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Abstract: Blockchain technology is becoming more prominent and is being used in many differ-
ent industries. Data islands have emerged as a result of the difficulty in transferring assets and
exchanging information between blockchains because of differences in the underlying technology.
Cross-chain technology is becoming increasingly prevalent as a solution to the data security problem.
Decentralized blockchain networks frequently use the Hashed Timelock Contract (HTLC) to solve
the problem of balancing atomicity and time sensitivity. However, it suffers from drawbacks such as
limited security and privacy protection capabilities. To overcome these limitations, a secure and fully
functional system named the Exchange Smart Contract (ExchangeSC) has been developed; the Ex-
changeSC can integrate smart contracts and Paillier homomorphic encryption into the Mid-Account
HTLC (MA-HTLC) cross-chain protocol. This integration effectively resolves the problem of low
security and privacy protection in the HTLC cross-chain protocol. Specifically, the locked information
in the solution is encrypted using homomorphic encryption before uploading to the blockchain,
which is operated by participating nodes in the ciphertext domain. The ExchangeSC demonstrates
reasonable performance on the official testing network’s EVM platform. Further evaluation of the
ExchangeSC-based HTLC cross-chain reveals its superior security and lower time cost compared to
the BitXHub cross-chain project.

Keywords: blockchain; cross-chain; Paillier homomorphic encryption; security and privacy

1. Introduction
1.1. Background and Motivation

With the development of information technology, privacy information protection is
increasingly important [1]. The blockchain was first introduced accompanied by Satoshi
Nakamoto’s publication of the Bitcoin white paper in 2008 [2]. Blockchain has attracted
attention from various sectors of society and major scientific institutions due to its charac-
teristics of decentralization, public maintenance, transparency, tamper resistance, and trace-
ability [3,4]. These features make the blockchain more suitable for data management
systems with high-security requirements [5,6]. Blockchain technology and asset trading are
closely related. We are currently in the era of blockchain 3.0, represented by Consortium
Blockchain, and blockchain technology has been widely applied. Hyperledger Fabric [7],
led by the Linux Foundation and founded by 30 initial enterprise members, including
IBM, is the largest Consortium Blockchain platform. With the continuous development of
blockchain technology, more and more blockchain projects have emerged [8]. There are
many differences in the underlying technologies among chains, including their consensus
and data structures. This leads to the inability to interact between chains, resulting in

Electronics 2024, 13, 3116. https://doi.org/10.3390/electronics13163116 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13163116
https://doi.org/10.3390/electronics13163116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13163116
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13163116?type=check_update&version=1


Electronics 2024, 13, 3116 2 of 17

data islands. To make each blockchain no longer like an island in the ocean, it is urgent to
address the issues of asset transfer and data exchange between heterogeneous blockchains.

Currently, mainstream cross-chain technologies include notary schemes, relays/sidechains,
and Hashed Timelock Contracts [9,10]. The current research status of cross-chain technolo-
gies was analyzed, as described below. Notary schemes are cross-chain schemes created
based on the interledger [11] protocol, which introduces a third party that is jointly trusted
by both parties to act as a notary. Notaries are usually appointed independent nodes
or institutions, and they undertake the tasks of data collection, transaction confirmation,
and verification simultaneously. The notary scheme utilizes smart contracts to operate
between chains, which is convenient. Still, it is prone to a centralized mode, which con-
flicts with the decentralized blockchain concept. In relays/sidechains, a sidechain refers
to another blockchain system with independent functions that can actively perceive the
primary chain’s information and take corresponding actions. The relay acts as a communi-
cation channel when the main and sidechains exchange value and information. A relay
refers to combining a sidechain and notarization mechanism to complete the functions of
collecting, verifying, and forwarding messages. Westerkamp et al. [12] facilitate reliable
cross-chain proofs of soundness by implementing a chain relay to verify the block headers
of proof-of-work blockchains. For proof-of-stake [13] and proof-of-work [14] blockchains,
Yin et al. [15] proposed an efficient sidechain structure with fast cross-chain transmission
speed and small certificate size through a new cross-chain certificate generation process
and committee election method. However, the technical implementation of the sidechain is
complex, and due to the additional complexity of relays/sidechains, the transaction speed
could be faster.

The atomic swap provides cross-chain asset exchange without involving any trusted
third parties. The HTLC can achieve atomic swaps in cross-chain asset transactions and is
the most widely used asset transaction control algorithm. In 2018, Maurice Herlihy [16]
proposed atomic cross-chain swaps based on a strongly connected graph model. To protect
the identity privacy of cross-chain transaction parties, Cai et al. [17] proposed the Paillier
Timelock Contract (PTLC) in their paper, which uses Paillier homomorphic encryption
(PHE) instead of hash encryption. Monika et al. [18] proposed a solution for implementing
an atomic swap between public blockchains using an HTLC. They also formulated the
timelock equations using the confirmation time of probabilistic blockchains to be used in
the HTLC. Barbara [19] proposed Multi-Protocol HTLC (MP-HTLC), which makes multiple
users’ exchange tokens on different blockchains in a single instantiation of the protocol
without any leadership elections. Among the existing HTLC cross-chain protocols, the Mid-
Account HTLC (MA-HTLC) protocol proposed by Liu et al. [20] is the most advanced. They
creatively introduced the concept of an account on Fabric, set up different mid-accounts in
the transfer for asset custody and transfer, and promptly destroyed them after the comple-
tion of the transaction. This protocol applies to the Consortium Blockchain represented by
Fabric and the public chain represented by Bitcoin and Ethereum, expanding the HTLC
cross-chain protocol application scenario. However, there are also some shortcomings in the
protocol. The transaction-locking information is transmitted in clear text. If an adversary
steals it, the adversary can masquerade as the client, communicate with the blockchain,
and steal the client’s assets, significantly reducing the transaction’s security and resulting in
the low anti-attack ability of the protocol. Homomorphic encryption allows computations
to be performed on encrypted data without decrypting them, preserving privacy and
security. This enables secure data processing in cloud environments and protects sensitive
information during analysis.

1.2. Contributions

To solve the above problems, we designed and introduced ExchangeSC, a decentral-
ized system that ensures clients’ identity privacy while facilitating secure information
exchange. By combining smart contracts with Paillier homomorphic encryption [21], this
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protocol can be easily implemented in practical scenarios. The primary contributions of
this study are summarized as follows.

• Enhanced Security and Privacy: By employing the Paillier homomorphic encryption
algorithm, we ensure that the locked transaction information is securely encrypted
before being uploaded to the blockchain. This encryption protects the data from
unauthorized access and tampering during transmission.

• Identity Privacy Protection: The integration of an identity authentication module
prevents adversaries from masquerading as legitimate clients, thereby safeguarding
the participants’ identities throughout the transaction process.

• Decentralization and Practical Deployment: ExchangeSC maintains the decentralized
nature of blockchain technology and is designed for easy deployment in real-world sce-
narios. The system includes a reward and punishment mechanism to mitigate malicious
behaviors by nodes, ensuring the integrity and reliability of cross-chain transactions.

• Performance Efficiency: Implementing ExchangeSC within the Ethereum Virtual
Machine (EVM) has shown reasonable performance, with the time cost of cross-chain
transactions being only marginally higher than that of the original protocol. Moreover,
ExchangeSC outperforms established projects such as BitXHub in terms of security
and time efficiency.

In addition to Section 1, the remainder of this paper proceeds as follows: Section 2
provides an overview of the related knowledge, such as blockchain technology, smart
contracts, the MA-HTLC, and Paillier homomorphic encryption. Section 3 introduces
the ExchangeSC in detail. The security and performance evaluations of ExchangeSC are
presented in Sections 4 and 5, respectively. Finally, Section 6 provides the conclusion.

2. Related Knowledge
2.1. Blockchain Technology

The blockchain utilizes a distributed data storage model with decentralization, trans-
parency, tamper resistance, and traceability, and it records all transactions in a peer-to-peer
network [22]. In a blockchain system, each node maintains a blockchain replica. Figure 1
demonstrates how the information of the transaction is publicly uploaded into the matching
block with the Merkle tree and how this block points to its previous block by recording its
hash. Thus, the information on the blockchain cannot be altered. Additionally, millions
of incentive-driven nodes are expected to confirm the legitimacy of transactions as they
become publicly recorded. The consensus mechanism implemented in the blockchain
system makes it mandatory for all nodes to follow uniform rules. Then, the consistency of
the content of records belonging to different bookkeeping nodes is stored in a distributed
accounting system.

Figure 1. Blockchain structure.

2.2. Smart Contract

The smart contract is a digital contract based on blockchain technology, and it is a
transaction protocol implemented by computer code provided to distributed participants
to follow. A smart contract can be used to build a digital rule to automatically execute
transactions under specific conditions. Specifically, a smart contract is a program created
through contract transactions, and it allows participants to automatically execute trans-
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actions. With smart contracts, transactions can be completed automatically after specific
conditions have been satisfied. As the contract code is stored on a public and tamper-proof
blockchain, smart contracts are trustworthy and reliable. The smart contract in Ethereum
can be regarded as an external account with a contract address. When a contract is invoked,
the contract parameters are used as input, and then the transaction is sent to the contract
address after paying the contract with ETH. Gas is the execution cost of each operation in
Ethereum. Each process in the Ethereum Virtual Machine (EVM) consumes gas. The more
data are computed and stored, the more gas is consumed. Each transaction invoking the
contract must include a gas limit and a gas price, where the gas limit is the maximum gas
consumed in a transaction, and the gas price is determined by the users and the nodes.

2.3. MA-HTLC

The HTLC protocol, derived from the lightning network [23], facilitates decentralized
conditional payments among multiple users, eliminating the necessity for a trusted third-
party intermediary. It is widely used in atomic swap and cross-chain transactions. Hash
locking entails that a commitment is valid if the pre-image for a given hash value H is
provided; otherwise, it becomes invalid. In case of transaction failure due to various
reasons, the implementation of a timelock allows all parties to retrieve their funds and
mitigate potential losses arising from fraudulent activities or transaction failures. This
protocol introduces an accounting system into the Fabric blockchain and integrates smart
contract technology to facilitate secure and seamless asset exchange between Ethereum
and the Fabric network. During the transfer, distinct intermediary accounts are established
for asset custody and transfer purposes, which are promptly eliminated upon transaction
completion, thereby preserving the original cross-chain transaction rate while ensuring
transaction security.

Figure 2 demonstrates that the protocol process consists of the following steps.

Figure 2. Flowchart of the MA-HTLC.

Step 1. Client A creates a mid-account through a pre-image, receives the mid-account
address midadress and hash H(S), creates a hash-lock transaction on Fabric, returns a
transaction lock id1, and sends it to Client B.

Step 2. Client B receives the H(S) and time-lock T by querying the locked asset
transaction and confirms the account balance through midadress. Then, H(S) and T/2 are
used to create a hash timelock transaction on Ethereum, and the transaction lock id2 is
returned and sent to Client A.

Step 3. After receiving id2, Client A will use id2, and S will take out the assets from
Ethereum. If Client A does not retrieve the assets after T/2, the transaction will be deemed
as a failure, and Client B can retrieve the assets.
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Step 4. Client B queries the locked asset status on Ethereum through id2. If the asset
has been taken, the query result returns pre-image S. Then, Client B communicates with
Fabric through S and id1 to retrieve the assets that Client A has locked on it. If Client B
fails to take out the asset within the time limit, it is deemed that the asset exchange failed,
and Client A can retrieve the asset.

2.4. Paillier Homomorphic Encryption

The Paillier homomorphic encryption algorithm is an encryption algorithm based
on public-key cryptography. By performing operations in the ciphertext domain and
decrypting the ciphertext, it can match the operations in the plaintext domain and encrypt
the plaintext. Therefore, data privacy can be protected while searching and calculating
ciphertext. The relevant theoretical knowledge of the algorithm is provided in the following.

2.4.1. Encryption and Decryption Process of the Paillier Algorithm

(1) Key Generation
Two large prime numbers p and q are randomly selected such that gcd(pq, (p− 1)(q−
1) = 1, where gcd(a, b) denotes the greatest common divisor of a and b. n = pq
and λ = lcm(p − 1, q − 1) are calculated, where lcm(a, b) denotes the least common
multiple of a and b. g ∈ Z∗

n2 is selected, and gcd
(

L
(

gλ modn n2), n
)
= 1 is satisfied.

It is ensured that n divides the order of g by checking the existence of the following
modular multiplicative inverse: µ =

(
L
(

gλ mod n2))−1 mod n, where L(x) = x−1
n .

The public key pk is (n, g), and the private key sk is (λ, µ).
(2) Encryption

Let m be the plaintext; a random number r ∈ Z∗
n2 is selected. m is encrypted to obtain

ciphertext c.
c = gmrn mod n2

(3) Decryption
Let c be the ciphertext, where c ∈ Z∗

n2 . c is decrypted to obtain plaintext m.

m =
L
(
cλ modn n2)

L
(

gλ modn n2
) mod n

2.4.2. The Additive Homomorphism Property of Paillier’s Algorithm

The value of Enc(a + b) can be calculated by multiplying Enc(a) and Enc(b). The real
value of a + b can be obtained after decryption by the person who has pk.

In the Paillier algorithm, adding in the plaintext domain is equivalent to multiplying
in the ciphertext domain.

Enc(a + b) = Enc(a) · Enc(b)

3. ExchangeSC Design

To address the issue of inadequate security and client privacy in the MA-HTLC proto-
col, we developed ExchangeSC, an information security exchange system based on Paillier
homomorphic encryption. Additionally, we incorporated a blockchain depository function
to document any transaction-related disputes. Conceptually, Figure 3 demonstrates that
ExchangeSC implements a scheme for secure information exchange that safeguards client
privacy. Clients are provided with an Application Programming Interface (API) for infor-
mation exchange through the encryption API within ExchangeSC, which must interact with
the smart contract via the authoritative node Pa. The authoritative node is either assumed
or selected by the authoritative institution and possesses a reliable identity. The smart
contract deployed on the blockchain serves as an incentive mechanism to ensure secure
information exchange for all parties involved.

In this section, we describe the three-part structure of ExchangeSC. ExchangeSC im-
plements a hybrid blockchain system that supports client information security exchange,
client privacy protection, and exchange record supervision and storage through smart con-
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tracts and an information transmission scheme based on Paillier homomorphic encryption.
In ExchangeSC, the three parts interact seamlessly; the client invokes the interface in the
Paillier encryption API, and the algorithm in the Paillier encryption API is completed in
the blockchain and through client participation.

Figure 3. System architecture of ExchangeSC.

3.1. Client Part

The client part is composed of Client A, Client B, and the interaction with the Paillier
encryption API. This part connects two types of entities: Client A and Client B. Both
Client A and Client B interact directly with local encryption rather than directly with the
blockchain part.

Client A: This is the initiator of information exchange and hopes to initiate a regulated
information exchange.

Client B: This is the receiver of the information exchange. After receiving and verifying
the correctness of the information sent by A, Client B sends their information to A.

The client invokes the API interface, converts the hexadecimal hash value into a deci-
mal number, decomposes the decimal number into two numbers, and adds them through
Div; then, they obtain the public–private key pair through KeyGen, encrypt the two numbers
through Enc, and encrypt the identity information with the private key for generation.
Finally, the signature and ciphertext information is uploaded to the authoritative node
in the blockchain. When receiving the ciphertext information, it is decrypted with Dec to
obtain the original plaintext information.

3.2. Paillier Encryption API Part

The Paillier homomorphic encryption API aims to encrypt information and meet client
requirements. In addition, encryption is directly associated with the authoritative node,
so the API can participate in the calling of the smart contract through the authoritative
node. When the cross-chain transaction starts, the APIs of both clients are deployed and
synchronized by a Key Generation Center (KGC) to ensure that the KeyGen generates the
same public–private key pair. Below, we will introduce the working principle.

(1) The signature information uploaded by the client Sig is received and saved.
(2) A Div interface is provided. The client first inputs id1/id2 into the API, then invokes Div

to convert the hexadecimal hash value into a decimal number, and randomly decomposes
it into the following two numbers in the form of addition for the subsequent encryption.

(3) Clients are provided with the KeyGen interface to generate public and private key
pairs (sk, pk) for Paillier encryption.

(4) An encryption interface Enc and decryption interface Dec are provided. Clients can
encrypt

(
id′1, id′′1

)
/(id′2, id′′2 ) to (C1, C2)/(C4, C5) by invoking Enc, and they can de-

crypt C3/C6 to plaintext information by invoking Dec. Finally, the decimal plaintext
information is converted into a hexadecimal hash value to obtain id1/id2.
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3.3. Blockchain Part

The blockchain is the most essential part of the system, as it is used to exchange
information between the two parties in a secure manner and to store and supervise the
exchanged information. Nodes in the blockchain network are recruited, and the smart con-
tract is invoked to multiply the ciphertext pair and send the result to Pa. The participating
node Pi will only receive the ciphertext pair encrypted by the Paillier algorithm and cannot
receive any other relevant information or any client information. Smart contracts are used
to record registration information and transparently execute services, which are finally
recorded by the blockchain. The smart contract consists of the following five algorithms.

(1) Registration: In this part, we introduce the process of node registration (Algorithm 1).
A node Pi in the blockchain obtains rewards by providing services calculated on the
ciphertext domain. It must register by paying a deposit to the smart contract and filling
in the registration information. The deposit is used to punish the improper behavior of a
node. If a node provides an incorrect answer or fails to provide an answer, it will lose part
of the deposit. The registration information is as follows.

• Registered deposit.
• Node address.
• The slowest service completion time.
• The number of completed services (initially 0, +1 after correct service completion, and

−1 after incorrect service completion).

The registration information is recorded in the smart contract, and each entity in the
blockchain network must comply with the smart contract protocol, so the smart contract
acts as the intermediary between an entity and the blockchain network.

Algorithm 1 Registration
Input parameters: node address, deposit, slowest service time
Output: RegistrationInfor
1: function register (node address, deposit, slowest service time)
2: contract.sendDeposit (node address, deposit)
3: contract.registerNode (node address, deposit, slowest service time)
4: end
5: return RegistrationInfor

(2) Request: In this part, we will explain the process of the node Pa requesting services
(Algorithm 2). When the authoritative node receives the transaction information, it requests
a service from the smart contract and submits a service request, which consists of ciphertext
information, the number of participating service nodes, a registration deposit demand, a
service completion time demand, and a slowest completion time demand. Then, according
to the service request, the smart contract selects the nodes whose registration deposit is
greater than the registration deposit demand, whose service completion times are greater
than the service completion time demand, and whose slowest completion time is less
than the slowest completion time demand to participate in this service, and it sends the
ciphertext information to the selected node. If the slowest completion time of two nodes
is the same, to select a more reliable node, the smart contract should select the node with
more registration deposits and more service times. To ensure the efficiency of the service,
when the deposit for registration is the same and the number of completed services is
the same, the nodes with the slowest completion time will be preferentially selected for
service. If the client has no requirements for service time, the smart contract should choose
a node with higher integrity for service. To select a more secure and reliable node and
complete the service request more quickly, a greedy algorithm is used as a solution to the
problem. The request will be terminated if a qualified node cannot be found among the
existing nodes.
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Algorithm 2 Request
Input: ciphertext, num participants, deposit requirement, service time requirement,

slowest service time requirement
Output: Pi

1: function request(ciphertext, num participants, deposit requirement, service time re-
quirement, slowest service time requirement)

2: nodes = contract.getNodes()
3: valid nodes = [ node for node in nodes if node.deposit >= deposit requirement

node.service times >= service time requirement node.slowest service time >= slowest
service time requirement ]

4: valid nodes.sort(key=λ x:(x.slowest service time, -x.deposit, -x.service times, x.node
address))

5: if participants = valid nodes[:num participants] then
6: for i in range(len(participants)) do
7: node = participants[i]
8: contract.sendCiphertext(n.node address,ciphertext)
9: end for

10: end if
11: return Pi

(3) Verification: In this part, Pa verifies the digital signature of the clients to confirm
their identity.

(4) Calculation: In this part, Pi multiplies the ciphertext in the ciphertext field to
calculate the result and sends the result to Pa.

(5) Report: In this part, nodes that have not participated in the service but have paid
the deposit can report the misconduct of the participating service nodes (Algorithm 3).
Misconduct includes miscalculation and negative services (not calculated), which are
rewarded through the smart contract. The two forms of misconduct are reported as follows.

• To deal with the improper behavior of miscalculation, we designed a service mode.
When a service request is received, the smart contract selects the Pi with service
number n. Assuming that the Pi returns two different results to Pa through calculation,
both results will be sent to the client’s local API. The client first decrypts the results of a
larger number of calculations and decrypts another result if this fails. When the client
completes this exchange service, it will broadcast the ciphertext information to the
blockchain network. The node that does not participate in this service but has paid the
deposit will calculate and send the report information to the smart contract. The report
information includes the registered deposit and misconduct of the nodes. Similarly,
the registration deposit of the reporting node is also more than the requirement, thus
reducing the behavior of malicious reporting. Then, the smart contract check results
show that if the Pi does have the improper behavior of miscalculation, part of its
registration deposit will be deducted from the reporting node.

• To deal with the improper behavior of providing a negative service, the nodes in the
blockchain network can detect the service record and whether the Pi returned the
results within the shortest service time. If not, negative service behavior is found.
The report information is sent to the smart contract, including the registered deposit
and misconduct. Then, the smart contract checks the service record. If it is indeed as
shown in the report information, the reporting node will obtain part of the deposit of
the Pi. Otherwise, it will deduct part of its deposit.

If a node in the blockchain network does not provide report information within a
certain period of time, the Pi will be rewarded. Note that the reporting process is carried
out after the client obtains the ciphertext information, so it will not affect the efficiency.

The blockchain should meet the following three essential requirements to provide
security, privacy, and fairness.
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• Privacy: The blockchain protects the privacy of the client’s identity, and ordinary
participating nodes cannot obtain relevant client information.

• Security: Pa and Pi in the blockchain cannot deduce any information related to plain-
text information through ciphertext.

• Fairness: The blockchain’s reward and punishment mechanisms ensure the calculation
results’ correctness. Malicious nodes will be detected after service, and their deposit
will be deducted. At the same time, the blockchain also has a Report mechanism,
and the whole process is recorded in the blockchain network, which means that
malicious nodes that fail to provide services correctly for any reason will be detected
by the smart contract and punished.

Algorithm 3 Report
Input: registration deposit, improper behavior
Output: reportInfor
1: function report(registration deposit, improper behavior)
2: nodes = contract.getNodes()
3: report nodes = [node for node in nodes if node.deposit = registration deposit]
4: if improper behavior == “improper computation” then
5: for i in range(len(report nodes)) do
6: node = report nodes[i]
7: result1 = contract.getResult(node.node address, 1)
8: result2 = contract.getResult(node.node address, 2)
9: contract.sendReport(node.node address, “improper computation”, result1, re-

sult2)
10: end for
11: service records = contract.getServiceRecords()
12: for i in range(len(service records)) do
13: record = service records[i]
14: if record.finishT-record.startT = record.slowest service time and not

record.resultprovided then
15: node = contract.getNode(record.provider address)
16: if node.deposit = registration deposit then contract.sendReport(node.node

address, “passive service”, None, None)
17: end if
18: end if
19: end for
20: end if
21: return reportInfor

3.4. Workflow of ExchangeSC

The specific workflow of the system is divided into the following 11 steps. Figure 3
demonstrates further details.

Step 1. Client A inputs SigA and id1 into the local API.
Step 2. The API divides id1 as id1 = id′1 + id′′1 and uses the Paillier homomorphic

encryption algorithm to encrypt id′1 and id′′1 ; then, the ciphertext information C1 and C2 is
obtained. The API uploads C1, C2, and SigA to Pa.

Step 3. Client B inputs SigA into the local API, which uploads SigA to Pa.
Step 4. Pa invokes Verify to decrypt SigA and SigB using their respective public keys,

which verifies the identity of both.
Step 5. Pa sends C1 and C2 to Pi. Pi invokes Calculate to calculate the result of the

multiplication operation on the ciphertext domain for C1 and C2 and then transmits the
result of the respective calculation C3 to Pa. After that, Pa records the information of Pi and
sends C3 to the local API for Client B.

Step 6. Client B uses the API to decrypt C3 and verify the correctness of id1.
Step 7. Client A inputs id1 into the local API.
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Step 8. The API divides id2 as id2 = id′2 + id′′2 and uses the Paillier homomorphic
encryption algorithm to encrypt id′2 and id′′2 ; then, it receives ciphertext information C4 and
C5. The API uploads C4 and C5 to Pa.

Step 9. Pa sends C4 and C5 to Pi. Pi invokes Calculate to calculate the result of the
multiplication operation on the ciphertext domain for C4 and C5 and sends the result of the
respective calculation C6 to Pa. Then, Pa records the information of Pi and sends C6 to the
local API for Client A.

Step 10. Client B uses the API to decrypt C6 to obtain id2 and verify the correctness
of id2.

After the above steps are completed and no nodes participating in the service have
invoked Report, the exchange process is considered to be completed, and the transaction
information is packaged and uploaded to the blockchain for storage and supervision.

4. Correctness and Security Analysis

This section analyzes and demonstrates the correctness and security perspectives
of ExchangeSC.

4.1. Correctness Analysis

The correctness of ExchangeSC is discussed in the following theorems.

Theorem 1. Client A can obtain id1 by decrypting C3 using Dec.

Proof. Select a random integer g where g ∈ Z∗
n2 , so gλ ≡ 1 mod n and gnλ ≡ 1 modn n2.

Then, select id ∈ Z∗
n2 , and let gλ = 1 + kn. The private key (λ, µ) is used for decryption.

Dec(C3) =L
(

Cλ mod n2
)

µ mod n

=
L
(
cλ mod n2)

L
(

gλ mod n2
) mod n

=

L
((

gid1 rn
)λ

mod n2
)

L
(

gλ mod n2
) mod n

=
L
((

gλ
)id1 mod n2

)
L
(

gλ mod n2
)

Substituting gλ = 1 + kn into the above equation, we find that

Dec(C3) =
L
(
(1 + kn)id1 mod n2

)
L(1 + kn)

=
id1 · k

k
=id1

Theorem 2. Client B can obtain id2 by decrypting C6 using Dec.

Proof. The proof is omitted, as it is the same as that in Theorem 1.

Theorem 3. The client performs Div, id = id′ + id′′, and encrypts id in the plaintext domain.
The node multiplies the ciphered id′ and id′′ in the ciphertext domain and obtains the same result as
that after decryption.

Enc(id) = Enc
(
id′

)
Enc

(
id′′

)
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Proof. Select a random integer g where g ∈ Z∗
n2 , so gλ ≡ 1 modn and gnλ ≡ 1 mod n2.

Then, select an id and random numbers r1, r2. Here, id ∈ Z∗
n2 and r1, r2 ∈ Z∗

n2 .

Enc
(
id′

)
Enc

(
id′′

)
=

(
gid′rn

1 mod
(

n2
))(

gid′′rn
2 mod

(
n2

))
= gid′+id′′(r1r2)

n mod
(

n2
)

= Enc
(
id′ + id′′

)
= Enc(id)

4.2. Security Analysis

ExchangeSC guarantees that only authenticated clients are entitled to ciphertext infor-
mation through the blockchain node computing service.

Adversary Assumptions: We have made the following assumptions about the adversarial
model.

• The key of the encryption API is generated by the KGC, and both sides of the encryp-
tion API are deployed and synchronized by the KGC, which is a trusted party; the key
is not disclosed to anyone after it is generated.

• No party in the blockchain network can control the vast majority of computing power,
i.e., no 51% attack can be launched, so all transactions and actions of nodes are publicly
recorded in the blockchain and are tamper-evident.

• The communication channel between the crypto API and the blockchain network is
protected by SSL/TLS and cannot be tampered with or leaked to nodes in the blockchain.

Adversary model: It is considered that there are two types of attackers in the system:
internal and external. We assume that the internal attacker could be every node in the
blockchain network, while the external attacker has not paid a deposit to become a regis-
tered node.

(1) Internal Attackers: An internal attacker can participate in the smart contract to
perform a service, and it can obtain (C1, C2)/(C4, C5). There are two ways to attack:
committing misconduct in the service or reporting process but being rewarded and stealing
the privacy of the client’s identity. The proposed system implements security against both
of these types of attacks.

• Since all actions of nodes are public in the blockchain network, their misbehaviors
are recorded. The system’s reporting mechanism can detect these misbehaviors and
punish nodes that have done so.

• The client’s identity information is not made public to the blockchain network but is
sent by the API, which verifies the identity information. Therefore, an internal attacker
cannot distinguish who it is actually providing services to, which effectively protects
the privacy of the client’s identity.

(2) External Attackers: An external attacker can eavesdrop on the ciphertext and access
public transactions in the blockchain network. The goal of their attack is to obtain the
ciphertext information and then decrypt it to gain id1/id2 and, thus, steal the assets that
the client has locked on the chain.

The security of our system is based on the security of Paillier homomorphic encryp-
tion. The Paillier scheme meets the standard security definition of an encryption scheme:
semantic security, that is, the indiscernibility of ciphertext under a chosen-plaintext attack
(IND-CPA). The security of the scheme can be reduced to the decisional composite residuity
assumption, which means that given a composite number n and an integer z, it is difficult
to determine whether z is an nth-power residue under n2. So far, no polynomial time algo-
rithm can break through, and the security of the Paillier encryption scheme is considered
reliable. So, even if the attacker eavesdrops on the ciphertext information, they cannot
make inferences from the id1/id2 ciphertext information.
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The security proof is given as follows.

Theorem 4. If the original id is divided into n fragments, the id is indicated as a set
A =

{
a1, a2, . . . , ai, . . . , aj, . . . , an

}
, ∀ai, aj ∈ A, ai ̸= aj, i < j. If

{
ai, . . . , aj

}
are extracted

from A, thus obtaining A′ =
{

a1, a2, . . . , ai−1, aj+1, . . . , an
}

, then the following formula holds.

Dec
(
Enc

(
A − A′)Enc

(
A′)) = Dec(Enc(A))

Proof. Assuming that the original formula is not tenable, the following formula holds.

Dec
(
Enc

(
A − A′)Enc

(
A′)) ̸= Dec(Enc(A))

It follows from the correctness of the homomorphism that this formula can be reduced
to ∼A′ ∪ A′ ̸= A; this obviously contradicts the condition.

So, this assumption does not hold.

Theorem 5. If the original id is divided into n fragments, the id is indicated as a set
A = {a1, a2, . . . , ak . . . , an}. For any aτ ̸= ak, instead of ak, and A′ = {a1, a2 . . . , aτ . . . , an} is
obtained; then, the following formula holds.

Dec(Enc(A)) ̸= Dec
(
Enc

(
A′))

Proof. This mimics a substitution attack by an adversary. The correctness of the Paillier
algorithm makes the sufficient condition for successful decryption the use of the correct
set A. So, the replacement of the correct fragment obviously cannot result in the correct
decryption result being obtained.

Corollary 1. If A = {a1, a2, . . . , ak−1, ak, ak+1 . . . , an}, 1 < k < n, after deleting a certain
ak ∈ A, A′ = {a1, a2, . . . , ak−1, ak+1 . . . , an} is obtained; then, the following inequality holds.

Dec(Enc(A)) ̸= Dec
(
Enc

(
A′))

Corollary 2. If A = {a1, a2, . . . , an}, adding ∀aτ /∈ A, A′ = {a1, a2, . . . , an, aτ} is obtained;
then, the following inequality holds.

Dec(Enc(A)) ̸= Dec
(
Enc

(
A′))

According to Theorems 4 and 5 and their corollaries, the safety of the newly proposed
ExchangeSC was demonstrated. If a customer’s identity information is partially replaced,
deleted, or added, it cannot be decrypted and verified. Thus, the security of the proposed
ExchangeSC can be fully demonstrated in theory and application.

5. Experiment and Performance Evaluation
5.1. Experimental Environment

This prototype was deployed on 8 GB of Intel (R) Core (TM) i5-12500H memory
CPU@2.54 on the GHz Ubuntu 18.04 system; the hard disk’s storage space was 80 GB.
The PHE API was coded in Python 3.7 and included four interfaces: Div, KeyGen, Enc, and
Dec. The smart contract was coded using Remix IDE 0.42 [24] and the Solidity language [25].
The smart contract was designed with five functions: Registration, Request, Verification,
Calculation, and Report. The smart contract was deployed, and the gas cost was tested on
the official test network of Ethereum, Sepolia [26].

5.2. Encryption API Simulation

To evaluate the time overhead of the Paillier homomorphic encryption API, Div,
Enc, and Dec were tested with the key size settings of 512 bits, 1024 bits, and 2048 bits,
respectively. Repeated experiments of 200 operations were conducted to obtain the average
time overhead, as shown in Table 1. For the process of encryption and decryption, the case of
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a 1024-bit key size was analyzed. The encryption took about 31.913 ms, and the decryption
took about 9.648 ms, giving a total of 41.579 ms for the whole process, which shows that
the time overhead is reasonable.

Table 1. Average time cost of 200 PHE operations (ms).

Operations 512-Bit 1024-Bit 2048-Bit

Div(m) : m = m′ + m′′ 0.018 0.018 0.019
Enc(m′)Enc(m′′) 8.727 31.913 341.626

Dec(Enc(m)) 1.597 9.648 71.619
Overall 10.342 41.579 413.264

5.3. Experiments on the Official Test Network

The ExchangeSC was deployed to the official Ethereum test network, Sepolia, which
mimics a real production network, to demonstrate the practicality of ExchangeSC. The gas
costs of Registration, Request, Verification, Calculation, and Report were tested separately.
Figure 4 demonstrates that nodes invoking Registration cost roughly 0.00034 ETH, indicating
that the cost of Registration is low enough that nodes do not abandon participation in the
service due to the high registration fee. Similarly, the gas cost for the Verification and
Calculation interfaces is also low at 0.00037 ETH and 0.00032 ETH, respectively. The gas
cost is related to the complexity of the code, and the above three interfaces are simple,
so the gas cost is low and the overhead is reasonable. Request requires the selection of
participating service nodes. For one eligible node, it costs 0.00064 ETH. As it has a loop
traversal operation, the gas cost increases linearly as the number of nodes increases, which
is also reasonable. The code for the Report interface is relatively complex and requires a
cost of 0.00098 ETH. Still, it only needs to be called in two situations: firstly, when the client
receives two or more different calculation results; secondly, when the number of calculation
results is less than the number of service nodes. Because there are few dishonest nodes in
Sepolia, the Report mechanism is regarded as more of a threat.

Figure 4. Gas costs in Sepolia.

5.4. Verification Experiment on the Theorems

We introduced some important fields and collections, as shown in Table 2, and then
validated the theorems’ correctness by conducting a series of experiments. Firstly, an id was
generated, and then the API was utilized to divide it into four fragments. Subsequently,
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four experiments were conducted separately, and the parameters were changed four times
in each experiment. As shown in Tables 3–6, the correctness of the theorems was verified
by the experiments.

Table 2. Fields and collections.

Field Description

id input 22
A id f ragments set
A′ id f ragments changing set
ak id f ragments = {2, 5, 6, 9}
aτ an element used to replace or add

Enc(id) Enc(22) = 625 . . . 132

Table 3. Verification of Theorem 4.

Test α = Enc(A′) β = Enc(∼A′) Dec(α · β) True and False

1 546. . . 158 448. . . 549 22 Ture (✓)
2 846. . . 113 244. . . 647 22 Ture (✓)
3 715. . . 484 184. . . 754 22 Ture (✓)
4 436. . . 122 137. . . 641 22 Ture (✓)

Table 4. Verification of Theorem 5.

Test aτ → ak Enc(A′) Dec(A′) True or False

1 3 → 9 386. . . 754 16 False (×)
2 8 → 5 911. . . 521 25 False (×)
3 1 → 2 315. . . 775 21 False (×)
3 7 → 6 476. . . 667 23 False (×)

Table 5. Verification of Corollary 1.

Test aτ → ak Enc(A′) Dec(A′) True or False

1 9 228. . . 697 13 False (×)
2 5 927. . . 200 17 False (×)
3 2 466. . . 454 20 False (×)
4 6 872. . . 155 16 False (×)

Table 6. Verification of Corollary 2.

Test aτ → ak Enc(A′) Dec(A′) True or False

1 3 331. . . 751 25 False (×)
2 4 275. . . 312 26 False (×)
3 7 355. . . 162 29 False (×)
4 8 390. . . 661 30 False (×)

5.5. Cross-Chain Simulation

In this part, a full cross-chain transaction was run with the slowest time to complete
the service set to 8 s to evaluate and analyze the performance of the protocol added to Ex-
changeSC. The experiments tested the time overhead of the proposed protocol, MA-HTLC,
and BitXHub. Figure 5 demonstrates that the time cost of cross-chain transactions using
the protocol is only 19.6% higher than that of MA-HTLC, and the additional time overhead
is mainly used for secure exchanges in the ExchangeSC. This is a reasonable time cost to
enhance the security of the protocol. The time cost of cross-chain transactions using this
protocol is lower than that of the BitXHub project, which is a high-level improvement and
shows that the improved protocol is efficient while meeting security requirements.
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Figure 5. Time cost comparison.

To verify the robustness of this scheme and the correctness of the theorem, 50 nodes
were set up, and 50 message exchanges were initiated. The percentages of malicious nodes
were set to 20%, 40%, 60%, 80%, and 98%. Figure 6 demonstrates the success rate of message
exchange in ExchangeSC. It can be observed that the transaction success rate of this scheme
always remains at a high level and does not decrease with the increase in malicious nodes.
In contrast, the success rate of other schemes decreases with the increase in malicious nodes.
This robustness is achieved because the proposed scheme sends the calculation results of all
nodes to the client, which decrypts the same number of results in order from most to least.
Therefore, the client may still access the actual data even if 49 of the 50 nodes are malicious.

Figure 6. Effect of malicious nodes.
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6. Conclusions and Further Work

In this paper, we examine the current mainstream cross-chain techniques and their
problems. In order to solve the problem of the insufficient security and privacy of the
HTLC cross-chain technology, we propose ExchangeSC and integrate it into the MA-HTLC.
ExchangeSC combines smart contracts with Paillier homomorphic encryption for locking
the secure and private exchange of information and introduces a reward and punishment
mechanism to design an evidence storage function that follows in case of disputes between
the parties. Then, a concrete implementation is demonstrated. The experimental results
show that ExchangeSC has a reasonable gas cost. Compared to the original protocol,
the newly proposed scheme improves the security of cross-chain transactions at the cost
of a small time overhead and outperforms the established BitXHub project in terms of
efficiency. Moreover, the scheme has high fault tolerance, and malicious nodes do not affect
the success rate of information exchange.
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