
Citation: Nugroho, A.K.; Kim, T.

Traffic-Aware Intelligent Association

and Task Offloading for Multi-Access

Edge Computing. Electronics 2024, 13,

3130. https://doi.org/10.3390/

electronics13163130

Academic Editors: Zhiwei Xu, Jianer

Zhou, Xueshuo Xie and Zhao Huang

Received: 11 July 2024

Revised: 29 July 2024

Accepted: 5 August 2024

Published: 7 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Traffic-Aware Intelligent Association and Task Offloading for
Multi-Access Edge Computing
Avilia Kusumaputeri Nugroho and Taewoon Kim *

School of Computer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea;
avilia22@pusan.ac.kr
* Correspondence: taewoon@pusan.ac.kr

Abstract: Edge computing is a promising technology, especially for offloading users’ computationally
heavy tasks. The close proximity of edge computing units to users minimizes network latency, thereby
enabling delay-sensitive applications. Although optimal resource provisioning and task offloading in
edge computing are widely studied in the literature, there are still some critical research gaps. In this
study, we propose a traffic-aware optimal association and task-offloading approach. The proposed
method does not rely solely on the average rate of offloading requests, which can differ from actual
values in real time. Instead, it uses an intelligent, high-precision prediction model to forecast future
offloading requests, allowing resource provisioning to be based on future sequences of requests
rather than average values. Additionally, we propose an optimization-based approach that can meet
task deadlines, which is crucial for mission-critical applications. Finally, the proposed approach
distributes the computing load over multiple time steps, ensuring future resource scheduling and
task-offloading decisions can be made with a certain level of flexibility. The proposed approach
is extensively evaluated under various scenarios and configurations to validate its effectiveness.
As a result, the proposed deep learning model has resulted in a request prediction error of 0.0338
(RMSE). In addition, compared to the greedy approach, the proposed approach has reduced the use
of local and cloud computing from 0.02 and 18.26 to 0.00 and 0.62, respectively, while increasing edge
computing usage from 1.31 to 16.98, which can effectively prolong the lifetime of user devices and
reduce network latency.

Keywords: multi-access edge computing; task offloading; traffic-awareness; optimization; time-series
forecasting

1. Introduction

The proliferation of mobile devices is unmistakably pervasive, by recent statistics.
According to the Pew Research Center, as of 2021, 97% of Americans own a cellphone, with
85% owning smartphones specifically, showcasing their ubiquitous presence in daily life [1].
Globally, there are over 6.4 billion smartphone users as of 2023, with projections indicating
this number will surpass 7 billion by 2026 [2]. Furthermore, smartphone shipments totaled
1.35 billion units in 2021 alone [3], underscoring the continuous growth and adoption
of mobile technology worldwide. These figures illustrate the widespread integration of
mobile devices into personal and professional spheres, driving digital connectivity and
innovation across various sectors.

In the meantime, mobile applications are evolving rapidly, becoming increasingly
complex to meet the growing demands of users and advancements in technology. Today’s
mobile apps integrate sophisticated features such as real-time data processing [4], aug-
mented reality (AR) [5], virtual reality (VR) [6], artificial intelligence (AI) [7], and complex
backend integrations [8]. Despite advancements in computation and battery capacity,
the complexity of mobile applications increases response time while decreasing battery
life. Mobile/multi-access edge computing (MEC) holds significant promise by bringing

Electronics 2024, 13, 3130. https://doi.org/10.3390/electronics13163130 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13163130
https://doi.org/10.3390/electronics13163130
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0005-8120-798X
https://orcid.org/0000-0002-7811-5022
https://doi.org/10.3390/electronics13163130
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13163130?type=check_update&version=2

Electronics 2024, 13, 3130 2 of 24

computational capabilities closer to end-users, reducing latency, and improving mobile
network efficiency [9–12]. By leveraging MEC, applications can offload processing tasks
from mobile devices to nearby edge servers (ESs), leading to faster response times for
real-time applications such as AR, VR, and autonomous vehicles.

Task offloading in MEC addresses mobile computing challenges, including battery
constraints, limited processing capacity, and delays in conventional cloud architectures [13].
This approach optimizes task execution, thereby reducing data travel distances and min-
imizing latency. MEC utilizes edge servers with a resource allocation system that dy-
namically allocates CPU, memory, and storage resources for fluctuating task offloading
demands. Sophisticated algorithms optimize resource consumption, avoid conflicts over
shared resources, maximize user experience (QoS), and enhance overall system efficiency.
Additionally, load balancing distributes workloads among edge servers, ensuring none are
overloaded and optimizing network utilization.

Moreover, user-base station (BS) association in task offloading involves strategic device
connection to nearby BSs for optimal edge server utilization. Devices dynamically associate
with BSs based on signal strength, available resources, and proximity to edge servers,
ensuring efficient processing of offloaded tasks with minimal latency.

Extensive research has been conducted on the most effective strategies for provisioning
and offloading tasks in MEC. A method was suggested to achieve optimal resource provi-
sioning and task offloading in federated edge computing, involving the partitioning of edge
servers into groups [14]. Another approach introduced a low-complexity task offloading
solution through task routing [15]. Despite the technical progress the previous studies have
successfully made, there are still some research gaps, including the following three. First,
previous studies optimized resource provisioning and/or task offloading by assuming
the average rate of task generation. However, the actual amount of tasks received at a
particular moment may be different from the assumed average, which may cause resource
under-/over-provisioning. Second, most studies assume that the received tasks can be
completely processed right away or in the current time step (e.g., tasks are small enough).
However, it may not be the case if the task is highly complex, requires sequential execution,
or takes a long time. Lastly, some studies do not consider the fact that some applications
are deadline-sensitive, which is especially important for mission-critical applications.

In this paper, we propose optimal resource provisioning and task offloading for MEC.
By using a deep learning approach, the proposed method can predict future offloading
requests with high precision by analyzing the network traffic history. The proposed
approach optimizes multiple tasks for multiple future time steps to yield optimal scheduling
decisions while guaranteeing deadline constraints. The summary of the contributions we
make in this paper is given below.

• To avoid the mismatch between the average and actual offloading requests, we propose
a deep learning-based multi-step offloading request prediction approach by learning
from the past traffic, which includes the offloading requests.

• We propose a computing load balancing scheme over the time horizon so that each ES
can make some resources available for accommodating unpredictable requests. This is
particularly useful when the prediction of future requests is not perfect, as is the case
in general.

• To maximize the offloading performance and fulfill the deadline constraints, we
propose a multi-step optimization technique. That is, the proposed method optimizes
both resource provisioning and task offloading for multiple future time steps.

• To maximize resource utilization and prevent excessive resource allocations, we
propose an optimal network association solution that leads to the efficient use of
edge servers.

• To validate the effectiveness of the proposed solution, we implement a time-slotted
simulation environment and carry out extensive evaluations along with performance
comparisons.

Electronics 2024, 13, 3130 3 of 24

The remainder of this paper is structured as follows. The following Section 2 provides
a comprehensive summary of related studies. In Section 3, the proposed approach is
described in detail. In Section 4, the evaluation and comparison results are provided.
Finally, Section 5 concludes this paper. The abbreviations and acronyms that frequently
appear in this paper are summarized in Table 1.

Table 1. Abbreviations and acronyms used in this paper.

Abbreviation Definition

BS Base Station
CC Cloud Computing
EC Edge Computing
ES Edge Server

MEC Mobile/Multi-access Edge Computing
QoS Quality of Service

2. Related Work

This section comprehensively reviews the optimization of resource provisioning
and/or task offloading in MEC. For resource provisioning in MEC, the study in [16]
optimizes MEC resource provisioning in IoT networks to meet performance requirements
considering limited device resources and high data generation. Their method frames the
provisioning of MEC resources and assignment of workloads as a mixed-integer program,
utilizing a decomposition strategy to effectively manage workload variations. While this
paper addresses workload assignment for immediate processing to achieve required re-
sponse times, it assumes average user requests and does not consider delays for particularly
heavy tasks. Xiang et al. [17] explore optimizing computing power allocation and traffic
scheduling to minimize service response time in MEC, particularly for urgent or popular
services. Their study introduces PCA-CATS, an online algorithm that effectively reduces
service response time and expenses by optimizing resource allocation and traffic scheduling.
However, the approach assumes immediate processing of received requests and does not
address strict deadlines or time-sensitive tasks.

From the perspective of task offloading in MEC, various approaches have been pro-
posed to enhance the efficiency of determining which tasks should be offloaded to edge
servers or cloud data centers by considering aspects such as compute demands, network
conditions, and device capabilities. Jiang et al. [18] proposed the Joint Offloading and Re-
source Allocation (JORA) framework, which employs Lyapunov optimization to maximize
Quality of Experience (QoE) while considering long-term MEC energy constraints. JORA
provides both centralized and distributed online approaches that distribute near-optimal
performance. However, the immediate processing of received requests, which ignores task
delay constraints such as processing deadlines, can result in prolonged processing times
for heavy workloads. Apostolopoulos et al. [19] introduce an approach for optimizing data
offloading in a multi-MEC server environment, focusing on users’ risk-seeking tendencies
rooted in Prospect Theory. Their research investigates the complexities of user decision-
making in the face of uncertainty, placing it within a non-cooperative game framework
aimed at achieving optimal offloading strategies. However, the study overlooks the task de-
lay constraints, assumes average user request patterns, and employs immediate processing
capabilities for all user requests. Han et al. [20] study impatience-driven user behaviors in
MEC queue management, proposing an adaptive decision-making mechanism to balance
latency outage risk and energy consumption. Their approach optimizes the allocation
of tasks between local computing and MEC based on dynamic user demands and server
conditions, with the goal of enhancing the QoE for applications that are sensitive to latency.
However, they assume average user requests, which may differ from the actual values in
real time.

An ES is, in general, co-located with a BS, and thus, making an optimal user-BS or user-
edge association is important to further enhance the performance of MEC. Song et al. [21]

Electronics 2024, 13, 3130 4 of 24

employ a genetic algorithm to optimize server deployment and user offloading in wireless
edge networks with the objective of minimizing service latency. Feng et al. [22] concentrate
on the optimization of task partitioning and user association in MEC systems to reduce
the average latency. However, their approach depends on average requests and does not
consider delay constraints for delay-sensitive tasks. In contrast, Charatsaris et al. [23]
introduce Hierarchical Federated Learning (HFL) for wireless networks, focusing on user-
to-edge association and power allocation to balance accuracy, energy, and time. However,
they do not consider delay constraints for tasks. Wang et al. [24] introduced an optimization
approach for associations, focusing on minimizing system delay and enhancing Quality
of Service (QoS) through efficient user-BS pairing. However, they assume average user
requests and that user requests are always processed immediately.

Traffic-aware task offloading strategies, introduced by Qi et al. [25] for vehicular edge
computing, optimize task and wireless bandwidth ratios to minimize response time. Their
algorithm efficiently handles this optimization, particularly with limited wireless capacity.
Wang et al. [26] propose a method for IoV task offloading and content caching using traffic
stream forecasting. However, their approach lacks explicit consideration of task processing
deadlines and user demand variations. Oza et al. [27] introduce deadline-aware task
offloading, which integrates traffic light data to optimize task scheduling. Their method
ensures timely task processing by considering static and dynamic deadlines influenced
by traffic conditions, yet immediate processing without queuing considerations may face
challenges for longer tasks.

Intelligent approaches, such as those utilizing machine learning and deep learning,
have also been proposed to enhance MEC systems. Guo et al. [28] introduce an intelligent
task offloading scheme at the edge using supervised decision trees, improving prediction
accuracy and processing delay in IoT scenarios. However, their method does not optimize
resource provisioning and task offloading for multiple future time steps. Kim et al. [29]
propose prediction-based sub-task offloading in MEC, employing linear regression to
predict processing times across multiple nodes simultaneously. Their approach aims to en-
hance resource utilization efficiency and reduce application execution time on MEC servers
but does not consider multiple future time forecasting for optimization. Zeng et al. [30]
present a prediction-based task-offloading strategy for vehicular edge computing using
deep-learning models. Their approach predicts task-offloading performance, including
success/failure and service delay, yet does not optimize resource provisioning for multiple
future time steps.

To summarize, Table 2 provides a comparative analysis of previous studies, highlight-
ing their approaches to real value optimization, deadline-awareness, offloading planning,
and resource provisioning over multiple time steps, and while many studies focus on indi-
vidual aspects, our proposed work addresses all four points comprehensively. This makes
our approach distinct in its ability to handle task prediction-based multi-step optimization
of resource provisioning and task offloading, effectively overcoming the limitations in
previous work.

The aforementioned studies commonly optimize for average user request rates under
constant conditions. However, real-time fluctuations in request rates can lead to inefficient
resource allocation (e.g., under- or over-utilization) at specific times, thereby decreasing sys-
tem efficiency. Moreover, they often prioritize the immediate processing of requests within
the current time step without considering deadline awareness, which is similar to a greedy
algorithm and may not be feasible in some cases. This overlooks the overall dynamics of
the queue and may result in longer processing times, particularly for complex tasks such as
deep learning. Furthermore, effective resource provisioning or task offloading should dif-
ferentiate treatment based on application deadline sensitivity, which varies between those
that require timely completion and those with flexible or no strict time constraints. In this
study, we propose a task prediction-based multi-step optimization of resource provisioning
and task offloading that effectively overcomes the aforementioned limitations.

Electronics 2024, 13, 3130 5 of 24

Table 2. Comparison of selected previous studies under four critical aspects in edge computing
research.

Reference Real Value-
Based Optimization Deadline Awareness Multi-Step

Offloading Planning
Multi-Steps

Resource Provisioning

Kheraf et al. [16]
Xiang et al. [17] ✓
Jiang et al. [18] ✓
Apostolopoulus et al. [19]
Han et al. [20] ✓
Song et al. [21] ✓ ✓
Feng et al. [22]
Charatsaris et al. [23] ✓
Wang et al. [24] ✓
Qi et al. [25] ✓ ✓
Wang et al. [26] ✓ ✓
Oza et al. [27] ✓ ✓
Guo et al. [28] ✓ ✓
Kim et al. [29] ✓
Zeng et al. [30] ✓ ✓ ✓
our work ✓ ✓ ✓ ✓

3. Proposed Idea

In this section, we provide a description of the assumed system and the proposed
approach in detail. The notations that frequently appear in this section are summarized
in Table 3.

Table 3. Summary of the mathematical notations used in this study.

Notation Definition

t Index of time step whose length is ∆t
A(t) BS-user accessibility matrix at t
ACb Association capacity of BS b
c(t)local Normalized, available computing capacity of users at t
c(t)bs Normalized, available computing capacity of ESs at t

ccloud Normalized, available computing capacity of cloud at t
d(t) Deadlines of users’ requests at t
f(t)local Portion of tasks to be processed locally at t
F(t)

es Portion of tasks to be offloaded to ESs at t
f(t)cloud Portion of tasks to be offloaded to cloud at t

hu User u’s task-offloading request history
I(t) BS-user association indication matrix at t
lbs Scalar determining round-trip latency to the BS (ES), being lbs × ∆t

lcloud Scalar determining round-trip latency to cloud, being lcloud × ∆t
Nbs Number of BSs
Nes Number of ESs
N f h Forecasting horizon length
Nlw Lookback window length
Nsh Number of time steps over which an optimal resource scheduling is carried out

Nuser Number of users
o(t)

local Binary task offloading decision vector for local processing at t
O(t)

es Binary task offloading decision matrix between an ES and user at t
o(t)

cloud Binary task offloading decision vector for cloud processing at t
q(t)u Task-offloading requests of users at t

We assume a hierarchical networked system, as shown in Figure 1. A mobile user
is connected to the access network via a BS, and each BS is connected to an ES with a

Electronics 2024, 13, 3130 6 of 24

dedicated, high-speed link. The BS is connected to the Internet, as is the cloud data center.
From the computing perspective, the assumed system is composed of three layers. At the
lowest level is the local computing layer, enabling mobile users to process tasks directly on
their devices. In the middle layer lies edge computing, facilitating task offloading to nearby
edge servers with minimal network latency. Finally, the top layer is the cloud computing
infrastructure, where abundant computing resources are available with a relatively large
network latency. In this work, we assume that both mobile devices and edge servers are
resource-limited, while cloud computing is not.

If a mobile user is near the edge of the base station (BS) with which it is currently
associated, and begins to move away, a handover event will occur. This handover allows the
user to connect to a different BS, referred to as BSb′ . Consequently, this may involve either
migrating virtual resources from the edge server (ES) at BSb or allocating new resources on
the ES at BSb′ . However, this study does not account for the effects of user mobility. Given
that the average walking speed of individuals ranges from 94.3 cm/s to 143.4 cm/s [31],
and considering the random deployment of users and the coverage area of the BS, it is
reasonable to assume that the accessibility matrix will remain nearly static over the period
considered for resource and offloading optimization.

Internet

Cloud

Data Center

...

Base station

with an edge

server
Mobile user

Edge Computing

Layer

Cloud Computing

Layer

Local Computing

Layer

Figure 1. Illustration of the considered 3-layer computing system in this study where an edge server
is co-located with a base station.

The overview of the proposed traffic-aware intelligent association and task offloading
scheme is illustrated in Figure 2, which has both offline and online components. The offline
operation includes training a prediction model given each user u’s offloading request
history (hu). Then, by using the predicted future requests, the online logic iteratively
performs the optimal scheduling subsystem that optimizes both resource provisioning and
task offloading. In the figure, Nlw and N f h refer to the lookback window and forecasting
horizon size, determining the input and output length of the prediction model, respectively.

3.1. Multi-Step Task-Offloading Prediction

The development of the deep learning-based sequence-to-sequence prediction is a
well-known problem [32,33]. The available approaches range from conventional statistical
approaches, e.g., ARIMA (Auto Regressive Integrated Moving Average) and ETS (Error
Trend and Seasonality, or exponential smoothing) [34], to state-of-the-art deep learning
models, e.g., one-dimensional convolutional network (1DCNN), long short-term memory
(LSTM) [35], and Transformer [36]. In this study, 1DCNN, LSTM, and Transformer are
taken for predicting future task-offloading requests. The performance comparison among
the three models are presented in Section 4.1.

Electronics 2024, 13, 3130 7 of 24

user u's task offloading

request history (hu)

DL model

for u (mu)

Train

Optimal Scheduling (at time t):

hu[t-Nlw:t-1] mu hu[t:t+Nfh-1]

(offloading request

history)

(predicted future

requests)

Optimal Resource Provisining

for Nsh time slots

Optimal Task Offloading

decision for each time slot

Model Training:

Optimal

Scheduler

(prediction

model)

Figure 2. Overall workflow of the proposed idea where the model training and optimal scheduling is
carried out offline and online, respectively.

The 1DCNN is particularly effective for processing and predicting time series data.
The 1DCNN takes a sequence of time series data as input, and the convolutional layers
therein apply convolution operations using filters (kernels) that slide over the input data
to extract local patterns or features. In a 1DCNN, the filters move along one dimension
(time). The major advantages of 1DCNN include the following three: (i) Feature extraction:
The convolutional layers learn to automatically extract important features from the input
time series data. Early layers capture simple patterns, while deeper layers capture more
complex structures; (ii) Temporal dependencies: By applying convolutions across the
time dimension, the model can capture temporal dependencies and correlations between
different time points; (iii) Down-sampling: Pooling layers reduce the size of the data
representation, helping to summarize the learned features and make the model more robust.

LSTM is a type of recurrent neural network (RNN) model designed to effectively learn
temporal sequences and long-range dependencies by using three distinctive features, i.e.,
memory cells, forget/input/output gates, and recurrent architecture. The key features
and advantages of LSTM include the following three: (i) Long-term dependency handling:
LSTMs are designed to remember information over long periods of time, which is useful
for tasks where context is important; (ii) Mitigation of the vanishing gradient problem: The
design of LSTM gates helps in propagating gradients throughout the network, thus address-
ing the vanishing gradient problem that traditional RNNs face; (iii) Stateful processing:
LSTMs can maintain a state across different sequences, which is valuable in applications
like continuous speech recognition and video analysis.

The Transformer model was first introduced to handle tasks involving natural lan-
guage processing, and is now widely used for analyzing and predicting time series datasets.
Transformers bring various advantages, as listed below, from its features such as self-
attention mechanisms, positional encoding, and encoder-decoder architecture: (i) Paral-
lelization: Unlike RNN-type networks, Transformers allow for parallel processing of input
sequences, leading to significantly faster training times; (ii) Handling Long-Range Depen-
dencies: The self-attention mechanism allows the model to capture dependencies between
tokens regardless of their distance in the sequence; (iii) Reduced Vanishing Gradient Prob-
lem: Since Transformers rely on attention mechanisms rather than sequential processing,
they are less susceptible to the vanishing gradient problem that plagues RNNs and LSTMs.

Electronics 2024, 13, 3130 8 of 24

3.2. Optimal Association and Task Offloading

In this work, we assume a time-slotted system where each equal-length time step
is indexed by t. Given the user u’s task-offloading request history, hu, a deep learning
model is trained to make precise predictions on future offloading requests. In contrast
to most previous studies utilizing only the average request rates, we propose to make
predictions on the future offloading requests for N f h time steps. This is because the actual
offloading request each time step can be different from the average. Thus, the optimal
resource provisioning and offloading decisions made upon the average offloading rate may
experience resource under-/over-provisioning, reducing resource utilization or QoS. Once
the prediction model is trained, it is used to make predictions on future offloading requests,
with which the optimal decision on resource provisioning and task offloading will be made.
It is worth noting that in this study the optimal offloading decision is made each time step,
while the optimal resource provisioning is made for the future Nsh time steps. The reason
for making such multi-step provisioning decisions is that some procedures that are tightly
related to resource provisioning, e.g., horizontal scaling, migration, and starting/stopping
virtual machines, are time-consuming [37], and thus, it is impractical to carry out resource
scheduling on every time step.

Upon generating the future offloading requests, the proposed resource provisioning
and task offloading algorithms will operate periodically and on each time step, respec-
tively, to process the users’ offloading requests without violating the deadline constraints
while evenly distributing the computing load of edge servers over time. The reasons for
distributing the load are to make a certain amount of computing resources available on
each edge server each time step so that future resource scheduling and task offloading can
be optimized with a certain level of flexibility. To achieve an optimal load balancing, it is
also important to optimize the association between BSs and users as well, since BS-user
association leads to the association between the user and the ES which is co-located with
the BS.

In this work, each user can offload their task to an ES and/or the cloud, in addition
to processing tasks locally on their device. Such diverse access options for task offloading
enhance flexibility in resource optimization but also increase the complexity of the opti-
mization which will be effectively managed in what follows. This multi-access capability
allows for more adaptable resource management, addressing varying load conditions and
user demands.

To address these needs, the optimal resource provisioning shown in Figure 2 includes
the following two components, i.e., user-BS association and computing resource provi-
sioning. Once the decisions are made, the optimal task offloading will be carried out at
each time step. Next, we present the formulated problem of optimal resource provisioning
and task offloading as proposed. We first formulate a greedy optimization problem that
schedules both resource provisioning and task offloading only for the current time step.
Then, we extend the problem so that optimal decisions spanning multiple time steps can be
made while guaranteeing the deadlines.

Let Nbs, Nes, and Nuser be the number of BSs, ESs, and users in the system, respectively.
In this work, we assume a cellular communication technology for its wide coverage [38],
though others, such as WiFi, can be applied with little modification. In general, BSs peri-
odically broadcast beacon signals to notify their presence [39]. Upon receiving the signal,
a user can enumerate the accessible BSs. In this work, accessibility is guaranteed if the
measured signal-to-interference plus noise ratio (SINR) exceeds the predefined threshold.
By collecting the accessible BS lists from users, the central scheduler can configure an
accessibility matrix A(t) ∈ {0, 1}Nbs×Nuser at time t where the (b, u)-th element therein is
denoted by a(t)bu . Here, b is the integer-valued index of BSs and ESs ranging from 1 to Nbs or
Nes, and u is the integer-valued user index ranging from 1 to Nuser.

A single scheduler is assumed responsible for configuring the accessibility matrix
and solving the proposed optimization problem while having a single central entity can
introduce a risk of failure affecting overall system reliability, we assumed that the sched-

Electronics 2024, 13, 3130 9 of 24

uler operates within a cloud infrastructure equipped with high-availability clusters and
redundancy features [40,41]. In this configuration, if the primary scheduler fails, a standby
scheduler is available to assume its responsibilities without delay.

Let the decision variable I(t) ∈ {0, 1}Nbs×Nuser be the association indication matrix.
Each (b, u)-th element i(t)bu in I(t) takes a value of either 0 or 1, indicating that the association
between BS b and user u is to be made or not, respectively. Then, the following constraint
Equation (1) forces that an association can only be made if a user is accessible to a BS.

∀b, u : i(t)bu ≤ a(t)bu (1)

In this work, a mobile device is assumed to have a single antenna, and thus, for a time
step, a user can access only a single BS.

∀u : ∑
∀b

i(t)bu = 1 (2)

Ingeneral, at each time step, a BS b can associate with a predefined number, ACb, of
users due to its limited resource [38,39], where ACb stands for the association capacity of a
BS b.

∀b : ∑
∀i

i(t)bu ≤ ACb (3)

Once the BS-user association is made, the user can utilize the ES connected to the BS
for task offloading. Let o(t)

local ∈ {0, 1}Nuser be the task offloading decision vector for local

processing at time t, where o(t)local,u being 1 or 0 indicates that the user u has decided to

process (some) tasks locally or not, respectively. In the same manner, O(t)
es ∈ {0, 1}Nes×Nuser

is the task offloading decision matrix between the ES b and user u at time t. Since a BS b
has a dedicated ES by assumption, the same index notation b is used to indicate the ES
connected to the BS b. Furthermore, o(t)

cloud is the task offloading decision vector to cloud at
time t. Regardless of which BS a user is connected to at the moment, the user can choose
to offload locally or to the cloud. However, offloading to a particular BS b is possible only
when the user is associated with the BS b, which is formulated as a constraint as below.

∀b, u : o(t)es,bu ≤ i(t)bu (4)

The decision variables o(t)
local , O(t)

es , and o(t)
cloud indicate whether or not to offload tasks,

and the specific amount of task to offload is determined by the following decision variables.
Let f(t)local ∈ RNusers

[0,1] be the normalized decision variable determining the number of tasks

to be offloaded locally. The subscript indicates that each f (t)local,u ∈ f(t)local takes a value from

the range [0, 1]. Similarly, F(t)
es ∈ RNes×Nuser

[0,1] is a matrix determining the offloading portion

between ESs and users, whereas f(t)cloud ∈ RNusers
+ is for offloading to cloud. Since decisions

regarding the amount of tasks to be offloaded can only be made when the corresponding
offloading is allowed, the following constraints are formulated. Here the scaling constant
κcloud is multiplied to the right-hand side of Equation (7) so that the decision variable
determining the actual amount of cloud offloading can take values without being limited
to the [0, 1] range.

∀u : f (t)local,u ≤ o(t)local,u (5)

∀b, u : f (t)es,bu ≤ o(t)es,bu (6)

∀u : f (t)cloud,u ≤ κcloud × o(t)cloud,u (7)

Electronics 2024, 13, 3130 10 of 24

The amount of requests to be offloaded is also limited by the available computing
capacity. Let c(t)local ∈ RNuser

[0,1] be the normalized, available local computing capacity of users

at time t, where the subscript indicates that each c(t)local,u ∈ c(t)local takes a value from the
range [0, 1]. The superscript t does not indicate that the physical capacity changes over
time. However, if a mobile device has some tasks to process at the moment, its computing
capacity should be reduced, which necessitates the time step notation. In the same manner,
the computing capacity of ESs and CC is defined as c(t)es ∈ RNes

[0,1] and ccloud ∈ RNuser
+ ,

respectively. The CC resource is large enough by assumption, and thus, the notation t is
omitted from the CC capacity. As a result, the following constraints are formulated to limit
the amount of offloading to the available capacity.

∀u : f (t)local,u ≤ c(t)local,u (8)

∀b : ∑
∀u

f (t)es,bu ≤ c(t)es,b (9)

The resource provisioning and task offloading scheduling problems should maximize
the QoS by fulfilling the user’s offloading demand. Let a vector q(t) ∈ RNuser

+ be the

offloading request of users, where the subscript + indicates that each element q(t)u ∈ q(t)

is non-negative. To guarantee the completion of task offloading for each user, the total
amount of tasks offloaded to the local device, ES, and cloud should be equal to the request.
As a result, the following constraint is formulated as follows:

∀b : f (t)local,u + ∑
∀b

f (t)es,bu + f (t)cloud,u = q(t)u (10)

Finally, the objective function is formulated to minimize the response time for the
user’s request. In this problem formulation, each task is assumed to be completely pro-
cessed within the current time step. Thus, the factor impacting the response time is which
computing resource the user has utilized. It is assumed in this work that the network
latency for local processing is zero and the latency for accessing a BS is much smaller than
that for accessing the cloud. Let lbs and lcloud be the integer scalar determining the round-
trip network latency to the BS/ES (i.e., lbs × ∆t) and cloud (i.e., lcloud × ∆t), respectively.
Then, the response time L(t)

u that user u experiences for task offloading can be written
as below:

∀u : L(t)
u = ∆t × lbs ∑

∀b
o(t)es,bu + lcloud × ∆t × o(t)cloud,u + ∆t, (11)

where the first term is the latency for accessing the BS (ES), the second term is the latency
for accessing the cloud, and the last term is the time spent on the current time step. Finally,
the objective function is formulated as below using Equation (11). The main objective
here is to minimize the total response time, and in addition to that, the second term in the
objective function minimizes the use of local processing, as shown below.

min . (1 − α)∑
∀u

L(t)
u + α × ∑

∀u
f (t)local,u (12)

The α ∈ [0, 1] represents the service provider’s preference to prolonging the lifetime of
mobile users by minimizing the amount of local processing. As expected when α = 0, the
local processing on the user devices will be carried out as much as possible to minimize
the response time. On the other hand, as α increases, the use of local processing will be
minimized and the use of ESs will increase. Still, the offloading to the cloud will not be
heavily exercised for causing high response time.

Although the above optimization problem, called OPT(1), can produce an effective
scheduling solution for the current time step, it has the following drawbacks. In general,

Electronics 2024, 13, 3130 11 of 24

the length of a time step ∆t is short, and resource provisioning may consume computing
resources and take time, as discussed earlier. Thus, carrying out resource provisioning
every time step may not be practical, especially for real-time scheduling. Thus, in this work,
we propose to perform resource provisioning for Nsh > 1 time steps, within which both the
network association and computing resource allocation decisions remain the same. OPT(1)
optimizes only a single time step at a time and thus, what it can do as to the deadline
constraint is process as many tasks as possible at the current time step, operating as a
greedy solution. In the following multi-time step approach, we propose an optimization
formulation that guarantees the deadline requirements of tasks by scheduling over multiple
time steps. In addition, we propose to distribute the offloading requests over multiple time
steps so that future resource provisioning and task offloading can be made with a certain
level of flexibility. Furthermore, it helps to effectively adapt to the case of misprediction on
future requests.

It is assumed in this work that on each time step, a user can generate up to one
offloading request. However, this can be extended to various scenarios where a user
generates multiple requests. Since the amount of the offloading request can be any arbitrary
number, the scenario where a user generates multiple requests can be treated as a single
request with the request amount being the sum of all simultaneous requests. Let d(t) be the
deadlines of the tasks generated by users at t. The deadline is application-specific and that
of each request is assumed to be known when the request arrives. Each value is represented
by a strongly positive integer if the user has generated a task, indicating the number of
time steps from t the deadline is not violated. After collecting the deadlines, the scheduler
computes the largest deadline which becomes the number of time steps to optimize the
computing resource and the offloading decision. Let σ(t) be the largest deadline among the
offloading requests to be scheduled together at t, which is defined as follows.

σ(t) = max{d(t)u : ∀u} (13)

It is worth noting that the value of σ(t) is an integer value and thus the actual timespan
of it can be derived, if needed, by multiplying the length of each time step, ∆t.

The following optimization problem addresses resource provisioning and task offload-
ing over σ(t) = Nsh time steps for offloading requests generated at time t. The entire time
horizon is indexed by t = τ1, τ2, · · · , τσ(t) . The length of each time step is determined by
system-specific parameters. In this study, the duration of each time step is set to 1 ms. How-
ever, the proposed method is designed to be flexible and can be adapted to accommodate
time step lengths of varying sizes.

The optimization model, OPT(Nsh), aims to minimize a weighted sum of three compo-
nents: the overall system cost, local device processing cost, and cloud processing cost. The
weights α and β control the relative importance of local and cloud processing costs. This
allows for flexible adjustment based on system requirements. The deadline-constrained
OPT(Nsh), multiple-time step resource provisioning and task offloading problem is formu-
lated as follows:

min . (1 − α − β)ϕ + α × ∑
∀t

∑
∀u

f (t)local,u + β × ∑
∀t

∑
∀u

f (t)cloud,u (14a)

s.t. ∀b, u : i(τ1)
bu ≤ a(τ1)

bu (14b)

∀u : ∑
∀b

i(τ1)
bu = 1 (14c)

∀b : ∑
∀i

i(τ1)
bu ≤ ACb (14d)

∀b, u, t : o(t)es,bu ≤ i(τ1)
bu (14e)

∀u, t : f (t)local,u ≤ o(t)local,u (14f)

Electronics 2024, 13, 3130 12 of 24

∀b, u, t : f (t)es,bu ≤ o(t)es,bu (14g)

∀u, t : f (t)cloud,u ≤ κcloud × o(t)cloud,u (14h)

∀u, t : f (t)local,u ≤ c(t)local,u (14i)

∀b, t : ∑
∀u

f (t)es,bu ≤ c(t)es,b (14j)

∀b, t : ∑
t
(f (t)local,u + ∑

∀b
f (t)es,bu + f (t)cloud,u) = q(τ1)

u (14k)

∀u :
τ

σ(t)

∑
t=d

(τ1)
u +1

o(t)local,u ≤ 0 (14l)

∀u :
τ

σ(t)

∑
t=d

(τ1)
u +1−lbs

∑
∀b

o(t)bs,bu ≤ 0 (14m)

∀u :
τ

σ(t)

∑
t=d

(τ1)
u +1−lcloud

o(t)cloud,u ≤ 0 (14n)

∀t, b : ∑
∀u

f (t)es,bu ≤ ϕ (14o)

∀b, u, t : o(t−1)
local,u ≥ o(t)local,u, o(t−1)

es,bu ≥ o(t)es,bu, o(t−1)
cloud,u ≥ o(t)cloud,u (14p)

The OPT(Nsh) is similar to OPT(1) except for the following major differences: (i)
OPT(Nsh) performs optimization over multiple time steps, while OPT(1) does only for a
single time step; (ii) OPT(Nsh) guarantees the deadline of each task, while OPT(1) minimizes
the response time only; (iii) OPT(Nsh) distributes the computing load over multiple time
steps, while OPT(1) cannot.

The constraints in Equations (14b)–(14k) for OPT(Nsh) are similar to those in OPT(1),
but they differ in that they apply across multiple time steps rather than a single time
step. Constraints in Equations (14b)–(14d) ensure that each user is associated with exactly
one BS and that no BS exceeds its capacity. This requirement is extended to cover all
time steps in OPT(Nsh). On the other hand, constraints in Equations (14e)–(14k) handle
offloading decisions by ensuring that offloading is only permitted if a user is associated
with a BS, that local device and edge server processing limits are not exceeded, and that
user task requirements are satisfied. These constraints are applied over multiple time steps,
accommodating the dynamic nature of the system.

Key differences in OPT(Nsh) are introduced with constraints Equations (14l)–(14n),
which enforce deadlines. Constraint Equation (14l) prevents offloading if a task’s deadline
has passed, thus avoiding offloading beyond the deadline. Constraint Equation (14m)
applies this rule to edge server offloading, while constraint Equation (14n) applies it to
cloud offloading. Finally, constraint Equation (14o) and the term ϕ in the objective function
Equation (14a) are used to balance computing load over multiple time steps. Constraint
Equation (14o) ensures that the total load on edge servers does not exceed ϕ at any time step,
while the term ϕ in the objective function penalizes uneven load distribution, encouraging
balanced resource allocation.

The objective function also raises some penalties for the use of local resources and
the cloud for prolonging the lifetime of mobile devices and reducing network latency,
respectively. The objective function has two preference parameters, α ∈ [0, 1] and β ∈ [0, 1],
highlighting the importance of reducing local processing and cloud offloading, respectively.

It is assumed in this work that users are stationary for a small number of time steps,
thereby causing no changes in the accessibility matrix, A(t), over σ(t) time steps. In addition,
as mentioned earlier, frequent rescheduling of resources (e.g., association, horizontal scaling,
and migration) causes computational overhead and delays. Thus, we propose to make

Electronics 2024, 13, 3130 13 of 24

optimal associations and resource provisioning for multiple time steps, which is possible by
making accurate predictions on future requests. As in Equations (14b)–(14e), the optimal
decision on BS-user association remains the same over σ(t) time steps. Furthermore, if
offloading is to happen, the related resources should be allocated in advance. For example, a
containerized virtual environment should be created and started in advance. The constraint
Equation (14p) states that if offloading is to be enabled at some t, it should be enabled
in advance. On the other hand, the actual allocated computing portion determined by
f(t)local , F(t)

es , and f(t)cloud changes over time steps. In the widely used Docker platform [42], for
example, the change in CPU/MEM resources (i.e., vertical scaling) can be performed in
real time by using Docker’s built-in runtime options [43], enabling frequent scheduling.

It is worth noting that in both OPT(1) and OPT(Nsh), we intentionally omitted the
constraints for limiting the feasible value ranges of the decision variables since they are al-
ready stated in the manuscript. Additionally, the greedy version of the proposed approach,
OPT(1), processes all tasks within the current time step without considering deadline
constraints. In contrast, OPT(Nsh) optimizes resource allocation and task offloading de-
cisions over multiple time steps while ensuring that deadlines are consistently met by
incorporating these constraints.

4. Evaluation

For evaluation, we have configured networks as shown in Figure 3. On a 300 m-by-
300 m area, there are nine BSs and ESs located in a planned manner with 100 m spacing
vertically and horizontally, while mobile users are randomly placed. The transmit/receive
range is set to 150 m. Each mobile device has a computing budget that is randomly drawn
from Uniform [0.05, 0.20], while the available computing resources at each ES are randomly
drawn from Uniform [0.40, 0.80]. Each user generates an offloading request, which requires
computing resources drawn from Distribution [0.00, 1.00] ×η, where η ∈ R++ is a scaling
factor to make low or high request rate scenarios. During the evaluation, the Distribution
is configured to one of the following: sine-, triangle-, and sawtooth-shaped patterns or
uniform random. Regarding the network latency, lbs and lcloud are set to 1 and 2, resulting
in 1 × ∆t and 2 × ∆t, respectively. The simulation and evaluation are carried out on a
high-performance workstation with an Intel Core i9 10940X CPU, 128 GB of memory, and
NVIDIA GeForce RTX 3090 graphics card, and the reported values in this section are the
average of 10 evaluations.

0 20 40 60 80 100 120 140 160 180 200

x (meter)

0

20

40

60

80

100

120

140

160

180

200

y
(m

et
er

)

(a)

0 20 40 60 80 100 120 140 160 180 200

x (meter)

0

20

40

60

80

100

120

140

160

180

200

y
(m

et
er

)

(b)

Figure 3. Some randomly sampled layouts of the assumed 300 m-by-300 m area where the nine red
stars and fifteen black dots are the locations of users and BSs, respectively. (a) Example layout 1.
(b) Example layout 2.

4.1. Traffic Offloading Dataset and Prediction Model

Task offloading patterns (or traffic patterns) we assume in this study include sine-,
triangle-, and sawtooth-shaped patterns and a random pattern as shown in Figure 4. The

Electronics 2024, 13, 3130 14 of 24

values are generated at 1000 Hz for T = 50 s, yielding 50,000 data samples. We used an
80:10:10 split for training, validation, and testing. As a pre-processing step, the dataset is
normalized. The input/output length of the model is configured to llb = 128 and l f h = 5.
The deep learning models are implemented with Tensorflow and Keras framework. The
Adam optimizer is used with a learning rate of 0.001, and the number of epochs and the
batch size are configured to 10 and 128, respectively.

0 200 400 600 800 1000
Time slot

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

of
flo

ad
in

g
re

qu
es

t

(a)

0 200 400 600 800 1000
Time slot

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
of

flo
ad

in
g

re
qu

es
t

(b)

0 200 400 600 800 1000
Time slot

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
of

flo
ad

in
g

re
qu

es
t

(c)

0 200 400 600 800 1000
Time slot

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
of

flo
ad

in
g

re
qu

es
t

(d)
Figure 4. The task-offloading request patterns assumed in this study where the x-axis shows only up
to the first 1000 samples out of 50,000. (a) Sine pattern. (b) Triangle pattern. (c) Sawtooth pattern.
(d) Random.

Real patterns can often be decomposed into multiple primitive patterns. This implies
that the sum of one, two, or three basic patterns can result in a realistic pattern. Therefore,
by studying these fundamental shapes, we can gain insights into more complex and realistic
traffic patterns. According to a study analyzing mobile traffic using a real dataset collected
from over 150,000 users [44], such decomposition is a valid approach for capturing the
variability in real-world traffic patterns. This view is further supported by techniques
such as Fourier analysis and other effective methods, which can decompose compound
signals into multiple basic, primitive signals [45–48]. In this study, we demonstrate that
the proposed prediction model can accurately forecast these compound signals using the
generated composite signals. Furthermore, if the given offloading pattern exhibits high
complexity, it can be decomposed into simpler, more manageable components.

The measured accuracy of the considered neural network models is reported in Table 4,
where the reported values therein are the root mean square errors (RMSE). Overall, the
1DCNN model outperformed the rest with respect to mean accuracy, and thus, it is used
for evaluation as the offloading request prediction model in what follows.

Electronics 2024, 13, 3130 15 of 24

Table 4. Prediction accuracy performance (RMSE) of the three neural networks with respect to
different request patterns.

Request Pattern 1DCNN LSTM Transformer

Sine 0.0350 0.0337 0.0350
Triangle 0.0336 0.0337 0.0347

Sawtooth 0.0328 0.0575 0.0349
Random 0.2874 0.2869 0.2868

mean (total) 0.0972 0.1030 0.0979
mean (except

Random) 0.0338 0.0416 0.0349

The predicted results of 1DCNN are shown in Figure 5, where Figure 5a is for sine-
shaped requests, Figure 5b is for triangle-shaped requests, Figure 5c is for sawtooth-shaped
requests, and Figure 5d is for randomly generated requests. As can be seen from the figures,
requests exhibiting a certain pattern are predicted with high precision. However, in the
case of the randomly generated requests, it is impossible to learn the underlying patterns
that do not exist, and thus, the model outputs the mean values all the time.

0 200 400 600 800 1000
Time index

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
of

flo
ad

in
g

re
qu

es
t

actual
prediction

(a)

0 200 400 600 800 1000
Time index

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
of

flo
ad

in
g

re
qu

es
t

actual
prediction

(b)

0 200 400 600 800 1000
Time index

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
of

flo
ad

in
g

re
qu

es
t

actual
prediction

(c)

0 200 400 600 800 1000
Time index

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
of

flo
ad

in
g

re
qu

es
t

actual
prediction

(d)
Figure 5. Task-offloading prediction results with 1DCNN for the four different shapes or patterns.
(a) Sine pattern. (b) Triangle pattern. (c) Sawtooth pattern. (d) Random.

The predicted requests are then used in the following subsection for optimizing
resource provisioning and task offloading. By carrying out extensive evaluations, we found
that the results from using sine-, triangle-, and sawtooth-shaped requests are very similar
to each other for making highly accurate predictions. On the other hand, the evaluations
with random tasks showed different outcomes. Thus, in the following sections, we report
the cases with the sine-, triangle-, and sawtooth-shaped requests as a single result after
taking the average of all three. In addition, such requests will be called pattern requests.

4.2. Multi-Step Optimal Resource Provisioning and Task Offloading

We implemented the proposed algorithm and a discrete-time simulation environment
on MATLAB R2020b [49]. To implement and solve the proposed optimization problem,

Electronics 2024, 13, 3130 16 of 24

we used CVX 2.1 [50] and Gurobi 11.0 [51]. To evaluate the performance of the proposed
approach and to make a comparison analysis, we implemented the following algorithms:

• OPT(Nsh): the optimal method OPT(Nsh) proposed in this paper, which optimizes
resources and offloads over multiple time steps with deadline constraints.

• OPT(Nsh)/SSF: the proposed OPT(Nsh) without optimal BS-user association; the con-
ventional strongest signal first (SSF) association rule [52] is used instead.

• OPT(1): The optimal method OPT(1) proposed in this paper, which optimizes resources
and offloading for the current time step only in a greedy manner.

It is important to note that the greedy version of the proposed approach, OPT(1),
reflects the methodologies discussed in previous studies. However, unlike earlier meth-
ods, OPT(1) includes advanced features such as optimization of BS-user associations and
minimization of delays. Additionally, by comparing OPT(1) with OPT(Nsh)/SSF, we can
highlight the benefits of BS-user association optimization, which is also an important aspect
of the proposed approach.

The design parameters or preference values are set as follows, and the most suitable
values are found empirically. To be specific, for OPT(1), the value of α is set to 0.1. On the
other hand, for both OPT(Nsh) and OPT(Nsh)/SSF, the following configurations for the two
parameters are used: α = 0.2 and β = 0.15.

4.2.1. Effects of Multi-Time Step Optimization: Comparison between OPT(Nsh) and OPT(1)

We first carry out an evaluation to show the advantages of OPT(Nsh) over OPT(1). That
is, the benefits of optimizing the resources over multiple time steps will be evaluated. For
this evaluation, we assume that both OPT(1) and OPT(Nsh) can perfectly predict the future
requests. The reported values are the average over the three different traffic patterns and
the random traffic. During evaluations, OPT(Nsh) has successfully satisfied the deadline
constraints, which is the case in the following evaluations as well. The following Figures 6
and 7 depict the amount of computing resource used for task offloading when the users’
offloading requests are small and large, respectively. In the small request rate scenario
(see Figure 6), the overall computing resource usage is quite similar to each other in that
most computations are carried out on ESs. The notable difference is that OPT(1) offloaded
tasks as much as possible to an ES to minimize the response time and to minimize the local
processing according to its objective function Equation (12). On the other hand, OPT(Nsh)
optimizes over multiple time steps, and thus, excessive use of ESs does not occur. Rather,
OPT(Nsh) evenly distributes the computing resource allocations on ESs, and a small portion
of the tasks are offloaded to the cloud. This is because, as long as the deadline is not
violated, the use of the cloud is not penalized much. The fair distribution of the load is
desired in this study. It is worth noting that for OPT(Nsh), the use of ESs can exceed the ES’s
capacity as shown in Figure 6c. This is because the ES capacity in the figure is the capacity
for each time step, while the resource use is the accumulation over multiple time steps.

In the large request rate scenario (see Figure 7), the two methods show quite different
results. The OPT(1) takes an extreme approach in that each user offloads their tasks
completely to either the cloud or ES, and most tasks are offloaded to cloud for not having
enough capacity in an ES to process all within a single time step. As a result, users with
relatively small requests offload their tasks to ESs completely. On the other hand, users
with large amounts of requests completely offload their traffic to the cloud. However,
OPT(Nsh) can utilize ESs over multiple time steps, and thus, it has decided to offload much
of the user’s tasks to ESs while maintaining the balance of the ES resources. To be specific,
the use of ESs in OPT(1) and OPT(Nsh) has been 1.31 and 16.98, respectively. On the other
hand, the use of local and cloud computing in OPT(1) are 0.02 and 18.26, respectively, while
those of OPT(Nsh) are 0.00 and 0.62, respectively. This demonstrates that optimizing across
multiple time steps can effectively distribute the workload over time, thereby minimizing
reliance on both local and cloud resources.

Electronics 2024, 13, 3130 17 of 24

1 2 3 4 5 6 7 8 9

ES index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

ou
rc

e
us

ag
e

ES capacity
ES processing

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

User index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

ou
rc

e
us

ag
e

Local processing
Cloud processing

(b)

1 2 3 4 5 6 7 8 9

ES index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

ou
rc

e
us

ag
e

ES capacity (each time slot)
ES processing (sum over time slots)

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

User index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
es

ou
rc

e
us

ag
e

Local processing (sum over time slots)
Cloud processing (sum over time slots)

(d)
Figure 6. Comparison of computing resource usage between OPT(1) and OPT(Nsh) under a low
request rate (η = 0.5). Subfigures (a,c) show edge server (ES) usage, while subfigures (b,d) display
the combined usage of local devices and cloud resources. (a) ES usage of OPT(1). (b) Local device
and cloud usage of OPT(1). (c) ES usage of OPT(Nsh). (d) Local device and cloud usage of OPT(Nsh).

1 2 3 4 5 6 7 8 9

ES index

0

0.5

1

1.5

2

2.5

3

R
es

ou
rc

e
us

ag
e

ES capacity
ES processing

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

User index

0

0.5

1

1.5

2

2.5

3

R
es

ou
rc

e
us

ag
e

Local processing
Cloud processing

(b)
Figure 7. Cont.

Electronics 2024, 13, 3130 18 of 24

1 2 3 4 5 6 7 8 9

ES index

0

0.5

1

1.5

2

2.5

3

R
es

ou
rc

e
us

ag
e

ES capacity (each time slot)
ES processing (sum over time slots)

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

User index

0

0.5

1

1.5

2

2.5

3

R
es

ou
rc

e
us

ag
e

Local processing (sum over time slots)
Cloud processing (sum over time slots)

(d)
Figure 7. Comparison of computing resource usage for OPT(1) and OPT(Nsh) at a high request rate
(η = 2.0). Subfigures (a,c) show edge server usage, while (b,d) display local device and cloud resource
usage. (a) ES usage of OPT(1). (b) Local device and cloud usage of OPT(1). (c) ES usage of OPT(Nsh).
(d) Local device and cloud usage of OPT(Nsh).

4.2.2. Effects of Optimal Association: Comparison between OPT(Nsh) and OPT(Nsh)/SSF

To validate the importance and effectiveness of the proposed optimal association ap-
proach, we make a comparison between OPT(Nsh) and one variant of it, called OPT(1)/SSF.
As similar to the previous subsection, we assumed the case where the future request rates
can be perfectly predicted in this evaluation. It is the same as OPT(Nsh) except that the
BS-user association is made based on the strongest signal first rule. For SSH, we assume a
free space path loss model [53] where the distance between the transceiver and receiver
dominates the path loss: PLdB = −10 × log10Glλ

2/(4πd)2 with d being the distance.
When the mean request rates are small (i.e., η = 0.5), there was not much difference

between OPT(Nsh) and OPT(1)/SSF. However, when the mean rate increased (i.e., η = 0.5),
OPT(1)/SSF is much outperformed by OPT(Nsh) as shown in Figure 8. Despite the optimal
computing resource provisioning and task offloading, OPT(1)/SSF has failed to make
balanced use of ES computing resources, as shown in Figure 8a. On the other hand, OPT(1)
has achieved better load balancing among ESs, as shown in Figure 8c. In addition, compared
to OPT(1)/SSF which has utilized the cloud resource much (see Figure 8b), OPT(1) has used
much less (see Figure 8d). Such performance difference arises from the optimal association
strategy. The BS-user association determines the ES-user association as well. Thus, poor
association may result in the case where many users associate with a small number of BSs,
which prevents fair load distribution.

1 2 3 4 5 6 7 8 9

ES index

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
es

ou
rc

e
us

ag
e

ES capacity (each time slot)
ES processing (sum over time slots)

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

User index

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
es

ou
rc

e
us

ag
e

Local processing (sum over time slots)
Cloud processing (sum over time slots)

(b)
Figure 8. Cont.

Electronics 2024, 13, 3130 19 of 24

1 2 3 4 5 6 7 8 9

ES index

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
es

ou
rc

e
us

ag
e

ES capacity (each time slot)
ES processing (sum over time slots)

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

User index

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
es

ou
rc

e
us

ag
e

Local processing (sum over time slots)
Cloud processing (sum over time slots)

(d)
Figure 8. Computing resource usage comparison between OPT(Nsh) and OPT(Nsh)/SSF with a
large request rate (η = 2.0). (a) ES usage of OPT(Nsh)/SSH. (b) Local device and cloud usage of
OPT(Nsh)/SSH. (c) ES usage of OPT(Nsh). (d) Local device and cloud usage of OPT(Nsh).

4.2.3. Effects of Request Prediction Accuracy on OPT(Nsh)

Lastly, we conduct evaluations to examine how errors in predicting future offloading
requests impact resource utilization. As aforementioned, the proposed 1DCNN-based
prediction model can make highly accurate predictions for the three patterns, and thus,
the resource usage outcomes are similar to each other. In this regard, we configured two
scenarios in the following manner. In one scenario, during the simulation, each user
generates requests by using one of the sine-, triangle-, and sawtooth-shaped patterns. In
the other scenario, all users will generate requests randomly. The difference between the
two is the level of precision in predicting future requests. As a result, we configured the
three scenarios as follows: (i) users’ requests can be perfectly predicted; (ii) users’ requests
can be predicted with high accuracy (i.e., each user is generating requests by using sine-,
triangle-, and sawtooth-shaped pattern); (iii) users’ requests cannot be predicted accurately
(i.e., each user is generating requests at uniform random). When the users’ request rates are
small with η = 0.5, the results among the above three cases are not much different, while
the more accurate scenario has yielded better performance in terms of the fair distribution
among ESs and less use of local and cloud computing resource. Thus, we present only the
results when the users’ request rates are large with η = 0.5, as shown in Figure 9.

1 2 3 4 5 6 7 8 9

ES index

0

0.5

1

1.5

2

2.5

3

R
es

ou
rc

e
us

ag
e

ES capacity (each time slot)
ES processing (sum over time slots)

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

User index

0

0.5

1

1.5

2

2.5

3

R
es

ou
rc

e
us

ag
e

Local processing (sum over time slots)
Cloud processing (sum over time slots)

(b)
Figure 9. Cont.

Electronics 2024, 13, 3130 20 of 24

1 2 3 4 5 6 7 8 9

ES index

0

0.5

1

1.5

2

2.5

3

R
es

ou
rc

e
us

ag
e

ES capacity (each time slot)
ES processing (sum over time slots)

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

User index

0

0.5

1

1.5

2

2.5

3

R
es

ou
rc

e
us

ag
e

Local processing (sum over time slots)
Cloud processing (sum over time slots)

(d)

1 2 3 4 5 6 7 8 9

ES index

0

0.5

1

1.5

2

2.5

3

R
es

ou
rc

e
us

ag
e

ES capacity (each time slot)
ES processing (sum over time slots)

(e)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

User index

0

0.5

1

1.5

2

2.5

3

R
es

ou
rc

e
us

ag
e

Local processing (sum over time slots)
Cloud processing (sum over time slots)

(f)
Figure 9. Computing resource usage comparison of OPT(Nsh) between the cases with different levels
of prediction accuracy with a large request rate (η = 2.0). (a) ES usage of OPT(Nsh) when the request
prediction is perfect. (b) Local device and cloud usage of OPT(Nsh) when the request prediction is
perfect. (c) ES usage of OPT(Nsh) when the request prediction is highly accurate. (d) Local device and
cloud usage of OPT(Nsh) when the request prediction is highly accurate. (e) ES usage of OPT(Nsh)
when the request prediction is inaccurate. (f) Local device and cloud usage of OPT(Nsh) when the
request prediction is inaccurate.

When the future task requests can be predicted with high accuracy, the resource use
in ESs and user/cloud (see Figure 9c and Figure 9d, respectively) is quite similar to that
of optimum (see Figure 9a and Figure 9b, respectively). Such little differences is mainly
because the future requests have been predicted with high accuracy. In addition, OPT(Nsh)
makes some resources available by fairly distributing the load over time. Thus, in the
case of under-provisioning, it can allocate additional computing resources on ESs without
accessing cloud or local device. As a result, the use of ESs can still be balanced, and
the use of cloud can be minimized. Yet, in scenarios where all users generate offloading
requests uniformly at random, accurately predicting future requests becomes impossible.
Thus, OPT(Nsh) suffers much from under-/over-provisioning problems. Still, OPT(Nsh)
distributes the load on ESs over time, but the level of load balancing is worse than the rest.
In addition, the use of the cloud has increased much, which is not preferred under the
current objective function (see Equation (14a)). This result shows the importance of highly
accurate predictions on the future request. However, random traffic cannot be captured,
and the proposed approach has shown that under the random scenario, it has a certain
level of load balancing and the use of cloud has been successfully controlled.

We have also carried out additional experiments to evaluate the effect of misprediction
on the performance of OPT(1) and OPT(Nsh)/SSF, whereas the performance of the two with
perfect prediction is presented in Section 4.2.1 and Section 4.2.2, respectively. In the case of

Electronics 2024, 13, 3130 21 of 24

OPT(1) with a low request rate (η = 0.5), when the prediction is highly accurate, the use of
local, ES, and cloud computing has been similar to the case when the prediction is perfect.
When the user request is generated uniformly at random, on the other hand, the use of
computing resources has been less efficient. The most notable difference is, compared to
the perfect prediction case, the use of local computing resources increased from 0.0095 to
0.1010, on average. This is because most users have closed their access to the cloud during
the optimization, which considers the average rate only. This is clearly against the goal
we programmed in the objective function since it will shorten the battery lifetime of the
user device.

In the case of OPT(1) with a high request rate (η = 2.0), we have observed the following.
Similar to the case with low request rates, when the prediction is highly accurate, the use
of local, ESs, and cloud computing has been similar to that of the perfect prediction case.
When the user request is generated uniformly at random, the offloading scheduling has
become infeasible frequently. As can be seen in Figure 7b, both users 2 and 3 do not allocate
resources on the cloud. It might be the desired outcome under the average request rates.
However, in real time, the offloading request can be much larger than the average, but the
closed access to the cloud for both users causes failure in fulfilling the user’s request.

Lastly, in the case of OPT(Nsh)/SSF with a high request rate (η = 2.0), we have learned
the following. Similar to the above cases, when the prediction is highly accurate, the use of
local, ESs, and cloud computing has been similar to that of the perfect prediction case. When
the user request is generated uniformly at random, the use of cloud resources is increased
from 2.8482 to 3.7279, on average. Due to the non-optimal approach taken for user-BS
association, OPT(Nsh)/SSF can result in a few BSs with a large number of associations.
When the real-time requests exceed the average for the users associated with such busy BSs,
part of the excessive amount of requests are forwarded to the cloud, resulting in a longer
response time.

4.2.4. Discussions

Enhanced resource utilization and reduced task offloading latency significantly im-
prove service quality for applications such as real-time streaming and gaming. Efficient
resource usage reduces costs for providers, particularly in large-scale deployments, while
improved load distribution enhances network scalability, allowing for the accommodation
of more users and devices. However, average-based optimization has limitations, as real-
time offloading request amounts can deviate from the average. Consequently, this work
employs real-value-based optimization to better address these variations, making it more
suitable for delay-constrained or sensitive applications.

However, some limitations exist. The framework’s effectiveness relies on the accuracy
of predicting future offloading requests; unpredictable traffic can reduce performance.
Implementing multi-time step optimization adds computational overhead, which may be
challenging in resource-constrained or large-scale networks. Stable evaluation conditions
may not reflect real-world scenarios where dynamic network changes, such as user mobility
and signal variations, can affect performance.

Finally, the summary of findings regarding the feasibility and practical challenges of
implementing the proposed approach is as follows. The proposed deep learning model
is implemented by using the widely used combination of Keras and Tensorflow frame-
works [54] and thus, the resulting trained model can be easily ported or migrated to
different operating systems and CPU architectures. The iterative inference step takes a
negligible amount of time, making it applicable for real-time operations. On the other hand,
each training epoch during the training process takes approximately two seconds on the
aforementioned computing machine, but the training process is supposed to be carried out
offline before the deployment of the proposed approach. As aforementioned, the proposed
optimal approach as well as its variants are implemented by using the widely available
computer solver. Although the proposed OPT(Nsh) utilizes binary variables, by leveraging
advanced algorithms for handling binary/integer variables such as branch-and-bound,

Electronics 2024, 13, 3130 22 of 24

cutting planes, and parallelism [55], the proposed optimization problem is solved in at most
tens of milliseconds which is applicable for real-time scheduling since the proposed method
can plan in advance by using the predicted future requests. In addition, by leveraging
advanced techniques such as Lagrangian relaxation and problem decomposition [15] or
gradual one-by-one removal [39] the computation time can be further reduced.

5. Conclusions

In this study, we proposed a multi-step request prediction and optimization scheme for
MEC. The proposed scheme first forecasts the multi-step task-offloading requests. Then, us-
ing the predictions, the proposed approach called OPT(Nsh) optimizes network association,
computing resource provisioning, and task offloading so that users’ tasks are efficiently
processed with reduced battery consumption, guaranteed deadlines, and reduced cloud
use which causes larger delays. The proposed multi-time step optimization framework
can schedule the computing resources and task offloading over multiple time steps, and
thus, the deadline-constrained optimization problem can effectively be implemented while
making a balanced use of ESs over time. Extensive evaluations have been carried out to
show that the proposed approach can effectively predict future offloading requests with a
pattern, and with these predictions, edge computing resources can be optimally utilized
without violating deadlines. Even under the cases where the requests cannot be predicted
for randomness, the proposed scheme has shown its effectiveness in not exploding the use
of local and cloud computing resources and for making balanced use of ESs to some extent.

Author Contributions: Conceptualization, A.K.N. and T.K.; methodology, A.K.N. and T.K.; software,
A.K.N.; validation, A.K.N. and T.K.; formal analysis, T.K.; investigation, A.K.N.; resources, T.K.; data
curation, A.K.N.; writing—original draft preparation, A.K.N. and T.K.; writing—review and editing,
T.K.; visualization, A.K.N.; supervision, T.K.; project administration, T.K.; funding acquisition, T.K.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a 2-Year Research Grant of Pusan National University.

Data Availability Statement: The data presented in this study along with the related code are
available at the following GitHub repository: https://github.com/CISLAB-PNU/Traffic-Aware-
Intelligent-Association-and-Task-Offloading-for-Multi-Access-Edge-Computing.git (accessed on 29
July 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pew Research Center. Mobile Fact Sheet. 2021. Available online: https://www.pewresearch.org/internet/fact-sheet/mobile/

(accessed on 6 July 2024).
2. Statista. Number of Smartphone Users Worldwide from 2016 to 2023. 2023. Available online: https://www.statista.com/

statistics/330695/number-of-smartphone-users-worldwide/ (accessed on 6 July 2024).
3. International Data Corporation (IDC). Smartphone Shipments Totaled 1.35 Billion Units in 2021, According to IDC. 2022. Available

online: https://www.idc.com/getdoc.jsp?containerId=prUS52032524 (accessed on 6 July 2024).
4. Yew, H.T.; Ng, M.F.; Ping, S.Z.; Chung, S.K.; Chekima, A.; Dargham, J.A. Iot Based Real-Time Remote Patient Monitoring System.

In Proceedings of the 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA), Langkawi,
Malaysia, 28–29 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 176–179.

5. Herskovitz, J.; Wu, J.; White, S.; Pavel, A.; Reyes, G.; Guo, A.; Bigham, J.P. Making mobile augmented reality applications
accessible. In Proceedings of the 22nd International ACM SIGACCESS Conference on Computers and Accessibility, Virtual Event,
Greece, 26–28 October 2020; pp. 1–14.

6. Chen, Y.L.; Hsu, C.C. Self-regulated mobile game-based English learning in a virtual reality environment. Comput. Educ. 2020,
154, 103910. [CrossRef]

7. Imran, A.; Posokhova, I.; Qureshi, H.N.; Masood, U.; Riaz, M.S.; Ali, K.; John, C.N.; Hussain, M.I.; Nabeel, M. AI4COVID-19: AI
enabled preliminary diagnosis for COVID-19 from cough samples via an app. Inform. Med. Unlocked 2020, 20, 100378. [CrossRef]
[PubMed]

8. Vaz, D.; Matos, D.R.; Pardal, M.L.; Correia, M. MIRES: Intrusion Recovery for Applications Based on Backend-As-a-Service. IEEE
Trans. Cloud Comput. 2023, 11, 2011–2027. [CrossRef]

https://github.com/CISLAB-PNU/Traffic-Aware-Intelligent-Association-and-Task-Offloading-for-Multi-Access-Edge-Computing.git
https://github.com/CISLAB-PNU/Traffic-Aware-Intelligent-Association-and-Task-Offloading-for-Multi-Access-Edge-Computing.git
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.idc.com/getdoc.jsp?containerId=prUS52032524
http://doi.org/10.1016/j.compedu.2020.103910
http://dx.doi.org/10.1016/j.imu.2020.100378
http://www.ncbi.nlm.nih.gov/pubmed/32839734
http://dx.doi.org/10.1109/TCC.2022.3178982

Electronics 2024, 13, 3130 23 of 24

9. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor.
2017, 19, 1628–1656. [CrossRef]

10. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE
Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]

11. Chen, C.L.; Brinton, C.G.; Aggarwal, V. Latency minimization for mobile edge computing networks. IEEE Trans. Mob. Comput.
2021, 22, 2233–2247. [CrossRef]

12. Hu, H.; Song, W.; Wang, Q.; Hu, R.Q.; Zhu, H. Energy Efficiency and Delay Tradeoff in an MEC-Enabled Mobile IoT Network.
IEEE Internet Things J. 2022, 9, 15942–15956. [CrossRef]

13. Antonopoulos, N.; Gillam, L. Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2010; Volume 51.
14. Nugroho, A.K.; Shioda, S.; Kim, T. Optimal Resource Provisioning and Task Offloading for Network-Aware and Federated Edge

Computing. Sensors 2023, 23, 9200. [CrossRef] [PubMed]
15. Kim, T.; Lin, J.W.; Hsieh, C.T. Delay and QoS Aware Low Complex Optimal Service Provisioning for Edge Computing. IEEE

Trans. Veh. Technol. 2023, 72, 1169–1183. [CrossRef]
16. Kherraf, N.; Alameddine, H.A.; Sharafeddine, S.; Assi, C.M.; Ghrayeb, A. Optimized provisioning of edge computing resources

with heterogeneous workload in IoT networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 459–474. [CrossRef]
17. Xiang, Z.; Deng, S.; Jiang, F.; Gao, H.; Tehari, J.; Yin, J. Computing power allocation and traffic scheduling for edge service

provisioning. In Proceedings of the 2020 IEEE International Conference on Web Services (ICWS), Beijing, China, 18–24 October
2020; IEEE: Piscataway, NJ, USA, 2020; pp. 394–403.

18. Jiang, H.; Dai, X.; Xiao, Z.; Iyengar, A. Joint task offloading and resource allocation for energy-constrained mobile edge computing.
IEEE Trans. Mob. Comput. 2022, 22, 4000–4015. [CrossRef]

19. Apostolopoulos, P.A.; Tsiropoulou, E.E.; Papavassiliou, S. Risk-aware data offloading in multi-server multi-access edge computing
environment. IEEE/ACM Trans. Netw. 2020, 28, 1405–1418. [CrossRef]

20. Han, B.; Sciancalepore, V.; Xu, Y.; Feng, D.; Schotten, H.D. Impatient queuing for intelligent task offloading in multiaccess edge
computing. IEEE Trans. Wirel. Commun. 2022, 22, 59–72. [CrossRef]

21. Song, H.; Gu, B.; Son, K.; Choi, W. Joint optimization of edge computing server deployment and user offloading associations in
wireless edge network via a genetic algorithm. IEEE Trans. Netw. Sci. Eng. 2022, 9, 2535–2548. [CrossRef]

22. Feng, M.; Krunz, M.; Zhang, W. Joint task partitioning and user association for latency minimization in mobile edge computing
networks. IEEE Trans. Veh. Technol. 2021, 70, 8108–8121. [CrossRef]

23. Charatsaris, P.; Diamanti, M.; Papavassiliou, S. Joint User Association and Resource Allocation for Hierarchical Federated
Learning Based on Games in Satisfaction Form. IEEE Open J. Commun. Soc. 2023, 5, 457–471. [CrossRef]

24. Wang, H.; Wang, Y.; Sun, R.; Su, R.; Liu, B. Joint user association and power allocation for minimizing multi-bitrate video
transmission delay in mobile-edge computing networks. In Innovative Mobile and Internet Services in Ubiquitous Computing:
Proceedings of the 12th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2018), Sydney,
NSW, Australia, 3–5 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 467–478.

25. Qi, Y.; Zhou, Y.; Liu, Y.F.; Liu, L.; Pan, Z. Traffic-aware task offloading based on convergence of communication and sensing in
vehicular edge computing. IEEE Internet Things J. 2021, 8, 17762–17777. [CrossRef]

26. Wang, P.; Wang, Y.; Qiao, J.; Hu, Z. Traffic-Aware Optimization of Task Offloading and Content Caching in the Internet of Vehicles.
Appl. Sci. 2023, 13, 13069. [CrossRef]

27. Oza, P.; Hudson, N.; Chantem, T.; Khamfroush, H. Deadline-aware task offloading for vehicular edge computing networks using
traffic light data. ACM Trans. Embed. Comput. Syst. 2024, 23, 1–25. [CrossRef]

28. Guo, H.; Liu, J.; Lv, J. Toward intelligent task offloading at the edge. IEEE Netw. 2019, 34, 128–134. [CrossRef]
29. Kim, K.; Lynskey, J.; Kang, S.; Hong, C.S. Prediction based sub-task offloading in mobile edge computing. In Proceedings of

the 2019 International Conference on Information Networking (ICOIN), Kuala Lumpur, Malaysia, 9–11 January 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 448–452.

30. Zeng, F.; Tang, J.; Liu, C.; Deng, X.; Li, W. Task-offloading strategy based on performance prediction in vehicular edge computing.
Mathematics 2022, 10, 1010. [CrossRef]

31. Bohannon, R.W.; Andrews, A.W. Normal walking speed: A descriptive meta-analysis. Physiotherapy 2011, 97, 182–189. [CrossRef]
[PubMed]

32. Benidis, K.; Rangapuram, S.S.; Flunkert, V.; Wang, Y.; Maddix, D.; Turkmen, C.; Gasthaus, J.; Bohlke-Schneider, M.; Salinas, D.;
Stella, L.; et al. Deep learning for time series forecasting: Tutorial and literature survey. ACM Comput. Surv. 2022, 55, 1–36.
[CrossRef]

33. Kim, N.; Balaraman, A.; Lee, K.; Kim, T. Multi-Step Peak Power Forecasting with Constrained Conditional Transformer for a
Large-Scale Manufacturing Plant. IEEE Access 2023, 11, 136692–136705. [CrossRef]

34. Brownlee, J. Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python; Machine Learning
Mastery: Vermont, Australia, 2018.

35. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
36. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010.

http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/TMC.2021.3117511
http://dx.doi.org/10.1109/JIOT.2022.3153847
http://dx.doi.org/10.3390/s23229200
http://www.ncbi.nlm.nih.gov/pubmed/38005586
http://dx.doi.org/10.1109/TVT.2022.3206087
http://dx.doi.org/10.1109/TNSM.2019.2894955
http://dx.doi.org/10.1109/TMC.2022.3150432
http://dx.doi.org/10.1109/TNET.2020.2983119
http://dx.doi.org/10.1109/TWC.2022.3191287
http://dx.doi.org/10.1109/TNSE.2022.3165372
http://dx.doi.org/10.1109/TVT.2021.3091458
http://dx.doi.org/10.1109/OJCOMS.2023.3347354
http://dx.doi.org/10.1109/JIOT.2021.3083065
http://dx.doi.org/10.3390/app132413069
http://dx.doi.org/10.1145/3594541
http://dx.doi.org/10.1109/MNET.001.1900200
http://dx.doi.org/10.3390/math10071010
http://dx.doi.org/10.1016/j.physio.2010.12.004
http://www.ncbi.nlm.nih.gov/pubmed/21820535
http://dx.doi.org/10.1145/3533382
http://dx.doi.org/10.1109/ACCESS.2023.3339120
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

Electronics 2024, 13, 3130 24 of 24

37. Kim, T.; Al-Tarazi, M.; Lin, J.W.; Choi, W. Optimal container migration for mobile edge computing: Algorithm, system design
and implementation. IEEE Access 2021, 9, 158074–158090. [CrossRef]

38. Kim, T.; Chang, J.M. Profitable and energy-efficient resource optimization for heterogeneous cloud-based radio access networks.
IEEE Access 2019, 7, 34719–34737. [CrossRef]

39. Kim, T.; Chang, J.M. QoS-aware energy-efficient association and resource scheduling for HetNets. IEEE Trans. Veh. Technol. 2017,
67, 650–664. [CrossRef]

40. Amazon Web Services, High Availability and Scalability on AWS—Real-Time Communication on AWS, Amazon Web Services.
2024. Available online: https://docs.aws.amazon.com/whitepapers/latest/real-time-communication-on-aws/high-availability-
and-scalability-on-aws.html (accessed on 26 July 2024).

41. Microsoft Azure, Azure Availability Zones—High Availability at Scale. Available online: https://azure.microsoft.com/en-us/
explore/global-infrastructure/availability-zones#features (accessed on 25 July 2024).

42. Docker Inc. Docker. Available online: https://www.docker.com/ (accessed on 6 July 2024).
43. Docker Inc. Runtime Options with Memory, CPUs, and GPUs. Available online: https://docs.docker.com/config/containers/

resource_constraints/ (accessed on 6 July 2024).
44. Wang, H.; Xu, F.; Li, Y.; Zhang, P.; Jin, D. Understanding mobile traffic patterns of large scale cellular towers in urban environment.

In Proceedings of the 2015 Internet Measurement Conference, Tokyo, Japan, 28–30 October 2015; pp. 225–238.
45. James, J.F. A Student’s Guide to Fourier Transforms with Applications in Physics and Engineering; Cambridge University Press:

Cambridge, UK, 2011.
46. Roonizi, A.K.; Sassi, R. ECG signal decomposition using Fourier analysis. EURASIP J. Adv. Signal Process. 2024, 2024, 79.

[CrossRef]
47. Huang, H.; Chen, J.; Sun, R.; Wang, S. Short-term traffic prediction based on time series decomposition. Phys. A Stat. Mech. Its

Appl. 2022, 585, 126441. [CrossRef]
48. Shi, J.; Leau, Y.-B.; Li, K.; Park, Y.-J.; Yan, Z. Optimization and Decomposition Methods in Network Traffic Prediction Model: A

Review and Discussion. IEEE Access 2020, 8, 202858–202871. [CrossRef]
49. The MathWorks Inc. MATLAB, Version: 9.13.0 (R2022b); The MathWorks Inc.: Portola Valley, CA, USA, 2022.
50. Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1; CVX Research, Inc.: Austin, TX, USA,

2014.
51. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, Version 11.0; Gurobi Optimization, LLC: Beaverton, OR, USA,

2024.
52. Khan, M.A.; Hamila, R.; Gastli, A.; Kiranyaz, S.; Al-Emadi, N.A. ML-based handover prediction and AP selection in cognitive

Wi-Fi networks. J. Netw. Syst. Manag. 2022, 30, 72. [CrossRef]
53. Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005.
54. Tensorflow, Keras: The High-Level API for TensorFlow, Tensorflow. Available online: https://www.tensorflow.org/guide/keras

(accessed on 15 June 2024).
55. Gurobi Optimization, Mixed-Integer Programming (MIP)—A Primer on the Basics, Gurobi Optimization. Available online:

https://www.gurobi.com/resources/mixed-integer-programming-mip-a-primer-on-the-basics (accessed on 15 June 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2021.3131643
http://dx.doi.org/10.1109/ACCESS.2019.2904766
http://dx.doi.org/10.1109/TVT.2017.2737629
https://docs.aws.amazon.com/whitepapers/latest/real-time-communication-on-aws/high-availability-and-scalability-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/real-time-communication-on-aws/high-availability-and-scalability-on-aws.html
https://azure.microsoft.com/en-us/explore/global-infrastructure/availability-zones#features
https://azure.microsoft.com/en-us/explore/global-infrastructure/availability-zones#features
https://www.docker.com/
https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/config/containers/resource_constraints/
http://dx.doi.org/10.1186/s13634-024-01171-x
http://dx.doi.org/10.1016/j.physa.2021.126441
http://dx.doi.org/10.1109/ACCESS.2020.3036421
http://dx.doi.org/10.1007/s10922-022-09684-2
https://www.tensorflow.org/guide/keras
https://www.gurobi.com/resources/mixed-integer-programming-mip-a-primer-on-the-basics

	Introduction
	Related Work
	Proposed Idea
	Multi-Step Task-Offloading Prediction
	Optimal Association and Task Offloading

	Evaluation
	Traffic Offloading Dataset and Prediction Model
	Multi-Step Optimal Resource Provisioning and Task Offloading
	Effects of Multi-Time Step Optimization: Comparison between OPT(Nsh) and OPT(1)
	Effects of Optimal Association: Comparison between OPT(Nsh) and OPT(Nsh)/SSF
	Effects of Request Prediction Accuracy on OPT(Nsh)
	Discussions

	Conclusions
	References

