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Abstract: Within the domain of multi-label classification for micro-videos, utilizing terrestrial datasets
as a foundation, researchers have embarked on profound endeavors yielding extraordinary accom-
plishments. The research into multi-label classification based on underwater micro-video datasets is
still in the preliminary stage. There are some challenges: the severe color distortion and visual blur-
ring in underwater visual imaging due to water molecular scattering and absorption, the difficulty in
acquiring underwater short video datasets, the sparsity of underwater short video modality features,
and the formidable task of achieving high-precision underwater multi-label classification. To address
these issues, a bilayer graph convolution learning network based on constrained codec (BGCLN) is
established in this paper. Specifically, modality-common representation is constructed to complete
the representation of common information and specific information based on the constrained codec
network. Then, the attention-driven double-layer graph convolutional network module is designed to
mine the correlation information between labels and enhance the modality representation. Finally, the
combined modality representation fusion and multi-label classification module are used to obtain the
category classifier prediction. In the underwater video multi-label classification dataset (UVMCD),
the effectiveness and high classification accuracy of the proposed BGCLN have been proved by
numerous experiments.

Keywords: underwater; graph convolution; multi-label classification

1. Introduction

In recent years, micro-video, as a new media form of user-generated content, is
rapidly becoming one of the mainstream trends of social media, with its short, real, and
instant-sharing characteristics. Micro-videos are rich in content and concise, serving as
a combination of various modalities such as vision, audio, and text, and thus contain a
vast amount of information. Therefore, it is of great significance to make full use of their
multi-modal information for data mining and intelligent analysis. Making full use of
multi-modal information focuses on mining the consistency and complementarity among
multi-modal information to enhance the information representation. For example, when
a micro-video shows dolphins swimming in the ocean, the audio of the micro-video is
usually accompanied by the sound of the dolphins, but it is difficult to get information
about the sea through the sound. In the above example, “dolphin” is information expressed
by visual and acoustic modalities, representing consistency, while “ocean” is information
unique to the visual modality, representing complementarity. Therefore, fully utilizing
the consistency and complementarity of multi-modal information to enhance information
representation is an essential step in the classification task.

The research directions for multi-label classification of micro-videos mainly include
the following: (1) Micro-Video Scene Recognition. Nie et al. [1] proposed a deep migra-
tion model to accomplish the task of micro-video scene category estimation. This model
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introduces external acoustic knowledge to compensate for relatively low-quality audio
modality, thus enhancing the semantic representation of micro-videos. (2) Micro-Video
Event Detection. Chang et al. [2] defined the concept of semantic salience to evaluate
the correlation of each video segment with the event of interest. They prioritized video
segments based on saliency scores and leveraged the constructed semantic ranking informa-
tion to improve the model’s discriminative ability in event analysis tasks. (3) Micro-Video
Prevalence Prediction. Chen et al. [3] proposed a direct multi-modal learning model that
seeks an optimal latent common subspace among different modalities to alleviate the
information insufficiency issue arising from the short duration of micro-videos, thereby
facilitating better representation. (4) Micro-Video Recommendation. Wei et al. [4] designed
a multi-modal graph convolutional network framework. By constructing a binary graph of
user micro-videos for each modality, the authors used the interaction behavior of users and
micro-videos to guide the representation learning of each modality, further capturing users’
fine-grained preferences in different modalities.

It can be seen that the scientific research into the multi-label classification of micro-
videos has made achievements. However, the related work in the field of micro-videos is
only limited to the consistency or complementarity between multi-modalities, while con-
sidering the consistency, complementarity, and multi-modal characterization. Furthermore,
while these methods demonstrate promising performance in terrestrial video datasets, un-
derwater environments pose significant challenges, such as color distortion, blurriness, and
occlusion, which severely degrade video quality and consequently lead to a decline in detec-
tion and classification accuracy [5]. Moreover, the underwater dataset is difficult to obtain,
resulting in sparsely available modality information, and it is difficult to jointly mine the
multi-modal complementarity and consistency enhancement information characterization.
Consequently, exploring multimodal learning approaches for underwater micro-videos
that can comprehensively utilize both the consistency and complementarity of different
modalities, fostering mutual reinforcement among modal information while mitigating
redundancies, holds significant importance for scientific research on marine imagery.

For the multi-modal multi-label classification task of underwater micro-videos, this
work makes three contributions:

(1) An underwater video multi-label classification dataset (UVMCD) is constructed,
containing 3841 underwater videos covering 19 underwater categories. There were eight
video classification methods used to benchmark the availability of the dataset.

(2) In the original modality features, the common information between the modalities
and the specific information within the modalities are intertwined, and the redundancy
between them will even contaminate the extracted representation. Therefore, it is neces-
sary to explore the multi-modal representation learning methods that can separate these
two parts of the information from the original information and minimize the redundancy.

(3) For multi-label learning, it is inevitable to consider the correlation between label
categories. It is noted that there may be locality in the correlation between labels, whereby
different instance groups share different label correlations rather than being globally ap-
plicable. Therefore, methods that can learn label correlations based on global and local
adaptations need to be explored.

2. Related Work

Multi-label technology has been developed for many years. In the paradigm of multi-
label classification, each object is associated with multiple labels simultaneously; the task of
multi-label classification methods is to learn a function that can predict the corresponding
label set of an input instance. Multi-label classification techniques have been widely used in
various real-life scenarios such as medical diagnosis [6], bio-informatics [7], user analysis [8],
and autonomous driving [9,10].

One of the main objectives of traditional multi-label classification methods is to ex-
pand the migration of mature single-label classification algorithms to the multi-label field.
According to different expansion ideas, this can be divided into two categories: the problem



Electronics 2024, 13, 3134 3 of 15

conversion method and the algorithm conversion method. The basic idea of the problem
conversion method is to transform the multi-label classification task into one of multi-label
or more single-label classification tasks. The binary association method (binary relevance,
BR) [11] in a multi-label classification task is transformed into multiple independent single-
label binary classification tasks, and finally, the output of each binary classifier is aggregated
to obtain the final multi-label prediction results. The basic idea of the algorithm adaptive
method is to improve and extend the existing single-label classification algorithm so that
it can process multi-label data, and then complete the task of multi-label classification.
The algorithm models often used for the extension include k-Nearest Neighbors (KNN),
decision trees, support vector machines (SVMs), neural networks, etc. Traditional methods
often overlook or adopt rudimentary approaches to account for label correlations.

In recent years, deep learning technology has made great progress, and it has made
breakthroughs in many application scenarios, such as a new model based on a deep
neural network (DNN) first proposed by Yeh et al. [12]. The standard relevant autoen-
coder (Canonical Correlated Autoencoder, C2AE) integrates typical correlation analysis
(Canonical Correlation Analysis, CCA) to derive deep latent spatial joint features and label
embedding to better associate features and label domain data to improve classification
performance. Fei et al. [13] proposed a latent sentiment memory network (LSMN) tailored
for the multi-label sentiment classification of texts. This network is capable of learning the
distribution of latent sentiments, without relying on external knowledge, and effectively
integrating them into the classification network.

Multi-modal representation learning aims to represent and extract effective semantic
information, and the heterogeneous differences between data of different modes are a
major challenge in constructing multi-modal representations. It is usually divided into two
categories of methods: joint representation and coordinated representation. The joint repre-
sentation projects the multi-modal data into a common representation space. Rajagopalan
et al. [14] designed a multi-view LSTM network for multimodal action recognition and
image captioning tasks, which explicitly learns the changes in specific views and cross-
view interactions over time or structured outputs. In contrast, coordinated representation
methods process each modality independently. Fan et al. [15] combined CCA with a gener-
ative adversarial network (GAN) to propose a deep adversarial CCA model, which can
simultaneously learn representations of multi-view data while possessing the ability to
generate authentic multi-view samples.

Multi-modal fusion is one of the most studied directions in the field of multi-modal
learning. The stage of modality fusion is divided into early fusion (feature-level fusion),
late fusion (decision-level fusion), and hybrid fusion between the two. Srivastava et al. [16]
proposed a multi-modal data generation model based on the deep Boltzmann machine
(DBM) to generate a feature representation of missing modes and combine cross-modal
features to create fusion features to complete the classification and information-retrieval
tasks. The conventional multi-modal fusion method mainly uses kernel learning [17],
graphical model [18], and CCA [19]. However, due to the powerful flexibility of deep
learning models, the traditional classification method is no longer suitable for deep learning
multi-modal fusion-based methods. Deep automatic encoder (DAE) aims to encode the
input data for meaningful compression; it consists of two parts, an encoder and a decoder.
The encoder converts high-dimensional input data mapping to low-dimensional space
to get the potential space representation, and the decoder decodes the potential space
representation to reconstruct the original input data. Shen et al. [20] proposed the focus
multi-modal DAE model for the extraction of multi-modal social media content (such as
text, images, and micro-video, etc.), data learning cross-modal potential representation, and
using the attention mechanism integration with variable weight user global and context
music preferences, converting the social media content data into the music recommendation
task. Guo et al. [21] put forward the standardization of the attention mechanism and
geometric perception of improvement, the self-attention mechanism to parameterize, and
the latter extending the attention mechanism to explicitly consider the relative geometric
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relationship of the input object; the video description, machine translation, and visual quiz
task verified the generality of the improvement. Azad et al. [22] proposed a multi-label
video classification model, using a self-attention mechanism to capture spatiotemporal
attention in continuous video frames, to improve existing methods that consider the spatial
information of only a single frame in underwater hull video inspection. Sun et al. [23]
introduced a single-channel multi-target underwater acoustic signal recognition method
based on deep learning, aiming to address two subproblems, identifying the unique and
repetitive categories of multiple targets within a specified class. Leveraging the multimodal
information embedded in videos, algorithms for video multi-label classification based
on multimodal fusion were proposed. Le et al. [24] transmitted multimodal information
through a unified transformer architecture to learn joint multimodal representations for
multi-label video sentiment recognition. Cai et al. [25] proposed a multi-modal movie-
type classification framework, which makes full use of the information complementarity
in the multi-modalities and improves the classification performance. For multi-modal
learning, multi-modal data describe the same concept object from different levels and
perspectives, which can often complement each other. However, there are heterogeneous
differences between modality data from different information sources, which hinders the
direct information interaction between modalities and masks the intrinsic strong correlation
and semantic consistency between them. In addition, when each mode interacts, the noise
information in a certain mode data may pollute other modes with the interaction process
and lead to a decrease in model performance. Therefore, how to identify the sparsity of
underwater information, how to reduce the heterogeneity between modalities, and mine
the intrinsic consistent and complementary semantic information of the data of different
modes, while removing redundant information and filtering noise, are the main challenges
for researchers.

3. The Algorithm Model

The overall framework of a bilayer graph convolution learning network based on a
constrained codec (BGCLN) is shown in Figure 1, which can be roughly divided into the
following three parts:

(1) Modality-specific representation and modality-common representation learning mod-
ules: The modality-common representation learns through adversarial training; the
orthogonal constraint separates the common information and specific information
of the modality features to reduce the redundancy between the learned representa-
tions. The reconstruction constraint preserves the effective information in the original
modality features as much as possible.

(2) Attention-driven double-layer graph convolution network module: A two-layer graph
convolutional network (GCN) correlates mined label information between the global
and local perspectives and introduces the attention mechanism in the second GCN
mining sample with characteristic and label category dimensions to enhance the
modality representation.

(3) Modality representation fusion and multi-label classification module: Take the weighted
fusion of the enhanced modality-common representation and each modality-specific rep-
resentation as the final micro-video representation, and the fusion weight is adaptively
learned by the model. The resulting representation is then input into the classifier to
obtain the category prediction score.

Assume the existence of a micro-video collection, χ =
{

x1, x2, . . . , xN}, as the training
data, which comprise a total of N micro-video samples. For the i(i = 1, 2, . . . , N)-th micro-
video sample in this collection, pre-extracted multi-modal features can be used to represent
it as

{
xi

m ∈ RDm
∣∣∣ i = 1, 2, . . . , N}, m ∈ {v, t , a} , where Dm denotes the dimensionality of

the multi-modal features, and m serves as a modality indicator, with values v, t, and a
representing the visual, trajectory, and acoustic modalities, respectively. Additionally, the
true label of xi can be described by a binary label vector, yi ∈ {0, 1}C, where 1 indicates the
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presence of the label in xi, and 0 indicates its absence. The total number of label categories
is C. Without the loss of generality, xm is used hereinafter to represent the multi-modal
features corresponding to any given micro-video sample in the collection.
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3.1. Modality-Specific Representation and Modality-Common Representation Learning Modules

Given the consistency and complementarity among the information of different modal-
ities, this paper proposes a codec network structure with orthogonal, adversarial simi-
larity, and reconstruction constraints to learn the modality-common representation and
the specific representation of each mode. The main body of this module consists of a
modality-specific encoder, modality-common encoder, modality-common decoder, and
modality discriminator.

First, the visual, trajectory, and acoustic modality features, xm, are input into the
private coding network corresponding to each modality (as shown in Figure 2) to obtain
the specific representation, zs

m, of each mode:

zs
m = Em(xm; θm) ∈ Rdm , (1)

where dm is the number of dimensions represented by each modality after encoding, and
the private feature Em(·), the encoder of the corresponding mode θm, and the encoder are
stacked out of multiple fully connected layers.
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At the same time, visual, trajectory, and acoustic modality features, xm, are input
into the modality-common coding network to generate common representations based on
each modality:

zc
m = Ec(xm; θc) ∈ Rdc , (2)

where the number of dimensions publicly expressed by the encoding modality dc, rep-
resenting the modality-common feature encoder Ec(·), with the same network structure
Em(·), θc is the learnable network parameters of the encoder. Based on the consideration
of model consistency, the modality-sharing feature encoder is committed to extracting
the common information between the modalities as modality-common representation, so
the public representation learned from different modalities should be consistent in the
model training process, which can take the public representation generated by the modality
average as the final modality-common representation:

zc =
1
M ∑

m={v,t,a}
zc

m ∈ Rdc , (3)

where M = 3, means that the modality uses the features of the three modalities as input.

3.1.1. Orthogonal Constraints

Inspired by the work [26,27], the introduction of orthogonal constraints to promote a
common coding network and private coding network to explore the different aspects of
input modality characteristics, separating the common and specific information between
modalities, means the modality-specific representation does not contain shared information,
as much as possible. The orthogonal loss is used to measure the magnitude of similarity
between the common representation and the specific representation of each modality, which
can be defined by the formula:

LOrt =
∥∥∥zs

v(z
c
v)

T
∥∥∥2

F
+
∥∥∥zs

t (z
c
t )

T
∥∥∥2

F
+
∥∥∥zs

a(z
c
a)

T
∥∥∥2

F
, (4)

where ∥·∥F represents the Frobenius norm. At the time zs
v = zc

v, zs
t = zc

t , zs
a = zc

a, the
value of the orthogonal loss reaches the maximum, LOrt. Therefore, the modality-specific
representation, LOrt, can be orthogonal to the modality-common representation, as much
as possible, to separate the two and reduce the redundant information.

3.1.2. Adversarial Similarity Constraints

Considering the consistency between modalities, the common representations learned
from different modality features should be as consistent as possible. Inspired by other
work [26,28,29], we design adversarial similarity constraints based on adversarial train-
ing ideas. Specifically, the modality-common coding network is treated as a generator,
G(xm; θc), and a class classifier, D(zc

m; θd), is introduced as modality discriminator M for
its learnable network parameters, θd. The modality discriminant D takes the public rep-
resentations generated based on different modes as input, and is committed to correctly
identifying their source modalities, while the generator G aims to generate the common
representations that can confuse the judgment of D. The two learn against each other in
the training process, so that the common representations generated by different modalities
tend to be consistent.

Inspired by [30], the gradient reversal layer (GRL) is used to achieve this adversarial
learning by redefining the backward function of the module. The network introducing the
GRL remains consistent with the original network during forward propagation, but during
backpropagation, the gradient is multiplied by a negative constant to reverse the gradient
direction. Therefore, the gradient direction of the learnable network parameters θc, of the
GRL inversion generator G, is used to form a confrontation between the discriminator and
the generator.
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The formula for the antagonistic similarity loss, LAdv, is as follows:

LAdv =
N
Σ

i=1
Σ

m∈{v,t,a}
lmi logPm

i (zc
m), (5)

where the source modality, lmi ∈ {0, 1}, of the current public m representation zc
m is

described, the common representation is generated by the currently indicated modality,
which is the probability, Pm

i (zc
m), that the common representation comes from the indicated

m modality predicted by the mode discriminator D. In essence, the generator G is dedicated
to minimization, LAdv the mode D, and the discriminant is dedicated to maximizing LAdv,
forming a confrontation between the two.

The antagonistic similarity loss LAdv can measure the difference between the public
representations generated by different modalities. When the value LAdv is small, the modal-
ity discriminator can better judge the source modality of the representation. Therefore, the
similarity of the public representations obtained by different modalities is improved by
minimizing LAdv.

3.1.3. Refactoring Constraints

To ensure the integrity and validity of each piece of modality information during
the encoding process, reconstruction constraints are introduced. Specifically, the specific
representation generated by the same modality and the common representation are first
input into the modality-common decoder network to obtain the reconstruction vector, x̂m,
of the mode feature:

x̂m = Ds((zs
m + zc

m); θs) ∈ RDm , (6)

where Ds(·) represents the modality-common decoder, the learnable network parameters
θs. Without a loss of generality, the reconstructed vector x̂m should be as similar as possible
to the original modality features, xm, to ensure that the encoded representation retains the
effective information in the original modality features to the greatest extent. The mean
squared error with constant proportions was used. To measure the difference between xm
and x̂m, the calculation formula of reconstruction loss is as follows: LRec

LRec = Σ
m∈{v,t,a}

1
k
(∥xm − x̂m∥2)

2 − 1
k2 ([xm − x̂m]× 1k)

2, (7)

where ∥·∥2 is the L2 normalization, k is the number xm of elements contained, and 1k is a
one vector of length k. The model is minimized, LRec, to ensure the integrity of the modality
feature information during the encoding process.

3.2. Attention-Driven Double-Layer Graph Convolutional Network Module

Considering the globality and locality of label category correlation, this paper designs
attention-driven two-layer convolutional networks to adaptively learn the correlation
matrix to mine the dependencies between labels from the global perspective and sample-
specific local perspective, respectively, for enhanced modality representation. In addition,
the attention mechanism is introduced in the GCN to mine the correlation structure in
the feature dimension and the label category dimension of specific samples and further
enhance the modality representation. Otherwise, residual connections are added between
the two-layer graph convolutions to prevent network degradation.

Since both the modality-common representation zc and the modality-specific represen-
tation zs

m need to be processed through the bilayer GCN without a loss of generality, the
reference modality-common representation z ∈ Rd and the modality-specific representation
d are used as the number of dimensions of the modality representation.

3.2.1. Static Graph Convolutional Network

The first layer of an attention-driven bilayer graph convolutional network is a static
graph convolutional network, its structure is presented in Figure 3. The modality repre-
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sentation Z is first extended by a row to obtain the initial category representation matrix
V ∈ RC×d, where the jth(j = 1, 2, . . . , C) row of the matrix represents the class represen-
tation of the sample specific to the jth label. Accordingly, a global-based static graph is
constructed, which has C nodes. The initial category representation matrix V is the node
feature matrix of the graph, and its correlation matrix V characterization is based on the
label dependence of the whole training dataset. Enter the static GCN to get the intermediate
output H, which can be described by the formula:

H = LeakyReLU(AsVWs) ∈ RC×d1 , (8)

where, LeakyReLU(·) is the nonlinear activation function, As ∈ RC×C is the correlation
matrix of the static GCN, and Ws ∈ Rd×d1 is the state update matrix of the static GCN, char-
acterizing the linear transformation from dimension d to dimension d1. Both are randomly
initialized and updated by gradient descent during training. As is shared by all the training
samples in the dataset and therefore able to capture global label correlation information.
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3.2.2. Dynamic Graph Convolutional Network Based on Attention Perception

The second layer of the attention-driven dynamic graph convolutional network is
based on attentional perception, introducing attention mechanism dynamic capture specific
to the sample characteristics of the dimension correlation structure and label category
dimension correlation structure. The static GCN intermediate output H is further enhanced
to obtain the enhanced category Z. The structure of dynamic GCN is presented in Figure 3.

Inspired by [31], the model introduces the attention mechanism to mine the correlation
structure of the sample itself and dynamically generates the category correlation matrix Ad
and feature correlation matrix F for specific samples. Firstly, the attention score calculation
formula based on the scaling point product is given as follows:

Attention(Q, K) = softmax
(

QKT
√

dk

)
, (9)

where softmax is the nonlinear activation function, Q and K represents the query matrix
and the key matrix, respectively, and dk is the scale factor; its value should be the same as
the number of dimensions of the key matrix K.

The calculation formula for defining the feature correlation matrix F is as follows:

F = softmax

(
(U1HT)(U2HT)

T

√
dk1

)
∈ Rd1×d1 , (10)
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where the scaling factors dk1 = d1, U1 ∈ Rd1×d1 , and U2 ∈ Rd1×d1 transform the transposed
HT ∈ Rd1×C of the intermediate output into a mapping matrix of the query and bond matrix.
The attention score matrix calculated by Formula (10) is used as the feature correlation
matrix F to characterize the correlation structure of the sample feature dimensions.

Then, a specific sample-based dynamic graph is constructed, whose node feature
matrix is the intermediate output H′ of the feature correlation matrix F enhancement, and
the attention mechanism is introduced to dynamically generate its correlation matrix Ad,
to characterize the label dependence based on the specific sample. Dynamic GCN takes H′

as input and outputs further enhanced category representation Z, which can be formally
defined as follows: 

Z = LeakyReLU(AdH′Wd) ∈ RC×d2

Ad = softmax
(

(W1H′)(W2H′)T
√

dk2

)
∈ RC×C

H′ = (U3H) · FT ∈ RC×d1 ,

(11)

which is the correlation matrix, Ad ∈ RC×C, of the dynamic GCN, the state update matrix
Wd ∈ Rd1×d2 , and the scaling factor dk2 = C. W1 ∈ RC×C and W2 ∈ RC×C are the
mapping matrices that transform the intermediate output H′ into a query matrix and a key
matrix. Ad dynamically constructs based on the current input sample, which can better
capture label dependency relationships specific to the current sample. H′ represents the
intermediate output, H, of the dynamically adjusted feature correlation matrix F, which
enhances H by introducing the correlation information of samples in the feature dimension
by F. U3 ∈ RC×C is a linear transformation matrix. Finally, residual connections are added
between the static GCN and the dynamic GCN to prevent network degradation.

In short, the proposed attention-driven bilayer graph convolutional network works by
introducing label category correlation information and feature correlation information.

3.3. Modality Representation Fusion with Multi-Label Classification

As shown in Figure 1, the modality-specific representation zs
m and modality-common

representation zc are input into the attention-driven bilayer convolutional network to get
the corresponding enhanced category representation matrix Zc, Zv, Zt and Za, and then
weighted to get the final category representation:

Z′ = Wc ⊙ Zc + Wv ⊙ Zv + Wt ⊙ Zt + Wa ⊙ Za, (12)

where the Hadamard product ⊙, namely, the corresponding elements in the matrix Wv,
Wt, Wa, and Wc ∈ RC×d2 , are multiplied separately, is the fusion weight matrix of adaptive
learning, representing the contribution degree of each modality representation and the
modality-common representation in the corresponding label category.

Then, the category vector specific to each label in the final category representation
matrix Z′ = [z1, z2, . . . , zC] is put into the corresponding binary classifier zj(j = 1, 2, . . . , C)
to predict the category score s = [s1, s2, . . . , sC], and the prediction score of each category is
obtained. Thus, the calculation formula for classification loss is as follows:

LCls =
1
N

N

∑
i=1

C
Σ

j=1
yi

j log
(
δ
(

si
j

))
+
(

1 − yi
j

)
log
(

1 − δ
(

si
j

))
, (13)

where it is the sigmoid activation function δ(·), in which yi
j is the true label i of the first

sample. Taking 1 as meaning that the sample has the class label j, and taking 0 as the
opposite, si

j is the prediction result of the label of the network model.
In conclusion, the combination of Formulas (4), (5), (7), and (13) can obtain the overall

loss function of the proposed BGCLN model as follows:

L = LCls + αLRec + βLOrt + γLAdv, (14)
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where α, β, and γ are the trade-off parameters balancing different loss contributions,
and the pseudo-code of the training process of the proposed BGCLN model is shown in
Algorithm 1.

Algorithm 1 Model training process—BGCLN training process

Data input:
{xv, xt, xa}: visual features, trajectory features, and acoustic features of the micro-video;
y: the real category label vector of the micro-video;
α = 0.1,β = 0.05,γ = 0.05: the term coefficient of the loss function;
1: Randomly initialize all network parameters;
2: Repeat;
3: For i = 1, 2, L, epoch do;
4: Use Formula (1) to calculate the specific representation zs

m of each mode;
5: Use Formulas (2) and (3) to calculate the public representation zc of each mode;
6: Use Formula (6) to calculate the reconstructed vector x̂m;
7: Use Formula (8) to update the category to represent V the intermediate output H;
8: Use Formula (10) to calculate the feature correlation matrix H according to the intermediate
output F;
9: Calculate the enhanced category representation V′ using Formula (11);
10: Use Formula (12) to calculate the fused category representation Z;
11: Update all network parameters using the stochastic gradient descent method under
Formula (14);
12: End for;
13: Until convergence.
Data output: all network training parameters θm,θc,θd,θs, etc.

4. Experimental Simulation
4.1. Dataset and Experimental Settings

To facilitate the development of tracking algorithms well-suited for underwater environ-
ments and address the lack of existing underwater visual datasets, Panetta et al. proposed the
first comprehensive underwater object tracking (UOT100) benchmark dataset [32,33]. This
dataset consists of 104 underwater video sequences and over 74,000 annotated frames, which
are derived from both natural and artificial underwater videos, with a variety of distortions.
The UOT100 dataset accessed at the following URL: https://www.kaggle.com/datasets/
landrykezebou/uot100-underwater-object-tracking-dataset, accessed on 23 January 2024.

Given the scarcity of multi-label classification datasets for underwater micro-videos [22],
this paper combines the UOT100 dataset and relevant underwater content from the MLSV2018
dataset; by processing and relabeling these micro-videos, an underwater micro-video multi-
label classification dataset (UVMCD) was established, as shown in Figure 4. The MLSV2018
dataset accessed on 20 January 2024 at the following URL: https://github.com/tjufan/
challengerai-mlsv2018. All the experiments described in this paper were conducted on
the UVMCD, a large-scale multi-label classification dataset for micro-video, in order to
verify BGCLN.

The multi-label classification dataset of underwater micro-videos is composed of
3841 underwater micro-videos and their corresponding audios, and each micro-video has
a corresponding category label. The dataset has 19 label categories, with 1–5 labels per
micro-video. The number and proportion of labels in the multi-label classification dataset
of underwater micro-videos are shown in Table 1. The label distribution of the underwater
micro-video multi-label classification dataset is shown in Figure 5. In our experiment, 80%
of the data is used to train, and the remaining 20% is used to evaluate.

https://www.kaggle.com/datasets/landrykezebou/uot100-underwater-object-tracking-dataset
https://www.kaggle.com/datasets/landrykezebou/uot100-underwater-object-tracking-dataset
https://github.com/tjufan/challengerai-mlsv2018
https://github.com/tjufan/challengerai-mlsv2018
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Table 1. Number and proportion of labels in multi-label classification dataset.

Category Number Proportion Category Number Proportion

Diver 2278 59.31% Seal 62 1.61%
Fish 1995 51.94% Lobster 58 1.51%

Coralline 760 19.79% Squid 56 1.46%
Manta 315 8.20% Crab 40 1.04%
Person 256 6.66% Medusa 39 1.02%

Wreckage 223 5.81% Dolphin 31 0.81%
Others 173 4.5% Whale 26 0.68%

Tortoise 167 4.35% Sea slug 21 0.55%
Eel 143 3.72% Seahorse 14 0.36%

Octopus 105 2.73%
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4.2. Performance Evaluation

The performance of the algorithm is evaluated by five evaluation indexes [34]: mean
average precision (mAP), Hamming loss, ranking loss, coverage, and one error.

4.2.1. Convergence Analysis

To analyze the convergence of the models in this chapter, the experimental results
of the average precision versus the number of model iterations and the classification loss
versus the number of model iterations were tested, which are shown in Figures 6a and 6b,
respectively. From the figures, it can be observed that the average precision increases as
the number of iterations increases and stabilizes at the optimal average precision when the
number of iterations is 40. Meanwhile, the classification loss decreases as the number of
iterations increases and stabilizes eventually.
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4.2.2. Ablation Experiments and Analysis

Ablation experiments, including model performance evaluation with different modes
and different module configurations, were conducted. Table 2 shows the performance
comparison of the different schemes on the classification results.

Table 2. Performance comparison of different schemes on classification results.

mAP↑ One Error↓ Coverage↓ Ranking
Loss↓

Hamming
Loss↓

Visual modality 0.7212 0.0416 0.0906 33.9567 0.0734
Audio modality 0.7536 0.0395 0.0705 28.7821 0.0682
Visual modality+
Audio modality 0.8183 0.0301 0.0675 16.4535 0.0537

Visual modality+
Graph learning module 0.7731 0.0351 0.0786 30.1439 0.0693

Visual modality+
Graph learning module 0.8007 0.0262 0.0591 25.1644 0.0646

Ours 0.8503 0.0224 0.0472 14.8036 0.0393

In Table 2, ↑ indicates that a higher value of the metric corresponds to better model
performance, ↓ indicates that a lower value of the metric corresponds to better model
performance. It can be seen that the multi-modal fusion method outperforms the unimodal
method, which indicates that the complementarity between different modalities can be
effectively utilized by integrating the multi-modal fusion to promote compatibility model-
ing. Meanwhile, each individual modality can have a different degree of positive impact
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on the model performance. The audio modality is superior to the visual modality, which
means that the audio modality contains more valuable information about underwater
categories than the visual modality. Whether in the unimodal or multi-modal case, the
graph associative learning module plays an important role in the framework proposed
in this chapter, which proves the necessity of the graph associative learning module by
learning the semantic association representation between labels to better complete the
multi-label classification task for underwater micro-videos.

4.2.3. Model Validity Analysis

To illustrate the validity of the methods presented in this chapter, comparisons are
made with the following different types of methods and all the experiments using the same
training and test sets. Table 3 compares the performance of the different methods on the
UVMCD dataset.

Table 3. Contrast classification performance.

Method mAP↑ One Error↓ Coverage↓ Ranking Loss↓ Hamming Loss↓
GoolgeNet 0.7213 0.0389 0.0917 34.4535 0.0605

C3D 0.7215 0.0391 0.0892 33.4416 0.0621
MLKNN 0.7446 0.0381 0.0744 0.3414 0.0559
GlOCAL 0.7020 0.0415 0.1188 0.4930 0.0697

SIMM 0.7258 0.0423 0.0717 0.3149 0.0782
TM3L 0.7598 0.0380 0.0501 0.2298 0.0401

MANET 0.8019 0.0291 0.0591 22.9874 0.0485
BGCLN 0.8503 0.0224 0.0472 14.8036 0.0393

In Table 3, it can be observed that deep representation-based methods, namely
GoogleNet and C3D, typically model only a single modality and lack semantic corre-
lation modules, and are also sensitive to lighting, color cast, and water flow disturbances in
underwater micro-videos, resulting in unsatisfactory performance. In addition, the results
of the four multi-label learning methods, MLKNN, GLOCAL, SIMM, and TM3L, are not sat-
isfactory, but they perform better than the baseline methods in the coverage metric, which
indicates that multi-label learning methods can better handle the correlation between labels
and have lower complexity compared to multi-modal semantic enhancement methods.
Finally, the multi-label classification method based on multi-modal semantic enhancement
achieved relatively promising results, reflecting the positive role of multi-modal fusion
semantic enhancement in multi-label classification tasks.

5. Summary

In this paper, a bilayer graph convolution learning network based on a constrained
codec (BGCLN) is proposed. First, considering the consistency and complementarity of
multi-modal information, learning modality-specific and modality-common representa-
tions through codec networks with constraints is constructed. Secondly, the correlation
information between the labels from both global and local perspectives is mined through
the attention-driven bilayer graph convolutional network, while introducing the attention
mechanism to explore the correlation structure of the samples in the label dimension and
feature dimensions in the graph convolution to enhance the modality representation. Fi-
nally, the enhanced public representation and each modality-specific representation are
weighted, fused, and input into the classifier to complete the multi-label classification task.
Based on the large-scale multi-label micro-video dataset UVMCD, a series of experiments
show that the proposed BGCLN model has better achievement in parameter sensitivity
analysis, module ablation analysis, modality combination analysis, and other aspects.
Meanwhile, compared with other models, BGCLN has better classification performance to
verify its effectiveness.
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