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Abstract: Social networks have become deeply integrated into our daily lives, leading to an increase
in image sharing across different platforms. Simultaneously, the existence of robust and user-friendly
media editors not only facilitates artistic innovation, but also raises concerns regarding the ease of
creating misleading media. This highlights the need for developing new advanced techniques for the
image copy detection task, which involves evaluating whether photos or videos originate from the
same source. This research introduces a novel application of the Vision Transformer (ViT) model to
the image copy detection task on the DISC21 dataset. Our approach involves innovative strategic
sampling of the extensive DISC21 training set using K-means clustering to achieve a representative
subset. Additionally, we employ complex augmentation pipelines applied while training with
varying intensities. Our methodology follows the instance discrimination concept, where the Vision
Transformer model is used as a classifier to map different augmentations of the same image to the
same class. Next, the trained ViT model extracts descriptors of original and manipulated images that
subsequently underwent post-processing to reduce dimensionality. Our best-achieving model, tested
on a refined query set of 10K augmented images from the DISC21 dataset, attained a state-of-the-art
micro-average precision of 0.79, demonstrating the effectiveness and innovation of our approach.

Keywords: artificial intelligence; copy detection; deep learning; supervised learning; vision
transformers

1. Introduction

Social media has become an integral part of daily life, remarkably influencing how
we communicate, share information, and perceive the world, particularly through the
use of and engagement with images. This phenomenon extends to the modification of
images, which plays a crucial role in shaping personal and social narratives. The blending
of text and images in spreading information has been shown to enhance the perceived
credibility of content, making the detection and correction of disinformation increasingly
challenging [1]. Additionally, the widespread influence of digitally altered images has
been found to affect individual body satisfaction and beauty goals, maintaining unrealistic
standards despite public awareness of these modifications [2].

Copy detection has emerged as a fundamental task in the digital era. As defined
by Pizzi et al. [3], this process involves determining whether pieces of media, such as
photographs or videos, are derived from the same original source. The relevance of copy
detection expands in the context of image usage and manipulation, a common occurrence
in our digital world where image modification and distribution are common.

Image manipulation, while prevalent in the digital age, is not a new phenomenon.
Historically, it has been used for various purposes. Joseph Stalin manipulated photographs
to eliminate political rivals from Soviet records, as highlighted by source [4]. In today’s
digital landscape, however, the simplicity of altering images brings additional challenges.
The easy access to sophisticated, yet user-friendly, image editing tools poses risks related to
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historical accuracy and the propagation of false information. Modern examples, including
the alteration of images of Martin Luther King Jr. to depict them inappropriately and the
manipulation of crowd sizes in photographs from President Trump’s inauguration, serve as
examples of how easily historical facts can be misrepresented [5]. Furthermore, an analysis
of over 13 million Facebook posts, found that about 23% of political images were corrupted
with misinformation [6]. This included various forms, such as altered images, misleading
memes, unmodified images with incorrect captions, and screenshots of misleading social
media posts.

The increasing sophistication in the manipulation of digital content, as evidenced
by the study of Khalil et al. [7], highlights the urgent need for advanced models capable
of distinguishing between genuine and altered media, underscoring the critical role of
technological advancements in maintaining the authenticity of digital media. Using deep-
fake technology in the diffusion of personal intimate images, especially through sharing
personal images without consent, is one example of unauthorized image manipulation
approaches. The use of such technology violates personal privacy and may lead to one
being involved in legal and social problems [8].

With the rising use of social media and the vast amount of photos and videos shared
every day, it has recently become a challenge to detect false visuals. The threat of such false
media going viral while being unnoticed may lead to the spread of false, biased truths and
people losing trust in the media. This has brought about the need for developing reliable
image copy detection models to be used by journalists and social media platforms in order
to spot and combat these false visuals. Therefore, having effective image copy detection
tools is essential, as it ensures the ethical sharing of original images, which in turn helps
maintain the trustworthiness of online content. These tools also protect the rights of those
who create visual content against unauthorized copying.

This article attempts to find a solution to the image copy detection problem through
the use of Vision Transformers (ViT), particularly focusing on the descriptor track of the
Image Similarity Challenge 2021 (ISC21) [9], which will be explained in the upcoming
section. Our approach features the following innovative aspects:

1. Dynamic augmentation pipelines: Introducing a dynamic augmentation strategy with
varying levels of augmentation difficulty, applied on the fly during training. This dy-
namic augmentation not only enhances the model’s robustness against various image
transformations, but also provides a fresh set of training examples for each epoch.

2. Data-efficient performance: training with significantly fewer images (only 3% of the
DISC21 dataset [9]) and less time, our approach still matches the performance of the
winning solutions in the ISC21 challenge’s descriptor track, achieving comparable
micro-average precision.

3. Optimized subset selection: Employing a clustering algorithm to segment the training
data, we systematically select representative samples from the total DISC21 training
data available. The clustering approach ensures comprehensive exposure across all
variations within the selected training subset, simulating full data coverage and aiding
in better generalization even with less data.

The novelty of our work lies in the combination of these techniques to achieve state-of-
the-art performance in image copy detection with minimal data and computational resources.

The rest of the article is structured into four main sections. First, the related work
reviews current literature on image copy detection and the ISC21 challenge, followed by
a proposed model section illustrating the details of the architecture and techniques of our
model. The experimental results section presents the achieved results on the DISC21 dataset
along with their comparison to others. Finally, there is a section to conclude our findings
and outline future research directions for the image copy detection task.

2. Related Work

The development of the Copydays dataset by Douze et al. [10] is one of the early
attempts in image copy detection research. Not only did they introduce a dataset specifically
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for the copy detection task, but they also provided essential insights into the robustness of
Global Image Feature (GIST) descriptors [11] against various image alterations.

Image copy detection has undergone significant advancements, leveraging evolving
computational methods and machine learning technologies. The method of GIST-PCA
hashing has emerged as a significant development. Kim et al. [12] introduced a scalable
approach for near-duplicate image detection, utilizing a combination of GIST descriptor
and Principal Component Analysis (PCA) [13] hashing. This method deals with image
variations such as cropping and accurate border framing.

With the advancements in deep learning, the MultiGrain network introduced by
Berman et al. [14] innovatively combines image classification and particular object retrieval
into a unified framework. Based on a standard classification trunk with a pooling layer
adaptable to high-resolution images, this network is trained with both cross-entropy loss
for classification and a ranking loss for retrieval.

Highlighting the practical application of these advancements, the ISC21 challenge,
a key event in the field of image copy detection, showcased several innovative approaches
that significantly advanced the domain. Among the winners, distinct methodologies stood
out, each contributing uniquely to the field.

Yokoo et al. [15] focused on enhancing the discriminative power of image embeddings,
essential for accurate image copy detection. Employing EfficientNetV2, they innovated
a robust training pipeline inspired by progressive learning, which escalated the input
image resolution and regularization as training advanced. They harnessed contrastive
loss with cross-batch memory for training, outperforming other metric learning losses.
A significant part of their methodology was the negative embedding subtraction post-
process, which enhanced copy detection performance by isolating target samples from
similar negative samples.

On the other hand, Papadakis and Addicam [16] took a different approach. They
initially employed a triplet-based training method, and later transitioned to the Additive
Angular Margin Loss (ArcFace) approach for its practicality and enhanced performance.
This adaptation involved experimenting with different image sizes and resolutions to
optimize the models’ effectiveness. The core of their methodology utilized established
Convolutional Neural Network (CNN) architectures, including EfficientNetV2 l, Efficient-
NetV2 s, EfficientNet b5, and NfNet l1. These models processed the modified images
through a self-adaptive pooling layer, followed by a linear layer, to generate uniform image
signatures for consistent recognition. To improve facial image detection, they incorporated
extensive datasets, including ImageNet and a synthetic facial image collection. Their in-
novative ’Drip Training’ method progressively introduced complexity, enabling gradual
adaptation and preventing model overload.

Wang et al. [17] presented a novel approach utilizing unsupervised pre-training with
Barlow-Twins and deep metric learning. Their method departs from supervised learning
models, addressing the unstructured and diverse nature of online images. They introduce
‘descriptor stretching’ to adjust model outputs for consistency and employ a dual-loss
function, combining triplet loss with hard sample mining and cross-entropy loss, for bal-
anced learning. The baseline model includes a Generalized Mean (GeM) pooling layer,
WaveBlock enhancements when using the ResNet50 architecture, and a high-dimension
projector transforming 2048-dim features into 8192-dim. A learnable matrix then reduces
these features to 256-dim for efficient processing.

While the previously mentioned methodologies summarize the winning solutions and
highlight key findings recognized in the ISC21 challenge, it is also important to acknowl-
edge significant contributions outside of the challenge. Pizzi et al. [18], introduced the
SSCD model, which adapts self-supervised contrastive training for copy detection, incor-
porating a ResNet-50 trunk for feature extraction and GeM pooling to enhance descriptor
discrimination. A notable feature of SSCD is the use of entropy regularization, which is
crucial for maintaining distinct separation between descriptor vectors.
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The invention of Vision Transformers (ViTs) has had a revolutionary impact on image
analysis. Originally discovered by Dosovitskiy et al. [19], ViTs process images by dividing
them into patches similar to the approach of Natural Language Processing. Recent studies
like the work of Horváth et al. [20] and Jang et al. [21] have explored the potential of ViTs
in several applications. Jang et al. introduce the concept of Self-Distilled Self-Supervised
Learning (SDSSL), which has improved the performance of ViTs in several tasks, including
image copy detection. Furthermore, Khan et al.’s work [22] demonstrates the applicability
of ViTs in a wide spectrum of image processing tasks. The work of Coccomini et al. [23]
compares ViTs and CNNs in the context of deepfake image detection; their observations
show that while CNNs, EfficientNetV2 to be specific, provide better results during training,
ViTs have better generalization ability. Examining all the previously mentioned studies
suggests that ViTs can achieve good results in the detection of manipulated image copies.

Despite the diverse methodologies in image copy detection, recent studies have fo-
cused only on contrastive learning approaches and specific applications of Vision Trans-
formers in contexts like satellite image manipulation and deepfake detection. However,
these approaches have not explored the potential of ViTs in a classification framework
tailored to the challenges of image copy detection. Our research fills this gap by employing
ViTs not just as a feature extractor, but as a central component of a classification-based
model. This model capitalizes on the strengths of ViTs in handling the complexity of
modern digital environments.

3. Dataset and Challenge Background

The field of image copy detection has gained notable attention in parallel with the
introduction of focused datasets, such as Copydays developed by Douze et al. [10]. It
contained only 157 original images and 229 transformed versions of such images. Some
examples of augmentations include resizing, cropping, and more complex edits. Despite its
utility, Copydays’ limited dataset size and range of manipulations have drawn attention to
the need for more advanced data that would allow for overcoming contemporary challenges
in image copy detection.

The ISC21 challenge [9], conducted at NeurIPS’21, served as a major event for the
image copy detection task. The goal was to identify modified copies of a corpus of one
million images. This challenge focused on carrying out sophisticated image-matching
tasks, ranging from identifying near-exact copies to detecting subtle manipulations. Thus,
the challenge aimed at offering a comprehensive assessment of the image recognition
technologies used then.

The challenge introduced the DISC21 dataset [9], a new standard for large-scale image
copy detection that includes reference, query, and training sets. The dataset encompasses
varying augmentations that mirror the complexity found in current social media content.
These augmentations range from basic re-encoding and resizing to carrying out more
complex edits like overlaying images and random objects, geometric changes, and deepfake
creations. These varied modifications challenge algorithms in figuring out the origin of
augmented images.

The ISC21 challenge has significantly advanced image copy detection procedures. It
did not only aim at identifying modified copies within this vast image collection, but also
emphasized the crucial role of the descriptor track. This track specializes in developing
powerful descriptors that handle diverse image manipulations.

In this research, we investigate the validity of our proposed model on the DISC21
dataset instead of earlier limited ones like Copydays, as it presents the current challenges
in the image copy detection field with its large-scale inclusions of images and augmenta-
tion varieties.

4. Proposed Model

The core of our proposed model is employing Vision Transformers in a classification
framework, which we adapt and fine-tune for the specific task of image copy detection. Our
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proposed model follows the instance discrimination approach [24,25], where each image
and its augmented versions are considered a single class. After training, the fine-tuned ViT
model serves as a feature extractor to derive embeddings for both original and augmented
images, addressing the problem from a descriptor perspective. Subsequently, we compare
the post-processed embeddings of each original and augmented image pair for similarity
to determine the origin of each query image accurately. An illustration of the proposed
model is depicted in Figure 1.

Figure 1. Structure of the proposed model divided into three phases: preprocessing, training,
and inference.

Our approach also offers a significant computational advantage in selecting a repre-
sentative subset of the DISC21 dataset. Unlike conventional methodologies that rely on the
exhaustive use of large datasets, our model demonstrates that a more targeted approach
can yield comparable results. Additionally, our strategy incorporates a diverse range of
image augmentations, creating a robust model capable of handling various forms of image
manipulation, which is a critical aspect of copy detection.

4.1. Dataset Selection and Preprocessing

In addressing the challenge posed by the ISC21 competition, we opted to construct
a representative subset of images from the extensive DISC21 dataset. The selection process
involved the use of the K-means algorithm [26] to cluster the DISC21 training set, with pre-
trained VGG16 [27] neural network embeddings as the basis for clustering. This approach
allowed for grouping images based on visual similarity, thus ensuring a representative and
diverse sample of the entire dataset. The clustering was guided by the elbow method [28],
which determined the optimal number of clusters to segment the one million training
images, eventually settling on six distinct clusters. Our sampling technique is motivated by
the fact that during the learning process of a machine learning model, the model learns its
parameters from the training instances provided. Redundant instances do not improve the
predictive performance of the model, and can sometimes even degrade it. We further select
samples from the distinct clusters to construct the training subsets for our experiments.
Those subsets are significantly smaller in size compared to the original DISC21; however,
they capture the essential patterns and information with the least redundancy among the
chosen representatives.

Image augmentation is an essential concept for training models for copy detection.
Modifications like brightness adjustment, rotation, and subject shifting are all important for
making a model capable of differentiating between modified and original images. Having
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such a diversity of augmentations increases the variety of instances seen by the model,
which improves its performance. In this study, we employed a variety of augmentation
techniques, each applied with a specific probability and across several levels of hardness.
Some of these augmentations were implemented using functions from the AugLy [29]
library. Examples of such augmentations are:

• Random collage: assembles a composite from different pictures in a grid, varying from
1 × 1 to 3 × 3, with each segment hosting a distinct picture (Figure 2b).

• Legofy: transforms images to look as if they were built out of Lego bricks (Figure 2c).
• Noise: introduces random noise or graininess (Figure 2d).
• Overlay stripes: adds stripe patterns with varying characteristics (Figure 2e).
• Overlay text: overlays randomly generated text onto images (Figure 2f).
• Overlay image: involves overlaying one image over another (Figure 2g).
• Overlay onto screenshot: places images into screenshot templates from social media

platforms (Figure 2h).
• Emoji overlay: superimposes random emojis onto training images (Figure 2i).
• Random filter: applies a random filter from a set, including ones like MaxFilter,

UnsharpMask, Contour, SMOOTH, etc., to images (Figure 2j).
• Pad square: adds padding around images to form a square shape (Figure 2k).
• Edge enhance: enhances image edges by applying a filter (Figure 2l).

In addition to the specialized augmentations detailed previously, other fundamental
image transformations were used. These included standard augmentations like color jitter,
grayscale conversion, and horizontal flips, among others. These basic transformations,
though simpler, are still crucial, and their inclusion enhanced our model performance. This
balanced mixture of both complex and fundamental augmentations was key to achieving
a comprehensive training regime.

Our approach to training employs a multi-tiered augmentation strategy, systematically
categorizing transformations based on their complexity into four intensity levels: moderate,
hard, harder, and hardest, as demonstrated in Figure 3. Moderate augmentations slightly
alter images by using minimal changes like minor crops and flips, preserving much of their
original structure. As we advance to harder augmentation levels, the model is gradually
introduced to more complex transformations. The hard level introduces techniques like
overlaying images and legofy, whereas the harder and hardest levels further intensify these
changes, presenting the model with more challenging scenarios.

To ensure a balanced and comprehensive training process, we maintain an equal
number of augmentations at each difficulty level for every image. This approach is vital for
teaching the model the concept of class consistency across different degrees of augmentation.
It aids the model in understanding that both minimally and heavily augmented images
correspond to the same original image, a key aspect for the downstream task of accurate
image mapping as part of the instance discrimination training. Moreover, augmentations
are not applied in a static or predetermined sequence. Instead, each augmentation has
a certain probability of being applied, and they are randomly shuffled and varied for
each training epoch. This approach ensures that the model encounters a wide array of
visual challenges, preventing overfitting to specific patterns or transformations. It is also
important to note that each tier of augmentation contained the preprocessing steps required
by the model, which include image resizing and normalization.
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(a) Original Image (b) Random Collage (c) Legofy

(d) Noise (e) Overlaying Stripes (f) Overlaying Text

(g) Overlaying Image (h) Overlaying Onto Screen-
shot

(i) Overlaying Emoji

(j) Random Filter (k) Square Padding (l) Edge Enhancing

Figure 2. original image and its augmented versions, including various augmentation techniques.
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Figure 3. Examples of original images from six different clusters and their augmented versions using
different augmentation pipelines.

4.2. Training Methodology

Our training methodology is centered around the Vision Transformer, more specifically
the ViT L16 architecture, which is particularly suited for handling complex image data.
Since its introduction in 2020, the Vision Transformer model [19] marks a notable shift from
the conventional convolutional neural networks that are typically used in image recognition
tasks. The ViT architecture leverages the capabilities of transformer models, originally
popularized in natural language processing, and adapts them for computer vision tasks,
including object detection, segmentation, image and scene generation, and many more [22].
The overall process of our training methodology is visualized in Figure 1.

Key components and processes of ViT:

• Image processing: ViT processes images by dividing them into fixed-size patches,
flattening these patches, and projecting them into a high-dimensional space em-
bedded with positional information, transforming the image into a sequence of
vectorized patches.

• Classification token: ViT introduces a learnable classification token to the sequence of
embedded patches which, after processing through the transformer blocks, serves as
the global image representation for classification.

• Self-attention mechanism: the self-attention mechanism in ViT computes a weighted
sum of the input data, focusing on more relevant features to capture informa-
tive representations.

• Transformer encoder structure: ViT includes multiple transformer blocks, each with
a multi-head self-attention layer and a feed-forward layer, processing image patches
effectively.

• Additional layers: the architecture also incorporates Multilayer Perceptron (MLP)
layers and Layer Normalization (LN).

• Class prediction: in our adapted approach, each non-augmented image is treated as
a unique class. Post-training, the classification token’s embedding is used to determine
the similarity between the original and augmented images.
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A comprehensive depiction of the Vision Transformer architecture, as employed in
our study, is presented in Figure 4.

Figure 4. The upper part of the figure demonstrates the architecture of the ViT L16 model. ViT L16
features 24 transformer encoder blocks; the lower part details the architecture of each one of them.

We initialized our model with ViT L16’s pre-trained weights, utilizing its extensive
learning from large image datasets like ImageNet [30]. The model’s classification head was
modified to align with our classification approach, where the number of classes is equal to
the number of images in the selected subset of the training set.

In the training phase, we fed the model with the images selected from the DISC21
dataset’s clusters, which were subjected to various augmentations. For each epoch,
the model learned to classify these augmented images into their respective original classes.
We used Cross-Entropy as our loss function, which is effective for multi-class classification
problems [31]. The optimization of the model was carried out using Stochastic Gradient
Descent (SGD) [32] with a momentum of 0.9. We set a learning rate of 4 × 10−4, and
included weight decay to prevent overfitting.

4.3. Inference and Postprocessing

After training the model, we shifted to the evaluation phase to assess the model’s
performance in detecting image copies by removing the classification head and utilizing it as
a feature extractor. In this stage, the model extracted 1024-dimensional embeddings from
the DISC21 dataset’s reference and query sets, corresponding to original and augmented
images, respectively. A series of post-processing steps were conducted afterward, which
include centering, normalization, and PCA [13] with whitening to reduce the dimensionality
to 512. Resultant embeddings were used to conduct a similarity search, using the FAISS [33]
library, between reference and query sets, enabling an evaluation of the model’s effectiveness
in accurately mapping between original images and their modified counterparts.

4.4. Evaluation Metric: Micro Average Precision

We assessed the model’s performance using the micro-average precision (µAP) metric,
which was the standard method of determining the winners of the ISC21 challenge. The
µAP offers a comprehensive measure of the model’s accuracy across various confidence
thresholds by calculating the average precision, essentially representing the area under the
precision-recall curve.

The µAP is defined as:
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Micro Average Precision (µAP) =
N

∑
i=1

p(i)∆r(i) (1)

• p(i) is the precision at position i in the sorted list of detected pairs.
• ∆r(i) is the change in recall from the previous position.
• N is the total number of detected pairs for all queries.

This calculation, involving all returned pairs for all queries, is a robust metric for evaluating
the overall effectiveness of the model in detecting various instances of image manipulation [9].

5. Experimental Results

In this part of our research, we focus on validating the performance of our proposed
model for image copy detection on the DISC21 dataset. A series of experiments were
designed to assess the model’s efficiency under different configurations. Additionally, our
analysis includes a comparison with the state-of-the-art methods that have been previously
applied to the DISC21 dataset.

Our experimental analysis was conducted on the DISC21 dataset, specifically focusing
on the phase two data, which was pivotal in determining the challenge’s winners. It is
crucial to note that, unlike the standard test set used in the challenge, we adopted a modified
approach for our experiments. The original challenge format involved a reference set of
1 million non-augmented images and a phase 2 query set of 50,000 augmented images.
In this setup, not all query images had corresponding origins in the reference set; specifically,
only 10,000 of the 50,000 query images were linked to an origin in the reference set. Our
experiments validate the performance of our model by refining the test set to 10,000 query
images and a corresponding set of 10,000 reference images, denoted as DISC21re f . In this
set, we ensure that each query image is directly mapped to a singular, corresponding
image in the reference set. Furthermore, to maintain the integrity and comparability of
our results, we reproduce the results from winners and other published literature by using
their publicly released models on the newly refined query and reference set.

Several experiments were initially conducted to ensure optimal model parameters. We
focused on smaller-scale evaluations to identify the best configuration employing a targeted
parameter tuning process due to computational limitations for larger experiments. This
involved exploring various epoch sizes (ranging between 1 and 10), tuning fixed learning
rates (ranging between 1 × 10−4 and 6 × 10−4), weight decay (ranging between 1 × 10−4

and 1 × 10−8) and experimenting with learning rate scheduling techniques. The batch size
was restricted by the hardware resources; thus, values 16, 32 and 64 were tested. These
experiments guided us to select the most effective parameter combination, which is detailed
in Table 1.

Table 1. Training parameters.

Parameter Value

Framework PyTorch

GPU NVIDIA RTX 4060 Ti

Model Architecture ViT L16

Epochs 7

Batch Size 64

Learning Rate 4 × 10−4

Weight Decay 1 × 10−6

Image Resolution 224 × 224 pixels

Table 2 presents a detailed analysis of our model’s performance across varied training
configurations. It outlines the outcomes of all experiments conducted, each quantified by
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the µAP metric, under distinctive setups. Rows labeled 1K through 30K correspond to
the count of original images used in each experiment, which also matches the number of
classes. The columns, ranging from 20 to 200, indicate the number of augmentations. Aug-
mentations are applied to each original image in the training data with equal distribution
among the four intensity levels (moderate, hard, harder, and hardest). The table shows that
our best model achieved a µAP of 0.79 on the DISC21re f .

Table 2. Micro average precision of various training configurations with clustering.

Images

Augs
20 40 60 80 120 160 200

1K 0.52 0.56 0.58 0.60 0.61 0.61 0.52

5K 0.60 0.62 0.63 0.64 0.66 0.67 0.58

10K 0.61 0.63 0.65 0.69 0.74 0.74 0.70

20K 0.66 0.69 0.75 0.75 0.75 0.77 0.78

30K 0.68 0.71 0.73 0.76 0.78 0.79 0.78

While it is logical to assume that increasing the volume of data can enhance model
performance, as observed by higher µAP in bigger training sets; however, it is also impor-
tant to recognize the importance of the augmentation pipeline. Increasing the number of
instances per class through different intensities of augmentation often offers considerable
benefits compared to merely increasing the number of classes by expanding the dataset
size. Our findings show that the augmentation effect increased the model’s performance
across all training scenarios, with a maximum increase of 0.13 in the 10K training set.
A detailed examination of the data presented in Table 2 highlights an interesting pattern
between the values in the last columns for the initial rows and those in the first columns
for the latter rows. For example, the precision values at lower augmentations (20, 40) for
higher image counts (20K, 30K) are comparable to those at higher augmentations (160, 200)
for lower image counts (1K, 5K). In other words, the model performs almost the same
when it is trained on the same total number of data, whether these data are augmented
instances or instances of new classes. This leads us to the conclusion that, as the number
of instances per class increases, it compensates for the overall quantity of images. This
observation is particularly advantageous, considering the exhaustive and time-consuming
task of collecting training data for machine learning models. It suggests that systematic
augmentation and class instance balancing can effectively enhance model performance
without the need for extensive data collection. On the other hand, it is also important to
note that the benefits of augmentations plateau beyond a threshold, indicating the presence
of an optimal augmentation level beyond which model performance may not significantly
improve, as observed from the last columns in the table.

Similarly, Table 3 presents a comparison between the µAP achieved using our proposed
clustering approach against a random non-clustering framework. Specifically, the clustering
approach involves selecting a balanced number of images from each cluster, whereas the
random approach involves drawing images arbitrarily from the entire pool of 1 million
training images. To investigate the effectiveness of choosing a representative subset, we
selected several experiments for comparison, as detailed in the table covering most training
configurations. This led us to compare early configurations (1K × 20 to 30K × 20) across
both frameworks. The consistently superior performance of the clustering approach in these
initial tests provided a strong motivation to develop the clustering models fully, as seen in
Table 3. Subsequently, we revisited the non-clustering approach for our best-performing
configuration, 30K × 160, to test our model. The clustering approach also demonstrated
superior results, confirming our approach’s effectiveness.
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Table 3. Comparison of micro average precision for clustering and random non clustering approaches.

Configuration Random Clustering

1K × 20 0.35 0.52

5K × 20 0.41 0.60

10K × 20 0.55 0.61

20K × 20 0.57 0.66

30K × 20 0.51 0.68

30K × 160 0.76 0.79

We also performed experiments to test the importance of each block in the post-
processing stage. Table 4 summarizes the impact of various post-processing blocks on
our proposed model. Each row represents a different combination of the components,
marked with ✓ for included blocks. By comparing the results achieved, it can be noted
that normalization is crucial, significantly boosting performance (shown in experiments
3, 5, 6, and 7). While centering offered a slight further improvement when added to
normalization (experiment 5), PCA (experiment 6) did not provide any additional benefit.
Combining all three components (experiment 8) yielded a significant 2% improvement in
overall performance compared to normalization alone.

In Table 5, we compare the performance of our best model against that of the top three
winners from the descriptor track of the challenge [15–17] and the work of Pizzi et al. [18],
which is the most recent study on this dataset on the DISC21re f . It is important to note
that, as previously mentioned, DISC21re f is a refined query and reference set, and hence,
we re-implemented the evaluation scripts of winner models within our validation scheme.
The table illustrates the standing of our model in the context of other state-of-the-art models.
Not only did our proposed model outperform all other models with only 3% of the training
data other models employed, but it also surpassed models that produce an even bigger
embedding vector size.

Table 4. Analysis of the effect of each component in the post-processing stage.

Exp. ID Centering Normalization PCA µAP

1 × × × 0.69

2 ✓ × × 0.69

3 × ✓ × 0.76

4 × × ✓ 0.66

5 ✓ ✓ × 0.77

6 ✓ × ✓ 0.67

7 × ✓ ✓ 0.76

8 ✓ ✓ ✓ 0.79

The results from Tables 2 and 3 show key aspects of our model’s performance. The in-
tegration of the ViT architecture, along with our dynamic augmentation strategy and
a well-structured classification framework, played a pivotal role in producing cut-edge re-
sults with a fraction of the training data used previously. Further, the comparative analysis
between the clustering and non-clustering approaches, as shown in Table 3, validates the
efficacy of our proposed clustering method. This enhanced performance is likely attributed
to the prevalence of highly similar images in the training set. The findings are in agreement
with our hypothesis that less data can still yield more improvements in performance when
carefully selected, augmented, and trained.
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Table 5. Comparison of model performances in terms of micro average precision (µAP) on the
DISC21re f .

Model Embedding Size µAP

Yokoo et al. [15] 256 0.76

Papadakis and Addicam [16] 256 0.74

Wang et al. [17] 256 0.73

Pizzi et al. [18] SSCD_DISC_Large 1024 0.78

Pizzi et al. [18] SSCD_DISC_Mixup 512 0.74

Our Best Model 512 0.79

Finally, to assess the generalization ability of our model pre-trained on the DISC21
data, we conducted an additional experiment, testing it on the Copydays dataset. The re-
sults were comparable to those presented by Berman et al. [14] and Touvron et al. [34].
Berman et al. introduced two ResNet-based models with differing resolution sizes achiev-
ing µAP of 0.75 and 0.825, respectively, with a vector size of 2048, while Touvron et al.
presented two different ViT B/16 models, achieving 0.764 and 0.818 with a vector size of
1536. Notably, our proposed model outperformed both by achieving 0.84, despite having
a smaller embedding size of only 1024.

6. Conclusions

In this research, we aimed to tackle the image copy detection problem, which is critical
in our digital world. Our innovative approach merged K-means clustering with VGG16 em-
beddings to strategically group the images of the DISC21 training set, allowing us to choose
a smaller yet effective training set. Multi-tiered augmentation pipelines with varying inten-
sity levels are introduced to form the training set, which is used to train the ViT L16 model
in a classification framework. In evaluation, we adopted a descriptor strategy such that the
trained model extracts feature vectors from original and manipulated images, which were
post-processed and compared for similarity. Our proposed pipeline, featuring dynamic
augmentation and optimized subset selection, achieved state-of-the-art results with our
best model trained with only 30K images of the DISC21 training set, achieving a µAP
of 0.79, outperforming state-of-the-art and recent literature. These results demonstrate
the effectiveness and novelty of our integrated clustering and augmentation approach,
which significantly improved our results over random samples. Our approach is further
validated by achieving comparable performance on the Copydays dataset, demonstrating
its generalizability across different copy detection benchmarks.

For future research, we aim to further improve our findings by applying other clus-
tering algorithms and enlarging our augmentation pipeline to adapt to any new trends in
image manipulation, including the use of advanced generative models for transformations
such as image-to-image translation, occlusion and inpainting, and sample generation. An-
other set of experiments will include testing other ViT architectures to try to enhance our
performance further. Moreover, we intend to expand our scope and investigate the validity
of the proposed model with other digital media formats, such as video.
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