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Abstract: This paper investigates the detection of Global Positioning System (GPS) interference
during the Dallas Fort Worth (DFW) event from 17 to 19 October 2022, utilizing various machine
learning (ML) models. The study examines the effectiveness of several ML models, including neural
networks (NN), tree-based models, regression-based models, Bayesian classifiers, distance-based
models, and stochastic classifiers, in identifying GPS interference. A simulated training signature was
created with 180,000 data points, of which 25,792 were modeled as positive samples indicating GPS
interference. Preliminary results reveal that the Multi-Layer Perceptron (MLP) model outperformed
others, achieving a 99.8% True Positive Rate (TPR). Additionally, permutation feature importance
was utilized to understand how model feature prioritization impacts the detection outcomes. Given
the increasing frequency of GPS interference, these findings underscore the critical importance of ML
techniques in detecting GPS interference patterns in Automatic Dependent Surveillance-Broadcast
(ADS-B) data.

Keywords: GPS interference; automatic dependent surveillance-broadcast; anomaly detection;
machine learning; data processing; ADS-B

1. Introduction

Prior to the advent of radio navigation during World War II [1], pilots relied heavily
on visual cues during the day (road maps) and on searchlights and bonfires at night for
navigation. The introduction of radio navigation marked a significant advancement in
aviation by allowing aircraft to determine their position more accurately. Ground stations
used the very high-frequency (VHF) band to broadcast position-finding signals that aircraft
latch on to determine their location. However, in areas with sparse ground station coverage,
aircraft were forced to make deviations to flight plans to remain within the range of these
broadcasts. At its peak, the United States had over 1000 ground stations dedicated to this
purpose. The advent of GPS was truly revolutionary to aircraft navigation as it became
fully operational and available for civil use by 1995. This satellite-based navigation system
allows aircraft to obtain precise three-dimensional positioning information anywhere on
Earth, eliminating the need for ground-based navigation aids and significantly enhancing
the accuracy and reliability of aircraft navigation. GPS has become a cornerstone of
modern aviation, with both civil and military sectors heavily dependent on it for navigation
purposes [2–4]. The widespread adoption of GPS is evident in the staggering number of
receivers in use—by 2019, the United States alone reported over 900 million GPS devices [5].
This extensive integration of GPS technology into aviation systems highlights its critical role
in ensuring safe and efficient air travel while also underscoring the potential vulnerabilities
that could arise from disruptions to GPS signals. The GPS is susceptible to malicious and
unintentional interference because the signals from GPS satellites are extremely faint [6].
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According to the International Air Transport Association (IATA), the average number
of GPS signal-loss events was 24 per 1000 flights before May 2023. This number spiked to
40 events per 1000 flights in August 2023 before dropping slightly to 34 per 1000 flights
later that year. The majority of these incidents occurred in Eastern Europe and the Middle
East due to conflicts in Ukraine and Syria, where GPS jamming and spoofing are used as
defense mechanisms against drones [7]. In August 2018, a civilian aircraft with passengers
navigating in restricted visibility veered off course due to GPS interference and was saved
at the last minute by the intervention of ATC, avoiding a mountain collision [1]. In early
2022, Denver Airport experienced an interference event lasting over 33 h, affecting aircraft
in an 8000 square-mile area around Denver at altitudes of up to 14,000 feet [8]. Another
episode at DFW lasted almost 48 h and caused an entire runway to shut down, with several
flights diverted to other airports [9]. Additionally, interference can significantly impact
devices like Unmanned Aerial Vehicles (UAVs), affecting their GPS, compass, and other
central control modules [10,11]. In December 2012, a passenger jet near Reno, Nevada,
veered 10 miles off course due to military GPS jamming, necessitating air traffic control
intervention to prevent a collision. The U.S. military regularly conducts GPS jamming tests,
impacting civilian aviation [1]. In 2017, 173 incidents of GPS interference were reported
over six months, affecting various aircraft types in Southern California, Nevada, Utah,
Arizona, and the Pacific Ocean. These incidents prompted the FAA to issue Notices to
Airmen (NOTAM) to inform pilots of GPS disruptions during military tests, although this
has caused anxiety among civilian aviation professionals [12]. To address these issues, the
FAA is upgrading to the Next-Generation Air Transportation System (NextGen), which
will improve aviation safety by utilizing satellite-based navigation systems [6]. The ADS-B
is the cornerstone of this initiative.

1.1. ADS-B and ADS-B Databases

The ADS-B system works by periodically broadcasting aircraft state parameters with-
out operator intervention by using other navigational systems to gather position, altitude,
and velocity information [13–15]. The data are available to anyone with appropriate re-
ceiving equipment and aim to enhance situational awareness for pilots and Air Traffic
Controllers alike. The information transmitted by the ADS-B (segregated by message type)
is outlined in Table 1. ADS-B version 2 broadcasts state parameters and operational status
messages that indicate the accuracy or quality of the transmitted positional information.

Table 1. Content and characteristics of various ADS-B message types [16].

Category Transmitted Information

Identification Messages Callsign and Wake Vortex Category

Airborne Position Latitude, Longitude, and Altitude

Surface Position Latitude, Longitude, velocity, and aircraft heading

Airborne Velocity Vertical rate, Altitude (Barometric and GNSS), Ground Speed, and Air Speed

Operational Status Capacity class, Operational mode, ADS-B version, NIC, NAC–position, and SIL supplement

Operational status parameters include uncertainty metrics. The Navigation Integrity
Category (NIC) indicates position accuracy, with higher values denoting greater precision.
NIC values range from 0 to 11, reflecting the containment radius of the aircraft position [16].
NIC superseded the earlier Navigational Uncertainty Category (NUCp) with the intro-
duction of ADS-B Version 1. NIC values indicate the containment radius of the aircraft’s
position. NIC values and containment radius are inversely proportional; a higher NIC
indicates a lower containment radius, while a lower NIC indicates a higher containment
radius. A value of 11 has the least containment radius of about 7.5 m, while a value of 0
indicates an infinite containment radius, indicating a complete loss of position. The FAA
considers NIC values of 7 and above as reliable positions [13,17].

Since 2013, the OpenSky Network has operated as a non-profit, crowd-sourced initia-
tive that collects aviation data globally using off-the-shelf ADS-B receivers. The network
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processes and stores this information in a central database. The collected data included
aircraft positional details (both airborne and surface), identification, velocity, operational
status, and uncertainty metrics. This information is transmitted by ADS-B-equipped air-
craft when within range of the Opensky network’s volunteer-operated sensors. OpenSky
Network data has been used in several applications like ADS-B error and fault diagnosis,
aircraft performance evaluation, ADS-B data validation, aircraft position multilateration,
security analysis, and air traffic modeling [18–22]. The Open Sky Network’s historical
database is available for research and non-commercial use by applying for an educational
account at their website [23]. For these reasons, the OpenSky Network is chosen as the
ADS-B data source. The OpenSky Network uses Apache Impala, a popular Hadoop Dis-
tributed File System (HDFS) database that is capable of handling the large volumes of data
generated by the ADS-B networks [24].

1.2. Current-State-of-Research

Current research on detecting GPS interference can be grouped into data-driven
approaches, satellite-based techniques, and receiver-based methods. Murrian et al. [25]
use Low Earth Orbiting (LEO) to detect the presence of interference from ground-based
sources by using a Software Defined Radio (SDR) that listens for signals on the L1 and L2
GPS bands. The idea is that GPS signals originate from outer space and are faint. However,
interference sources are much stronger and originate from the Earth. Such instances were
recorded and localized using the Doppler shift. SWEPOS, a network of satellites, is used to
monitor and detect Global Navigation Satellite Systems (GNSS) interference by analyzing
the historic Signal-to-noise ratio (SNR) of different GNSS, including GPS, GLONASS,
etc. The historic SNR characteristics of multiple satellites, in combination with statistical
methods, help differentiate RFI sources. The detection capabilities in both simulated and
real-world scenarios are shown by Abraha et al. [26].

Methods also focus on using the GPS receiver to detect interference. O’Mahony et al. [27]
used received in-phase and quadrature samples and employed an ML-based approach to
detect interference in Edge devices, using simulated SDR data and is useable by resource-
constraint edge devices like the Raspberry Pi. Other methods, like Sun et al.’s [28], use a
re-arranged Wavelet–Hough transform to detect common interference signals like sweep
and continuous waves. While previous approaches focused on GPS interference sources
from Earth, Patil et al. [29] investigated space-based GNSS interference with a network of
43 frequency receivers in the US and Europe and identified a power spike at 1268.52 MHz,
which was traceable to satellites.

ADS-B data-driven approaches rely on data from ADS-B/ADS-B databases to analyze
and find patterns indicative of GPS interference. Using a jammer and aircraft on the ground,
Lukevs et al. [30] recorded the ADS-B transmission of an aircraft and found that NACp
dropped from an acceptable value of 9 to below 7. Liu et al. [31] analyzed pilot reports of
interrupted GNSS service and recorded ADS-B messages from a test flight during a GPS
interference exercise conducted at Edwards Air Force Base. The main finding was similar
to Lukevs et al.’s: a combination of low NIC values and ADS-B dropouts is typical of a
GPS interference event. The authors also found that as the jammer was moved farther
from the aircraft, the NACp gradually recovered and stabilized at a distance of 275 m
(902.2 Feet). The main finding of this work was that the NACp values dropped, and there
were gaps in the transmission of ADS-B messages when the aircraft’s GPS was affected
by an RF interference source. Ala et al. [32] builds on the finding that there is a gap in the
continuous transmission of ADS-B messages due to GPS interference. A moving average
of NACp is calculated and a threshold of 0.135 (moving average of NACp) is established.
Readings that exceed this threshold suggest potential GPS jamming. The loss of messages is
leveraged to find the likely location of the jammer by Jonavs et al. [33]. First, they correlate
and rule out other causes of interference, such as military testing, constellation or satellite
failure, and space weather, using relevant data sources. Once these are ruled out, they
assume RF interference as the cause and use the Friis transmission equation to estimate
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the jammer’s position, assuming that the start of the gap in message reception is the point
closest to the Jammer. Lui et al. [34] has created a real-time monitoring system capable of
updating probabilities every 30 s and is capable of localizing the location of the jammer
within 20 min of interference onset, using real-time ADS-B data. The authors divide the
airspace into sections using the Bayesian updating algorithm, updating the probability of
GNSS interference every 30 s based on NIC values. The jammer’s location and power are
estimated by minimizing the difference between estimated and measured jamming power
using Friis’s formula, refined interactively with the Gauss-Newton method. Research in
this category is consistent in finding the pattern of GPS interference, which is a gap in time
with a drop-in NIC around the gap.

A summary of the findings from the literature review is provided in Table 2. Satellite
and receiver-based techniques have shown effectiveness in localizing interference, leverag-
ing signal characteristics, and Doppler shifts. Receiver-based techniques that leverage ML,
and signal processing may be costly, invasive (require modification to existing equipment),
and necessitate testing before they can be implemented in critical applications, which may
not always be practical for widespread use. In contrast, data-driven approaches, partic-
ularly those using open-source databases, offer a more cost-effective and non-invasive
alternative. The analysis of ADS-B data has resulted in the identification of a pattern, which
is a gap in ADS-B data, with a drop in NIC from above seven to below seven on either side
or both sides of the gap by multiple studies [25,30,32,33,35]. Our proposed methodology
focuses on the use of ML to identify the GPS interference pattern in ADS-B data. Existing
methods use complex convolutional neural networks in addition to conventional methods
like logistic regression to detect GPS interference using ML [36]. Our methodology builds
on these methods and uses simpler, conventional algorithms to detect GPS interference.
We focus on doing so in an efficient manner that may be suitable for real-time application.
This work will focus on answering the following research questions:

1. What are the characteristics of NIC during GPS interference events, and can the
patterns described in the existing literature be observed in actual GPS interference
incidents?

2. Which ML algorithm is able to detect the GPS interference pattern accurately?
3. Which algorithm is computationally inexpensive?

This paper is organized into the following sections: The method section explains
how data was acquired and analyzed to understand the properties of NIC during a GPS
interference event. It details the challenges faced during data acquisition, like server
timeouts and large file sizes, and how they were overcome using a Python script. The
creation of synthetic ADS-B data to reflect real-world conditions and the training process of
ML models to detect GPS interference patterns, aiming for a balance between computational
efficiency and prediction accuracy, is explained. Results: This section details the outcomes
of the model training process and results, providing insights into model performance
during the training phase, variance testing, real-world applicability, and computational
efficiency. Conclusion: This section concludes the investigation into GPS interference
through ADS-B data; it also documents future work.

Table 2. Summary of the literature on GNSS interference detection.

Ref Classification Methodology Key Findings

Murrian 2021 [25] Satellite-based
techniques

LEO and SDR listening on L1
and L2 GPS bands

Detected and localized ground-based
interference using Doppler shift

Abraha 2024 [26] Satellite-based
techniques

Historic SNR characteristics of
multiple satellites

A strong correlation between SNR anomalies
and specific interference events

Patil 2023 [29] Receiver-based
techniques

Network of 43
frequency receivers

Identified space-based GNSS interference,
traced to Beidou 3S-M1S satellite
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Table 2. Cont.

Ref Classification Methodology Key Findings

O’Mahony 2021 [27] Receiver-based
methods

ML-based approach with
edge devices

Detected interference and jamming attacks
using in-phase and quadrature samples

Sun 2021 [28] Receiver-based
methods Wavelet–Hough transform Detected common interference signals like

sweep and continuous waves

Lukevs 2020 [30] Data-driven
approaches ADS-B data analysis Found significant role of jammer position on

NACp values

Liu 2020 [31] Data-driven
approaches Pilot reports and test flights Identified ADS-B message dropouts and low

NIC values during GPS interference

Ala 2019 [32] Data-driven
approaches

Analysis of ADS-B
NACp values

Monitored values followed a
semi-normal distribution

Jonavs 2019 [33] Data-driven
approaches

Triangulation using Friis
transmission equation Identified possible RFI source

Liu 2022 [34] Data-driven
approaches Real-time monitoring system Localized jammer within 20 min using

Bayesian updating algorithm

2. Materials and Methods

Our methodology revolves around the innovative use of machine learning to identify
GPS interference patterns in ADS-B data. Figure 1 depicts an overview of the methodology.
GPS interference, as it appears in ADS-B data, is characterized by a gap in continuous
messages and a drop in NIC on either or both sides of the gap (Section 1.2). The ADS-B
data of a GPS interference event that led to the issue of FAA advisories regarding GPS
unreliability [9] is acquired from the OpenSky Network and analyzed with NIC as the
primary parameter. Insights from the analysis are used to create a data generator that
can produce data closely resembling the real-world characteristics of NIC and message
reception time. In total, 600 aircrafts that contain the GPS interference pattern are sifted
to create a validation set. ML models are trained on the data from the generator and
validated on the 600 positive samples, and explainable AI techniques are used to understand
variations in the performance of the models. A strict selection methodology is applied to
select the optimal model that can strike a balance between prediction speed and accuracy.
The methodology is divided into 3 subsections. Section 2.1 describes the challenges in
the data acquisition process and how it was overcome by developing a Python script.
Section 2.2 describes the analysis of the acquired data, giving insight into the properties
of NIC during a GPS interference event. The process of creating a set of 600 positive
samples for the validation of the trained ML model is described in this subsection. Finally,
Section 2.3, describes the methodology used to train the ML models.

Figure 1. Multi-step GPS integrity interference section process.

2.1. Data Aquisition

Data for the analysis was sourced from the OpenSky Network’s central impala
database [24] that houses data in 15 different tables based on message type and data
version. Access to the data is facilitated exclusively through Secure Shell (SSH) and re-
quires data retrieval using Structured Query Language (SQL) queries. The resultant data
are presented in the terminal output, which needs to be saved to a file and parsed using
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regular expressions to obtain a usable Comma Separated Value (CSV) file. This method
is well documented in the Open Sky Network’s historical database documentation [23].
The state_vectorsdata_4 and operational_status_data4 are the two tables that are of interest
to us. The former contains aircraft state parameters like time, position, altitude, velocity,
heading, etc., while the latter contains uncertainty metrics like NIC, NAC, etc. The common
column among both these tables is ICAO24, which uniquely identifies an aircraft and time.

The operational status data encapsulates time as a range (min and max time), contrasting
singular time steps in the state vectors table, complicating data joins and increasing computa-
tional demand. The complexity of queries necessary for joins, coupled with server timeouts due
to the large size and retrieval time presented significant challenges. These issues resulted in
restarting downloads from scratch, which wasted much time. Further, the single file data dump
posed yet another issue that necessitated special measures due to its large size. To overcome
these challenges, a custom Python script was developed to facilitate data retrieval. Figure 2
visualizes this process, where the red rectangle is the user input (SQL Queries), the purple block
denotes the user’s environment, and the blue block signifies the OpenSky Network’s server. The
script takes the SQL query as input, connects to the OpenSky Network, and executes the query to
retrieve data from the state vectors table. Upon obtaining the state vector data, the script extracts
the unique ICAO IDs and queries the operational status messages table using the ICAO ID and
time. This method of querying helps break down the data into smaller consumable chunks
filtered by unique aircraft, and time helps track download progress and resume the download
from the last data point downloaded instead of restarting downloads from the beginning. This
approach helps overcome the server timeout issue and not waste time/computational resources
to restart large downloads. Breaking down the queries by individual aircraft helped chunk
the data into smaller and processable sizes. The logic used to join time which is described
as a single time stamp in the state vectors and a range in operational status is described in
Algorithm 1. The script handles each aircraft independently of another, allowing us to leverage
multi-threading to speed up the join process. We currently utilize 5 threads that enable the
processing of 5 aircraft in parallel. This method accelerates data processing and ensures data
integrity and completeness. This code is able to resume downloads from the last data point
(when downloading the operational status messages), saving time when server timeouts occur,
joining the state vectors, and operational status messages table, and produce data in smaller
consumable chunks that are easier to process. The script is available online in our DECSResearch
GitHub repo [37]. This program was used to query data about the DFW Interference event,
which is described and analyzed in the following subsection.

Figure 2. Python scripts to facilitate data downloads from the OpenSky Network.
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Algorithm 1 Time Handling Logic to join NIC Values to State Vectors

Require: d f : DataFrame, nic_d f _path: Path to NIC files, nic_added_path: Path for saving
updated DataFrames

Ensure: DataFrames with NIC values and message counts, considering specific time-
matching criteria, are saved to the specified path

1: procedure ADD_NIC(d f , nic_d f _path, nic_added_path)
2: Initialize pool_size← 5
3: Create a thread pool with pool_size
4: Extract unique icao24 codes from d f
5: for each unique_icao in unique icao24 codes do
6: Apply nic_added_inner_ f un asynchronously with arguments (unique_icao, d f ,

nic_d f _path, nic_added_path)
7: end for
8: : Wait for all tasks in the pool to be complete
9: end procedure

10: procedure NIC_ADDED_INNER(unique_icao, d f , nic_d f _path, nic_added_path)
11: Filter d f for unique_icao, resulting in ic_d f
12: Load corresponding NIC DataFrame from nic_d f _path
13: for each lastposupdate in ic_d f do
14: Attempt to match lastposupdate directly with maxtime or mintime in NIC

DataFrame
15: if direct match found then
16: Use NIC value and message count from matched row
17: else
18: Adjust lastposupdate by rounding or converting to integer
19: Retry matching with adjusted lastposupdate values
20: if match found with adjusted values then
21: Use NIC value and message count from matched row
22: else
23: Determine the closest maxtime or mintime within a 2-second threshold
24: if a close enough time is found then
25: Use NIC value and message count from the closest time row
26: else
27: Set NIC value and message count to NaN
28: end if
29: end if
30: end if
31: end for
32: Add NIC values and message counts to ic_d f
33: Save updated ic_d f to nic_added_path
34: end procedure

2.2. GPS Interference Analysis

The initial 28 hours of the DFW GPS interference event are analyzed. The OpenSky
Network’s historical database was queried in four hours chunks to obtain data from 17
October 2022, 20:00:00 to 18 October 2022, 23:59:59, for a radius of 74.08 km (40 Nautical
Miles (NM)) around DFW airport. A total of 5,747,931 data points and 2559 unique aircraft
were present in the entire dataset. The queries used to obtain the data are available in
our GitHub repository’s [37] ‘queries’ directory. These data are analyzed with NIC as the
primary parameter. NIC is compared with other aircraft state parameters, such as altitude,
change in NIC, and aircraft heading. The findings from this analysis are detailed below:
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1. Altitude-related interference. Numerous instances of NIC dropping to 0 at altitudes
as high as 9000 to 15,000 m was observed. This is unusual for airborne aircraft, which
usually have a clear view of the satellites above the horizon. Figure 3 is a violin plot
that visualizes this finding. The X-axis is the NIC, which ranges from 0 to 11 (also
depicted in color), and the Y-axis is the aircraft’s altitude.

Figure 3. Veiolin plot of altitude in meters and NIC in color.

2. Change in NIC values. The change in NIC was studied to understand when it drops
to zero, what value it begins from, and to what values it recovers. It was found that
the most typical fluctuation in NIC was from 9 to 0 and back to 9, followed by 6 to 0
and a recovery back to 6. This is shown as a histogram in Figure 4. The X-axis of the
plot is the change in NIC; for example, a value of ‘7_TO_6’ represents an initial value
of 7, after which the NIC dropped to 0 and recovered a value of 6. The Y-axis is the
count of the number of times each of these instances occurred in the entire dataset.

Figure 4. Count plot of change in NIC by category (7_TO_6 means NIC changed from 7 to 0 and
recovered to 6).

3. Aircraft heading. A notable pattern between aircraft heading and Navigation In-
tegrity Category (NIC) values was found. As illustrated in Figures 5 and 6, aircraft
approaching the airport from the northeast (heading southwest) showed a higher
occurrence of NIC 0 values. This is particularly striking given the relatively low
number of aircraft flying in this direction. Figure 6 displays a concentration of NIC 0
data points in the southwestern quadrant, while Figure 5 confirms that this is not due
to higher traffic volume in this direction.
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Figure 5. Polar bar chart of the distribution of number of aircraft, by heading with NIC as color.

Figure 6. Polar bar chart of the distribution of number of datapoints, by heading with NIC as color.

4. Individual aircraft analysis. Individual aircraft trajectories were visualized iteratively
to identify aircraft that contained the GPS interference pattern (a gap in continuous
ADS-B transmission and a drop in NIC on both or either side of the gap). A basic
visualization tool was created that presented two- and three-dimensional plots of
the aircraft’s trajectories and prompted user input to create a collection of positive
samples. These sets of aircraft are confirmed to contain the GPS interference pattern
and will serve as the validation set for testing model performance. A sample two-
dimensional scatter plot of the latitude and longitude of an aircraft with NIC as color
is visualized in Figure 7. The red annotations on the plot show the GPS interference
pattern that is expected of a positive sample (contains GPS interference). Figure 8
is a three-dimensional scatter plot that shows the trajectory of another aircraft that
contains the GPS interference pattern. Aircraft with similar trajectories were sifted,
and a total of 600 such aircraft trajectories were collected to create the validation set
for the machine-learning model.
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Figure 7. 2-Dimentional Visualization: Single aircraft visualization with NIC as color (GPS interfer-
ence pattern highlighted in red).

Figure 8. 3-Dimensional Visualization of aircraft trajectory, showing ADS-B characteristics of
GPS interference.

5. NIC and time properties. Time and NIC have been identified as the key parameters
to detect GPS interference; hence, to simulate data that is close to the real world, these
two features are analyzed in depth. A summary of the probabilities is provided in
Table 3. An NIC of 9 is the most typical value with a probability of 0.9016 while an
NIC of 11 is completely absent, which could be attributed to the fact that it requires the
addition of Satellite-Based Augmentation System (SBAS) to the GPS, which enhances
the accuracy and reliability of GNSS signals by using a network of ground stations
and geostationary satellites [38,39]. The time gaps in the dataset ranged from 1 to
50,000 s; the large range of values is likely caused by geographic filtering, which
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resulted in aircraft entering and leaving the region of interest, introducing substantial
variability in the time intervals.

Table 3. NIC probabilities extracted for NIC ≥ 7 (normal data) from the data acquired from OpenSky.

NIC Value Probability

7 0.03116
8 0.0010
9 0.9016
10 0.0561
11 0

2.3. GPS Interference Detection Using ML

The GPS interference pattern identified in Section 1.2 is characterized by a gap in time
and a drop in NIC from a value above 7 to 0 on either or both sides of the gap, which
highlights the need to maintain the temporal features of the data. This problem is modeled
as a supervised binary classification problem with two primary features: Time, transformed
into time differences (∆t) to highlight gaps, and NIC, treated as a categorical variable, with
a cardinality of 12 (discrete numbers ranging from 0 to 11).

The sliding window technique is a key part of the data modeling process, and it plays
a significant role in preserving the temporal characteristics of the data. Essentially, this
technique involves moving a window of a fixed size over the data, allowing us to capture
the temporal features. As shown in Figure 9, the green box represents a positive sample,
where a gap in time and a drop in NIC are observed on both sides of the gap, while the blue
boxes depict negative samples. The problem is represented mathematically in Equation (1),
where N ∈ {0, 1, . . . , 11} and ŷ ∈ {0, 1}. The function f represents the ML model that takes
as input a flattened window of difference in time and NIC.

f (∆tn, Nn, ∆tn+1, Nn+1 . . . ∆tn+29, Nn+29) = ŷ (1)

Figure 9. Data modeling: sliding window technique with a positive sample (green box) and negative
samples (blue boxes).

To overcome labeling challenges, a synthetic data generator was developed based on
real-world ADS-B data properties. The essence of the generator is represented as pseu-
docode in Algorithm 2, while the code can be found at the DECS Lab’s GitHub repository
y [40]. Our dataset comprised of three sets: the training set contained 126,000 synthetic
data samples, the test set with 54,000 synthetic data points, and the validation set contained
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600 real-world positive samples. The validation set’s composition reflects the emphasis on
recall for rare event detection. The challenge at hand involves detecting rare events in high-
dimensional data with temporal characteristics that render traditional tests for normality
unfeasible. This requirement, in addition to the critical nature of the application, led us
to favor well-tested and renowned implementations of ML algorithms whose properties
are well established over implementing new models from scratch, ensuring reliability and
efficiency in safety-critical and big data contexts.

Algorithm 2 Train and Test data generation algorithm

1: Initialize empty lists targets, time_di f f s, and nics
2: for i in range (10,000) do
3: Initialize nic_values and time_di f f with defaults
4: Generate a gap with random duration and location
5: if gap exists then
6: Determine if there is an NIC drop
7: if NIC drop exists then
8: Choose drop type
9: Update NIC values accordingly

10: end if
11: Append time_di f f and nic_values to lists
12: else
13: Append default time_di f f and nic_values
14: end if
15: Append target label (1 for NIC drop, 0 for no drop)
16: end for
17: for i in range (10,000) do
18: Initialize nic_values and time_di f f with defaults
19: Generate a gap with random duration and location
20: if gap exists then
21: Append time_di f f and nic_values to lists
22: else
23: Append default time_di f f and nic_values
24: end if
25: Append target label (0 for no NIC drop)
26: end for

A diverse set of conventional ML algorithms are applied from Python’s Scikit Learn
Library. Models from different categories including linear, Bayesian, stochastic, distance-
based, tree-based, and network-based. Logistic regression offers simplicity and inter-
pretability but struggles with non-linear relationships. Bayesian models, like Naive Bayes,
perform well with limited data and high dimensionality but make strong assumptions
about feature independence. Support Vector Machines (SVM) are known to perform well
on data with higher dimensions but are computationally expensive. Stochastic models excel
with large datasets but may take time to converge. Random forest handles non-linearity
really well but tends to lose interpretability in complex scenarios. Neural networks capture
intricate relationships in the data but require large volumes of data and are computationally
expensive to train and run. Initially, they are trained and tested on 180,000 simulated
data points with a 70–30 split; the models with a high False Positive Rate (FPR) and False
Negative Rate (FNR) are ignored, preferring models with a high TPR. In the next step, the
remaining models are tested for prediction variability by simulating 5 more iterations of
data from the data generator, and the models will be tested on prediction variability on the
test set. Models with a low prediction variance would be studied further using permutation
feature importance to understand which features the model prioritized by the different ML
models to make its prediction [41]. Permutation feature importance measures how much
the model’s performance metric decreases when a feature’s values are randomly shuffled,
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thereby breaking the relationship between the feature and the target mathematically as
shown in Equation (2).

importance(Xi) =
1

nrepeats

nrepeats

∑
r=1

(
score− scoreperm(Xi)

)
(2)

where

• Importance(Xi) is the importance of feature Xi;
• nrepeats is the number of repetitions;
• Score is the model score on the original dataset;
• Scoreperm(Xi)

is the model score after permuting feature Xi.

The models are then validated on the 600 real-world positive samples. Models with
high TPR and low FNR will be preferred. Finally, given that the models are intended for
real-time predictions in big-data scenarios, the models will tested by iteratively increasing
the sample size in multiples of two, from 1 to 2048. These steps not only give insight
into model prediction capabilities on simulated and real-world data but also explain
the prioritization of features, which helps explain how models interpret data to make
predictions. By following these steps, a computationally efficient and accurate model will
be selected.

The rarity of the positive samples is a primary factor in model performance assessment.
Traditional metrics like accuracy are misleading in such scenarios. To address this, the
confusion matrix metrics, including the true positive rate (TPR), the false positive rate
(FPR), and the positive predictive value (PP), will be employed. Focusing on these metrics
over accuracy ensures the predominance of negative samples does not skew the assessment.

3. Results and Discussion

The methodology and the results are detailed in this section, while an overview is
visualized in Figure 10.

1. Model Training: The confusion matrix, shown as a bar chart in Figure 11, depicts the
result of training the model on 180,000 simulated data points with 70–30 train–test
split. Ideal models have a high TPR, and PP and a low FPR and FNR. In contrast,
Naive Bayes exhibited a high FPR, while SGD classifier, SVM, and logistic regression
have a high FNR.

2. Variance Testing and Model Explainability: The models filtered from the previous
step were used to test for prediction variance. This step is performed to ensure that
the performance of the models is not due to a statistical fluke in the generation process.
NN, random forest, and MLP classifier were tested by iterating five runs of newly
created 180,000 data points each time and performing a 70–30 train–test split. All of
the models exhibited a low variance, indicating reliable learning patterns that do not
arise from statistical anomalies. The results of running 150 iterations of permutation
feature importance on these four models revealed that the models prioritized NIC
similarly but varied slightly on how it was prioritized. Figures 12 and 13 visualize
these findings in a line chart with the time step of ∆T and NIC on the X-axis and
feature importance on the Y-axis. We found that MLP and dense neural networks
prioritized the initial and final time steps of a window the most, random forest and
decision tree classifiers placed them at a relatively lower importance. The central part
of a window of 30 s seems to be the most important. MLP prioritizes this part of
the window the least in relation to random forest, decision tree classifier, and dense
neural network.

3. Real-world data performance: The models were evaluated on 600 real-world positive
samples, and the results are outlined in Table 4. The decision tree classifier performed
poorly on real-world data, with a TPR of 23% and an FNR of 76.4%, leading to its
exclusion from further steps. In correlation with the model explainability, MLP, and
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dense neural network prioritized data points at the beginning and end of each window
more than random forest and decision tree, causing them to capture all instances
of drops, even if they occur at the beginning or end of a window, which may have
been missed by random forest and decision tree classifier, resulting in a lower TRP
compared to dense neural network and MLP.

Figure 10. Model training process and results.

Figure 11. Model performance on test data, 20% of generated training data.
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Figure 12. Permutation feature importance for ∆T.

Figure 13. Permutation feature importance for NIC.

Table 4. Performance of ML models on real-world 600 positive samples. Best performing model is
highlighted in bold.

Model True Positive Rate False Negative Rate

RF 99.536 0.464

Decision Tree 23.648 76.352

MLP 99.845 0.154

Dense NN 99.845 0.155

4. Computational Efficiency: The models selected from the previous step (MLP, random
forest, and dense NN) were tested for their computational efficiency by iteratively
increasing the input sample size from 1 to 2048, in multiples of two. The results,
visualized in Figure 14, show that for dense NN and random forest, the prediction time
grows as the number of samples increases, while the prediction time remains mostly
unaltered for MLP. Thus, MLP is the best-performing model in terms of prediction
accuracy and time, reducing prediction time by up to 10× and 16× compared to
random forest, which showed a 5× reduction in computation time for 2000 samples.
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Figure 14. Prediction time (seconds) by number of samples.

4. Conclusions

The literature review revealed a consistent pattern of GPS interference in ADS-B data.
Multiple studies agree that GPS interference typically manifests as a temporal gap in ADS-B
messages, accompanied by a decrease in Navigation Integrity Category (NIC) values either
before, after, or on both sides of this gap. This characteristic pattern serves as the primary
indicator of GPS interference events in ADS-B data streams. The investigation into GPS
interference using ADS-B data revealed significant fluctuations in NIC during the event,
and 600 aircraft were identified that contained the GPS interference pattern. A notable
finding was that aircraft as high as 9 to 15 thousand meters experienced a drop in NIC. In
terms of direction, aircraft heading south and southeast tend to have a higher drop in NIC
compared to other directions. The most typical change in NIC was found to be from 9 to 0
and back to 9. In detecting the GPS interference pattern, three algorithms performed the
best: random forest, dense NN, and MLP. This is attributed to the fact that these models
prioritize points that are at the beginning and end of a window and a mild correlation
between the extent of prioritization and TPR. The models were able to achieve a high TPR
of up to 99.845 and a very low FNR of up to 0.154. This allows predictions with low Type-II
error, which indicates that it is very unlikely to misclassify an aircraft that exhibited the
GPS interference pattern. Though random forest, dense NN, and multi-layer perceptron
algorithms performed well in terms of TPR, the prediction times of these algorithms are
significantly different. Iteratively increasing the number of samples from 2 to 2048 in
multiples of two, it was found that dense NN’s prediction time grew exponentially with
the number of samples. In terms of prediction speed, it was found that MLP’s prediction
speed remained the lowest, even when the number of samples grew. MLP is able to predict
accurately and efficiently. This finding lays the groundwork for future applications that
can leverage the capabilities of MLP to implement real-time ML-based monitoring systems
that can efficiently detect GPS interference in ADS-B data, contributing to aviation safety
and air space management.

The limitations of this work are as follows:

1. The current implementation of the Python script starts with a large download from
the state vectors table. Although this is robust to server timeouts, it would have to be
improved to implement the same methodology applied to the operational status table.

2. The ML model has been trained on synthetic data based on a GPS interference pattern
described in the literature. For a more accurate detection, actual pilot accounts of GPS
interference must be used.

3. The current methodology only considers front door interference (interference caused
by external sources). However, backdoor interference (caused by internal sources) is
not accounted for and may show up as false positives.
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Further research is warranted to address these limitations. This is described in more
detail in the following subsection.

Future Work

The current implementation of the OpenSky downloader will be extended to overcome
limitations by implementing the same download methodology used in the operational
status download. As follow-up work to this paper, a larger dataset of manually labeled
instances of the GPS interference pattern will be created. ML models will be trained to
detect such patterns in live ADS-B data. This will enable the creation of an interface that
displays areas of GPS interference in near-real time to serve as a guideline to the ATC and
pilots alike. A series of non-ML algorithms will be developed that are able to detect the
GPS interference pattern, which will be compared to MLP (the best-performing model
identified in this work) to make a decision between ML and non-ML algorithms for GPS
interference detection.
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The following abbreviations are used in this manuscript:

GPS Global Positioning Systems
DFW Dallas Fort Worth
NIC Navigation Integrity Category
NN Neural Network
MLP Multi-Layer Perceptron
TPR True Positive Rate
VHF Very High Frequency
FAA Federal Aviation Authority
NextGen Next Generation
ATC Air Traffic Control
NAC Navigation Accuracy Category
SIL Surveillance Integrity Level
HDFS Hadoop Distributed File System
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AI Artificial Intelligence
FPR False Positive Rate
FNR False Negative Rate
PPV Positive Predictive Value
IQR Interquartile Range
LEO Low Earth Orbit
PRN pseudo-random number
SSH Secure Shell
SQL Structured Query Language
CSV Comma Separated Value
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