29
Simswap [30] 92.65 2.74

Ours 97.82 1.55
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4.3. Performance Evaluation Metrics

In the face-swapping task, it is important to evaluate the overall quality of the image
generated after face swapping. Most of the face-swapping models have serious degradation
in the quality of the generated images after face swapping. In the image quality verification
experiment, we used the Fréchet inception distance (FID) and structural similarity index
measure (SSIM) to evaluate the quality of the images generated after face replacement.

The FID is a metric used to measure the difference between images generated by a
generative model and real images. It is calculated by comparing their distribution distance
in the feature space of the Inception v3 [37] model. The feature vector used by the FID is the
high-dimensional vector output of the penultimate fully connected layer of the Inception
v3 model. This vector captures the visual feature information of an image. The formula
used is as follows:

FID(x, g) = ||µx − µg||
2
2
+ Tr

(
Σx + Σg − 2

(
ΣxΣg

) 1
2

)
where g and r represent the generated image and the real image, respectively, and µg and
µx denote the mean values of the respective eigenvectors. Σg and Σx denote the covariance
matrix of the respective eigenvectors, and Tr denotes the trace of the matrix.

The SSIM method evaluates image quality by examining multiple regions of the image
and comparing statistics such as structure, brightness, and contrast within these regions.
This algorithm considers the characteristics of human image perception and is more in line
with the visual characteristics of the human eye. The equation is as follows:

SSIM(x, y) =
[
l(x, y)]α ·

[
c(x, y)]β · [s(x, y)]γ

where l(x, y) is the luminance comparison, c(x, y) is the contrast comparison, and s(x, y) is
the structure comparison.
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In the composite face transformation generation network, we propose that quality of
the generated face image after swapping is compared with other excellent models, in which
the proposed model and other compared models are tested on 1000 images generated by
them, respectively, and the average value is selected for the model performance comparison.
As shown in Table 3, FID and SSIM image quality reviews perform ahead of other networks.
In the FID test, the difference between images was reduced to 0.46, and in the SSIM image
quality assessment, its performance was improved to 0.91. In the face-swapping task, the
generated images generally suffer from blurred images, distorted facial features, changes
in overall appearance, and low naturalness. In Figure 6, our model effectively suppresses
these issues compared to other models. The facial images generated by our model after
face swap are more realistic and naturally retain their original overall appearance.

Table 3. Comparison of image quality performance between different models.

Methods FID SSIM

Faceswap 0.57 0.75
FSGAN 0.63 0.54

Deepface 0.59 0.80
Simswap 0.53 0.85

Ours 0.46 0.91
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In the statistical charts, as shown in Figure 7, it is more clearly demonstrated that
our proposed model is more robust than other good models regarding multiple image
generation quality assessment and face feature assessment.
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When faced with different skin colors, expressions, complex backgrounds, and cross-
gender face-swapping tasks, as shown in Figure 8, our proposed model generates face
images that retain the original background and lighting characteristics, resulting in a more
natural appearance. Even in non-frontal (side face) situations, the model still exhibits
excellent performance.
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5. Conclusions and Discussion

Although the face-swapping task has been studied for a long time, at this stage, most of
the models use a single network for the face-swapping task. There are still some problems
that are hard to ignore, with the appearance of unstable face-swapping features, fusion
blurring, and the appearance of accidents, such as a strong sense of boundary. For this
reason, in this paper, we design a composite face-swapping generative network modeling
method to solve these problems. We introduce a facial feature extraction network module
with an attention layer to enhance the face feature extraction capability. In face swapping,
the facial feature fusion generation module consisting of VAE and GAN solves the unstable
image generation of a single GAN network and designs a GAN using it as a generator and
local and global convolutional networks as discriminators for enhancing image generation
performance. After experimental verification, our network is feasible and efficient. In the
validation of the assessment of image quality, our proposed model reduces the difference to
0.46 in the FID image quality score and obtains an excellent score of 0.91 in the SSIM score.

At this stage, face-swapping technology is still too demanding for computer computa-
tion to be deployed in small, low-energy devices, and how to address the light weight of
the network is a direction we should consider and research in the future. In addition, we
should investigate how to identify the authenticity of face-swapped pictures and solve the
security problems caused by the current emergence of many face-swapping technologies
and related software, which cannot distinguish between the authenticity and falsity of
face-swapped pictures, which is another future research direction of ours.
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