Streamlined Deep Learning Models for Move Prediction in Go-Game
Abstract
:1. Introduction
- (1)
- Feature extraction method: For move prediction in the game of Go, we customize the extracted feature planes, which include the current status of the Go board and territory, the last five moves, and the liberties (adjacent empty points of connected stones).
- (2)
- Highly adaptive model: Based on the Inception module and CBAM, we develop models that are sensitive to different situations in the game of Go, thereby improving forecasting accuracy.
- (3)
- Lightweight design: Taking into account the limitations of computing resources for wide applications, we optimize the neural network architecture and significantly reduce the number of model parameters. Consequently, our model can be trained efficiently even with limited computing power.
2. Background and Existing Literature
3. Materials and Methods
3.1. Data Source and Preprocessing
3.2. Feature Design
3.3. Model Construction
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stern, D.; Herbrich, R.; Graepel, T. Bayesian pattern ranking for move prediction in the game of Go. In Proceedings of the 23rd International Conference on Machine Learning (ICML), Pittsburgh, PA, USA, 25–29 June 2006; pp. 873–880. [Google Scholar]
- Clark, C.; Storkey, A. Training deep convolutional neural networks to play Go. In Proceedings of the 32nd International Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015; pp. 1766–1774. [Google Scholar]
- Xu, H.; Seng, K.P.; Ang, L.-M. New hybrid graph convolution neural network with applications in game strategy. Electronics 2023, 12, 4020. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Bouzy, B.; Helmstetter, B. Monte-Carlo Go developments. In Advances in Computer Games; Van Den Herik, H.J., Iida, H., Heinz, E.A., Eds.; Springer: Boston, MA, USA, 2004; pp. 159–174. [Google Scholar]
- Browne, C.B.; Powley, E.; Whitehouse, D.; Lucas, S.M.; Cowling, P.I.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis, S.; Colton, S. A survey of Monte Carlo tree search methods. IEEE Trans. Comp. Intel. AI 2012, 4, 1–43. [Google Scholar] [CrossRef]
- Maddison, C.J.; Huang, A.; Sutskever, I.; Silver, D. Move evaluation in Go using deep convolutional neural networks. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Duc, H.H.; Jihoon, L.; Keechul, J. Suggesting moving positions in Go-game with convolutional neural networks trained data. Int. J. Hybr. Inf. Technol. 2016, 9, 51–58. [Google Scholar] [CrossRef]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the game of Go without human knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Yoon, J.S.; Lee, B. How AI-Based training affected the performance of professional Go players. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (CHI), New Orleans, LA, USA, 29 April–5 May 2022; pp. 1–12. [Google Scholar]
- MuGo: A Minimalist Go Engine Modeled after AlphaGo. Available online: https://github.com/brilee/MuGo (accessed on 1 June 2024).
- Minigo: A Minimalist Go Engine Modeled after AlphaGo Zero, Built on MuGo. Available online: https://github.com/tensorflow/minigo (accessed on 1 June 2024).
- Tian, Y.; Ma, J.; Gong, Q.; Sengupta, S.; Chen, Z.; Pinkerton, J.; Zitnick, C.L. ELF OpenGo: An analysis and open reimplementation of AlphaZero. In Proceedings of the 36th International Conference on Machine Learning (ICML), Long Beach, CA, USA, 10–15 June 2019; pp. 6244–6253. [Google Scholar]
- Leela Zero. Available online: https://github.com/leela-zero/leela-zero (accessed on 1 June 2024).
- Wu, D.J. Accelerating self-play learning in Go. arXiv 2019, arXiv:1902.10565. [Google Scholar]
- Cazenave, T. Residual networks for Computer Go. IEEE Trans. Games 2018, 10, 107–110. [Google Scholar] [CrossRef]
- Cazenave, T. Improving model and search for Computer Go. In Proceedings of the IEEE Conference on Games (CoG), Copenhagen, Denmark, 17–20 August 2021; pp. 1–8. [Google Scholar]
- Wu, T.-R.; Wu, I.-C.; Chen, G.-W.; Wei, T.-H.; Wu, H.-C.; Lai, T.-Y.; Lan, L.-C. Multilabeled value networks for Computer Go. IEEE Trans. Games 2018, 10, 378–389. [Google Scholar] [CrossRef]
- Sagri, A.; Cazenave, T.; Arjonilla, J.; Saffidine, A. Vision transformers for Computer Go. In Proceedings of the 27th European Conference on Applications of Evolutionary Computation, Aberystwyth, UK, 3–5 April 2024; pp. 376–388. [Google Scholar]
- Liu, Y.; Xiao, P.; Fang, J.; Zhang, D. A survey on image classification of lightweight convolutional neural network. In Proceedings of the 19th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Harbin, China, 29–31 July 2023. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.-C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for MobileNetV3. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. ShuffleNet v2: Practical guidelines for efficient CNN architecture design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, (ICML), Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- SGF File Format FF[4]. Available online: https://www.red-bean.com/sgf/ (accessed on 1 June 2024).
- Gao, Y.; Zhang, D.; Li, H. The professional Go annotation dataset. IEEE Trans. Games 2023, 15, 517–526. [Google Scholar] [CrossRef]
- Cazenave, T. Mobile networks for Computer Go. IEEE Trans. Games 2022, 14, 76–84. [Google Scholar] [CrossRef]
- Shao, K.; Zhao, D.; Tang, Z.; Zhu, Y. Move prediction in Gomoku using deep learning. In Proceedings of the 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 292–297. [Google Scholar]
Feature Name | No. of Feature Planes | |
---|---|---|
18 | 10 | |
Predicted player color | 2 | 2 |
Current board situation | 3 | 3 |
Last five moves | 1 | 1 |
Liberties (black) | 6 | 1 |
Liberties (white) | 6 | 1 |
Territory state | - | 2 |
Model Name | Training Data | No. of Feature Planes | Training Accuracy | Testing Data (dan) | Testing Data (kyu) | ||
---|---|---|---|---|---|---|---|
Top1 | Top5 | Top1 | Top5 | ||||
Incep–Attention | dan | 10 | 0.4828 | 0.4581 | 0.7838 | 0.4912 | 0.7949 |
18 | 0.4938 | 0.4487 | 0.7709 | 0.4851 | 0.7904 | ||
kyu | 10 | 0.5060 | 0.4446 | 0.7619 | 0.4960 | 0.7938 | |
18 | 0.4960 | 0.4415 | 0.7652 | 0.4984 | 0.7907 | ||
Up–Down | dan | 10 | 0.4547 | 0.4255 | 0.7553 | 0.4670 | 0.7670 |
18 | 0.4844 | 0.4420 | 0.7603 | 0.4837 | 0.7906 | ||
kyu | 10 | 0.4775 | 0.4168 | 0.7427 | 0.4728 | 0.7694 | |
18 | 0.4780 | 0.4205 | 0.7463 | 0.4779 | 0.7761 | ||
Ensemble | IA_dan-10 + UD_dan-10 | 0.4687 | 0.4626 | 0.7979 | 0.5022 | 0.7948 | |
IA_dan-10 + UD_dan-18 | 0.4837 | 0.4678 | 0.7905 | 0.5035 | 0.8055 | ||
IA_dan-10 + UD_kyu-10 | 0.4787 | 0.4566 | 0.7929 | 0.5012 | 0.7977 | ||
IA_dan-10 + UD_kyu-18 | 0.4798 | 0.4602 | 0.7941 | 0.5060 | 0.8033 | ||
IA_dan-18 + UD_dan-10 | 0.4624 | 0.4672 | 0.7923 | 0.5037 | 0.7946 | ||
IA_dan-18 + UD_dan-18 | 0.4906 | 0.4664 | 0.7898 | 0.5061 | 0.7995 | ||
IA_dan-18 + UD_kyu-10 | 0.4786 | 0.4585 | 0.7859 | 0.5055 | 0.7989 | ||
IA_dan-18 + UD_kyu-18 | 0.4801 | 0.4609 | 0.7839 | 0.5062 | 0.7997 | ||
IA_kyu-10 + UD_dan-10 | 0.4935 | 0.4557 | 0.7879 | 0.5045 | 0.7978 | ||
IA_kyu-10 + UD_dan-18 | 0.5045 | 0.4686 | 0.7944 | 0.5079 | 0.8065 | ||
IA_kyu-10 + UD_kyu-10 | 0.4916 | 0.4629 | 0.7888 | 0.5001 | 0.7947 | ||
IA_kyu-10 + UD_kyu-18 | 0.4966 | 0.4516 | 0.7806 | 0.5057 | 0.8002 | ||
IA_kyu-18 + UD_dan-10 | 0.4798 | 0.4608 | 0.7872 | 0.5063 | 0.7946 | ||
IA_kyu-18 + UD_dan-18 | 0.4947 | 0.4607 | 0.7835 | 0.5103 | 0.7989 | ||
IA_kyu-18 + UD_kyu-10 | 0.4836 | 0.4535 | 0.7789 | 0.5076 | 0.7953 | ||
IA_kyu-18 + UD_kyu-18 | 0.4869 | 0.4499 | 0.7779 | 0.5051 | 0.7970 | ||
UD_dan-10 + UD_dan-18 | 0.4612 | 0.4543 | 0.7819 | 0.4970 | 0.7907 | ||
UD_kyu-10 + UD_kyu-18 | 0.4776 | 0.4422 | 0.7684 | 0.4967 | 0.7895 | ||
UD_dan-10 + UD_kyu-18 | 0.4688 | 0.4476 | 0.7759 | 0.4972 | 0.7868 | ||
UD_dan-18 + UD_kyu-10 | 0.4781 | 0.4503 | 0.7741 | 0.4973 | 0.7927 |
Model Name | Top1 Accuracy | No. of Parameters | |
---|---|---|---|
dan | kyu | ||
AlphaGo-Like [10] | 0.4074 | 0.4347 | 4,402,369 |
MobileNet [31] | 0.4431 | 0.4764 | 1,383,936 |
Incep–Attention (ours) | 0.4581 | 0.4960 | 867,551 |
Up–Down (ours) | 0.4420 | 0.4837 | 106,257 |
Ensemble (ours) | 0.4686 | 0.5079 | 973,808 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-C.; Huang, Y.-C. Streamlined Deep Learning Models for Move Prediction in Go-Game. Electronics 2024, 13, 3093. https://doi.org/10.3390/electronics13153093
Lin Y-C, Huang Y-C. Streamlined Deep Learning Models for Move Prediction in Go-Game. Electronics. 2024; 13(15):3093. https://doi.org/10.3390/electronics13153093
Chicago/Turabian StyleLin, Ying-Chih, and Yu-Chen Huang. 2024. "Streamlined Deep Learning Models for Move Prediction in Go-Game" Electronics 13, no. 15: 3093. https://doi.org/10.3390/electronics13153093
APA StyleLin, Y. -C., & Huang, Y. -C. (2024). Streamlined Deep Learning Models for Move Prediction in Go-Game. Electronics, 13(15), 3093. https://doi.org/10.3390/electronics13153093