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Abstract: Real-world vibration signal acquisition of automotive machines often results in imbalanced
sample sets due to restricted test conditions, adversely impacting fault diagnostic accuracy. To address
this problem, we propose fractional diversity entropy (FrDivEn) and incorporate it into the classifier-
guided diffusion model (CGDM) to synthesize high-quality samples. Additionally, we present a
corresponding imbalanced fault diagnostic method. This method first converts vibration data to
Gramian angular field (GAF) image samples through GAF transformation. Then, FrDivEn is mapped
to the gradient scale of CGDM to trade off the diversity and fidelity of synthetic samples. These
synthetic samples are mixed with real samples to obtain a balanced sample set, which is fed to the
fine-tuned pretrained ConvNeXt for fault diagnosis. Various sample synthesizers and fault classifiers
were combined to conduct imbalanced fault diagnosis experiments across bearing, gearbox, and rotor
datasets. The results indicate that for the three datasets, the diagnostic accuracies of the proposed
CGDM using FrDivEn at an imbalance ratio of 40:1 are 91.22%, 87.90%, and 98.89%, respectively,
which are 7.32%, 11.59%, and 3.48% higher than that of the Wasserstein generative adversarial
network (WGAN), respectively. The experimental results across the three datasets validated the
validity and generalizability of the proposed diagnostic method.

Keywords: fractional order; diversity entropy; fault diagnosis; diffusion model; ConvNeXt model

1. Introduction

Automotive machines, such as bearings, gearboxes, and rotors, play an indispensable
role in transportation vehicles. Motor bearing, gearbox, and rotor failures significantly
impact vehicle driving safety. When a vehicle experiences a malfunction, pinpointing the
exact failing component is often challenging, necessitating the disassembly of the assembly
to identify the issue [1]. This process hinders the efficiency and convenience of fault deter-
mination. In addition, as technology advances, the structure of these automotive machines
is becoming increasingly sophisticated, and their application scenarios are becoming more
complex. This complexity increases the susceptibility to various failures or damages. Such
failures can reduce the operational efficiency of mechanical equipment and cause vehicle
shutdowns. Hence, studying fault diagnostic methods for automotive machines holds
significant theoretical and engineering value.

Traditional methods using pure signal processing techniques are still theoretically
valid, but they have significant room for improvement in intelligence [2,3]. Meanwhile,
deep learning (DL) can extract features from complex vibration, sound, or other sensor
data and learn patterns between different states of an automotive machine, leading to
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more accurate and early diagnosis of automotive machine faults [4]. Deep neural networks
for fault diagnosis mainly consist of the recurrent neural network (RNN), auto-encoder
(AE), and convolutional neural network (CNN). These networks do not require empirical
knowledge and can extract feature information from data or samples adaptively. Among
these models, CNNs utilize multiple convolutional kernels to extract features from input
samples or upper-layer features [5,6]. CNNs perform matrix element multiplication sum-
mation and accumulate the deviations of the input features. Compared to RNNs and AEs,
CNNs have notable advantages due to their increased network depth and weight sharing.
The former, with deep residual learning [7], allows CNNs to increase their depth without
encountering the vanishing gradient problem common in RNNs [8], thus enabling effective
feature extraction from sensor time series data over longer periods. The latter reduces the
number of trainable parameters, lowering model complexity and mitigating the overfitting
problem prevalent in AEs [9], which augments the generalization of models [10,11].

With outstanding advantages, CNNs are widely used in fault diagnosis. For in-
stance, an improved CNN model incorporating empirical mode decomposition (EMD)
was proposed to enable end-to-end diagnosis, enhancing accuracy and anti-interference
capabilities [12]. Additionally, a diagnostic method based on persistence spectrum imaging
and the residual network (ResNet) structure was proposed. The improved ResNet structure
allows for direct connections between different feature maps, facilitating the extraction of
discriminant features [13]. Moreover, the CBAM-ResNet, which comprised the convolu-
tional block attention module (CBAM) and a modified ResNet, was created to improve
network feature extraction efficiency while maintaining high accuracy [14].

These DL-based fault diagnostic methods perform well and can accurately recognize
different types of faults. However, these methods depend on large and balanced samples.
In real-world conditions, data acquisition for automotive machines is often limited due to
practical constraints. Moreover, since automotive machines typically operate in a normal
state most of the time, it is easier to collect a substantial amount of normal-state data, leading
to an imbalance in fault-type data. This imbalance restricts the diagnostic accuracy [15].

To fill the imbalanced sample sets, DL-based generative models are employed to syn-
thesize the missing samples for each faulty class, thereby achieving a balanced dataset. The
generative models used for this purpose mainly include the variational auto-encoder (VAE),
generative adversarial network (GAN), and diffusion model. Among these generative
models, the diffusion model’s noising process is a multi-step procedure that gradually
applies noise to samples. Conversely, the reverse denoising process is multi-step, gradually
removing noise from the sample. This dual process allows the diffusion model to fulfill
two key objectives: (1) starting from random noise samples ensures the diversity of the
synthesized samples; (2) the gradual denoising process allows for meticulous control,
enhancing the fidelity of the synthetic samples and avoiding the low fidelity issues of
VAE-synthesized samples and the GAN’s collapse [16,17].

Currently, diffusion models are developing rapidly in sample synthesis tasks. Dhari-
wal et al. [18] introduced the classifier-guided mechanism to diffusion models, proposing
the classifier-guided diffusion model (CGDM) in 2021. This model can outperform the
GAN by using a gradient scale that weighs the focus on the diversity and fidelity. We
aimed to augment the imbalanced fault sample set by synthesizing specific ones using the
CGDM. The CGDM allows for a trade-off between the diversity and fidelity of synthetic
samples by adjusting the gradient scale s, offering the potential to improve the quality of
synthetic fault samples under varying imbalance ratios. Nevertheless, determining the
proper value of the gradient scale as a hyperparameter remains an important question.
Dhariwal et al. [18] suggested that the gradient scale should be set at an intermediate point
where the overall sample quality, considering diversity and fidelity, is highest. We sought a
clearer indicator for setting the gradient scale than the vague “intermediate point”.

Since DivEn can reflect the diversity of time series [19], it and its variants have been
applied in machine fault diagnosis by extracting time series’ features [20–22]. However,
they have not yet been reported in imbalanced fault diagnosis. We aimed to map the
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DivEn of machine signals at different imbalance ratios to an appropriate gradient scale
for high-quality sample syntheses. Nevertheless, DivEn is not sensitive to time series at
different imbalance ratios, as illustrated in Section 2.2. To address this problem, we propose
fractional diversity entropy (FrDivEn) by incorporating fractional order calculus into Di-
vEn. Fractional calculus generalizes the classical theory of integer-order differentiation and
integration. Both the theory and its applications demonstrate that the fractional calculus
operator effectively describes many complex systems. Due to its numerous unique char-
acteristics, fractional calculus is extensively studied in fields like signal processing [23,24],
image processing [25,26], and machine learning [27,28]. We propose FrDivEn to sensitively
reflect the vibration signals’ diversity and to better balance the diversity and fidelity of the
synthetic samples.

Furthermore, we present a novel imbalanced diagnostic method for automotive ma-
chines by integrating the CGDM with a gradient scale corresponding to FrDivEn, the
Gramian angular field (GAF) transformation, and the fine-tuned pretrained ConvNeXt.
Specifically, the method first transforms time series signals into GAF image samples using
GAF transformation. Then, high-quality samples are synthesized using the CGDM with
a gradient scale corresponding to FrDivEn. These synthetic samples are combined with
imbalanced real samples to obtain a mixed sample set, which is subsequently fed to a
fine-tuned pretrained ConvNeXt for fault diagnosis. The contributions of this paper are
summarized as follows:

(1) For fault diagnosis with imbalanced sample sets in automotive machines, it is neces-
sary to balance the diversity and fidelity of synthetic samples. Here, we innovatively
propose a novel vibration signal measure, fractional diversity entropy (FrDivEn), to
reflect signal diversity and adjust the generative model’s emphases on the diversity
and fidelity of sample synthesis. The proposed FrDivEn differs from the traditional
DivEn, which is insensitive to signal diversity at different imbalance ratios. FrDivEn
can sensitively vary with the imbalance ratio of the signal, reflecting signal diversity
more efficiently than the traditional DivEn.

(2) To select the appropriate gradient scale of CGDM accordingly and achieve high-
quality sample synthesis, we innovatively propose using FrDivEn to determine the
ideal gradient scale. This approach results in better sample synthesis compared to
other generative models.

(3) To boost diagnostic accuracy in automotive machines, we present a fault diagnostic
method. This method primarily uses CGDM with a gradient scale corresponding
to FrDivEn as the sample synthesizer and a fine-tuned pretrained ConvNeXt as
the fault classifier. Experiments show that this method can be extended to various
automotive machines and achieves higher diagnostic accuracy compared to other
sample synthesizer and fault classifier methods.

The remainder of this paper is arranged as follows: The algorithms of DivEn and
FrDivEn are provided in Section 2. The proposed imbalanced diagnostic method is described
in Section 3. The experiments designed to verify the validity and generalizability of the method
are presented in Section 4. Finally, the conclusions of this study are drawn in Section 5.

2. Algorithms

In this section, the algorithms for the diversity entropy (DivEn) and the proposed
fractional diversity entropy (FrDivEn) are presented.

2.1. Diversity Entropy

For a given time series X = {x1, · · · , xi, · · · , xN}, the diversity entropy (DivEn) can
be derived according to the following steps.

Step 1: Phase space reconstruction. The time series can be reconstructed into orbits
using an embedding dimension m [29]. This reconstruction involves creating subsequences.
It allows for analysis of the system’s dynamics by examining the geometric properties of the
reconstructed phase space. X is divided into (N − m + 1) subsequences. Each subsequence
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yi(m) is formed as {xi, xi+1, · · · , xi+m−1}. The reconstructed matrix Y consists of rows that
are segments of X. The matrix Y is structured with each row representing a segment of
length m from the time series. This matrix can reveal patterns and structures that are not
apparent in the original time series, facilitating further analysis.

The phase space reconstruction matrix Y is given by

Y(m) = {y1(m), y2(m), · · · , yN−m+1(m)} (1)

In matrix form,

Y(m) =


x1 x2 · · · xm
x2 x3 · · · x1+m
...

...
...

xN−m+1 xN−m+2 · · · xN

 (2)

The rows of this matrix correspond to the subsequences.
Step 2: Cosine similarity calculation. The similarity between each row and the next

row in the phase space matrix is calculated to yield a set of similarities {d1, d2, · · · , dN−m}.
This series of similarities helps in understanding the relations between successive states in
the reconstructed phase space. The cosine similarity d between adjacent rows is defined
mathematically. It calculates the cosine of the angle between two non-zero vectors, reflecting
their directional alignment.

The series of cosine similarities is given by

D(m) = {d1, d2, · · · , dN−m} (3)

where

D(m) = {d(y1(m), y2(m)), d(y2(m), y3(m)), · · · , d(yN−m(m), yN−m+1(m))} (4)

The similarity between two rows yi(m) and yj(m) is defined as

d
(
yi(m), yj(m)

)
=

∑m
k=1 yi(k)× yj(k)√

∑m
k=1 yi(k)

2 ×
√

∑m
k=1 yj(k)

2
(5)

The cosine similarity d ranges from −1 to 1. A value of 1 indicates that the two rows
are identical, 0 indicates that they are orthogonal (no similarity), and −1 indicates that they
are completely opposite. High cosine similarity values indicate similar dynamic changes
between two rows, while low values indicate diverse dynamic behavior.

Step 3: State probability calculation. The range [−1, 1] is partitioned into ε intervals
denoted as (I1, I2, · · · , Iε). This partitioning allows for the categorization of cosine simi-
larity values into discrete intervals, facilitating the calculation of state probabilities. The
state probabilities (p1, p2, · · · , pε) are calculated by determining the frequency of cosine
similarity values and normalizing by the values. The sum of state probabilities is equal to
1, i.e., ∑ε

k=1 pk = 1. This ensures that the probabilities are properly normalized, making the
distribution valid and interpretable.

Step 4: Diversity entropy calculation. DivEn is calculated based on the state probabil-
ities obtained from the partitioned cosine similarities using the following formula:

DivEn = − 1
ln ε

ε

∑
k=1

pkln pk (6)

where ε means the number of intervals, and pk are the elements of the state probability.
DivEn is the expectation of the diversity between the rows of the phase space matrix.

It quantifies how evenly the cosine similarities are distributed. The range of DivEn is [0, 1],
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according to the original entropy theory [30]. When DivEn tends to 0, this indicates low
complexity in the time series, suggesting a dynamic system with similar phenomena or
repetitive patterns. When DivEn tends to 1, this indicates high complexity in the time series,
suggesting a dynamic system with diverse phenomena or more varied behavior.

2.2. Fractional Diversity Entropy

DivEn can characterize the diversity of time series. However, we find limited differen-
tiation in DivEn calculation results for vibrational signals with different imbalance ratios,
which reduces DivEn’s effectiveness in measuring the diversity of time series.

To illustrate this problem, the CWRU bearing dataset with a motor load of 0 and
a speed of 1797 rpm is used as an example. The vibration signals are cut and spliced
at different ratios for the nine fault states to create five time series. These time series
simulate scenarios where the occurrence of faults is not uniform, providing a basis for
analyzing how imbalance affects system dynamics. The specific allocation of bearing
faults in the imbalanced time series is detailed in Table A1, Appendix A. Following the
methodology in the original research on DivEn [19], the embedding dimension m is set to 4.
DivEn is calculated for each of the five time series, allowing for a comparative analysis of
their complexity and diversity. Similar to the original research on DivEn [19], we set the
embedding dimension m to 4 and calculated DivEn for each of the above five time series.
The results of the DivEn calculations are shown in Table 1. It can be found that the DivEn
results of two adjacent imbalance ratio vibration signals have a limited difference of no
more than 0.01. The calculation results reflect the limitations of DivEn in characterizing
imbalance ratio fault vibration data, and DivEn is ill-equipped to reflect the diversity of
time series vibration signals clearly.

Table 1. The results of the DivEn calculations.

Measure

Imbalance Ratio
2:1 5:1 10:1 20:1 40:1

DivEn 0.9496 0.9413 0.9357 0.9287 0.9195
Difference 0.0083 0.0056 0.0070 0.0092

To address this problem and make DivEn sensitive to different imbalance ratio vi-
bration signals, we combine DivEn with fractional order calculus to propose fractional
diversity entropy (FrDivEn), which measures the diversity of time series. The improved
algorithm for DivEn, called FrDivEn, is derived from DivEn and Shannon entropy at a
fractional order α. FrDivEn extends the concept of DivEn to incorporate fractional calculus,
enhancing the measurement of system complexity.

Shannon entropy is extended to consider fractional calculus [31], referred to as
ShannonEnα. This extension allows for a more flexible and detailed analysis of the under-
lying dynamics of time series data.

The generalized expression for ShannonEnα is given by

ShannonEnα = −∑
s

{
p−α

s
Γ(α+ 1)

[ln ps + ψ(1)− ψ(1 − α)]

}
ps (7)

where α denotes the fractional order, Γ(·) represents the gamma function, ψ(·) represents
the digamma function, and ps are the elements of the state probability in Shannon entropy
calculation. This formula introduces fractional exponents and special functions to adjust
the traditional entropy calculation.

FrDivEn is generalized based on the generalized expression of Shannon entropy and
fluctuation-based calculus [32]. This extension enhances the traditional entropy measures
by incorporating the concept of fractional calculus, providing a more detailed analysis of
time series data.
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FrDivEn at fractional order α is written as FrDivEnα, defined as

FrDivEnα = −DαFrDivEn (8)

where Dα(·) denotes the derivative of fractional order α, introducing the concept of frac-
tional differentiation into the entropy calculation.

Combining with Equation (6), the FrDivEnα for the original time series X = {x1, · · · ,
xi, · · · , xN} is given by

FrDivEnα = −
ε

∑
k=1

{
p−α

k
Γ(α+ 1)

[ln pk + ψ(1)− ψ(1 − α)]

}
pk (9)

where α denotes the fractional order (−1 < α < 1), Γ(·) represents the gamma function, ψ(·)
represents the digamma function, ε denotes the number of intervals, and pk are the elements
of the state probability. This formula allows for a more adaptable and comprehensive
calculation of entropy, reflecting the patterns of diversity within the time series data.

3. Proposed Imbalanced Fault Diagnostic Method

To enhance automotive machine diagnostic accuracy on limited and imbalanced fault
data, we propose an innovative fault diagnostic method that introduces FrDivEn to trade
off the classifier-guided diffusion model’s (CGDM) sample synthesis.

First, to fully utilize the advantages of convolutional neural networks (CNNs) in
image classification [33] for fault diagnosis, Gramian angular field (GAF) transformation is
employed to convert the raw vibration signals of automotive machines into GAF images.
Then, to balance the number of GAF images for each fault state, the CGDM with the
FrDivEn trade-off is applied to synthesize high-quality GAF images. Next, the real samples
and synthetic samples are combined into a single balanced sample set. Finally, to achieve
highly accurate fault diagnosis, a fine-tuned ConvNeXt model based on transfer learning is
implemented. For a given automotive machine vibration signal collection platform, four
processes need to be performed.

3.1. Preprocess

In automotive machine fault diagnosis, the raw vibration signals collected by the sen-
sor are converted into GAF images through GAF transformation. The GAF transformation
is a time series data analysis coding method that enhances tasks such as classification and
imputation [34]. The basic idea of GAF involves combining the coordinate transformation
and the Gramian matrix. The detailed derivation of GAF transformation is provided in
the Appendix B section. In this fault diagnostic method, GAF transformation is used to
extract the temporal and numerical relationships of the vibration signals, representing these
relationship features as GAF images.

3.2. Sample Synthesis

After obtaining real image samples, to fill the imbalanced sample set, we use a classifier-
guided diffusion model (CGDM) with the assistance of FrDivEn to synthesize samples. The
CGDM comprises noising and denoising processes: (1) Noising process (q): The random
noise β is added to the original image sample x0 gradually, resulting in a purely noise
image xT after T steps. (2) Denoising process (p): The noise is progressively removed from
the noise image according to the conditional distribution pθ , yielding the synthetic image
sample after T steps. As implied by its name, the CGDM incorporates a classifier ϕ to guide
sample synthesis. By guiding the diffusion model, overall sample quality is enhanced by
balancing diversity and fidelity. Dhariwal et al. [18] found that increasing the classifier’s
gradient scale s boosts fidelity at the cost of diversity in synthetic samples, introducing
a trade-off between sample fidelity and diversity. For instance, high fidelity for bearings
means that the CGDM can accurately synthesize specific fault samples, such as ball or race
faults, but this reduces the overall diversity of synthetic samples. Therefore, adjusting the
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gradient scale offers a trade-off between the diversity and fidelity of synthetic samples. The
schematic diagram of CGDM is shown in Figure 1.

Figure 1. Schematic diagram of a classifier-guided diffusion model (CGDM).

However, there are no ideal measures to pick the appropriate gradient scale s. Given
that the proposed FrDivEn can sensitively represent the diversities of vibration signals,
we propose to tune the CGDM’s gradient scale for high-quality sample synthesis using
FrDivEn. The combination of FrDivEn and the CGDM aims to achieve a better trade-off in
fault sample diversity and fidelity. The FrDivEn trade-off in diversity and fidelity can be
described as the following three steps.

Step 1: Fractional order analysis. Machado [35] highlights that the fractional order
enhances the description of system dynamics. This sensitivity adjustment can capture more
subtle variations and patterns within the vibration signals. To choose suitable α values, we
calculate FrDivEn results of the automotive machine vibration signal at different imbal-
ance ratios and various α values, analyze the results, and summarize the laws associated
with FrDivEn.

Step 2: Gradient scale analysis. To establish the correspondence between the FrDivEn
of vibration signals and the appropriate gradient scale to trade off sample synthesis, we
must find the gradient scale that yields the highest fault diagnostic accuracy at different
imbalance ratios. We use the CGDM with varying gradient scales to synthesize fault
samples, filling the imbalanced sample set at different imbalance ratios. Subsequently, we
analyze the effect of gradient scales on the fault diagnostic accuracy. The gradient scale
with the highest fault diagnostic accuracy is then chosen to correspond to the FrDivEn of
the imbalance ratio.

Step 3: FrDivEn–gradient scale curve fitting. We map the FrDivEn and the appropriate
gradient scale at different imbalance ratios onto Cartesian coordinates, obtain several corre-
sponding points, and fit a FrDivEn–gradient scale curve through these points. With this fitted
curve, we can find correspondence from any FrDivEn to the appropriate gradient scale. In
this study, FrDivEn–gradient scale fitting curves are obtained from the CWRU bearing dataset.
Theoretically, we can apply this fitting curve, i.e., the correspondence between FrDivEn and
the gradient scale, to other automotive machines similar to the rolling bearing.

The comparison of the proposed FrDivEn with the existing DivEn, the selection
process of the gradient scale in the CGDM, and the fitting process are elucidated in detail in
Section 4.2. Additionally, we incorporate DivEn and FrDivEn into the CGDM, respectively,
and demonstrate their effectiveness by validating them against other generative models
through fault diagnostic experiments. The related experiments and discussions are included
in Section 4.3.
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3.3. Sample Mix

Synthetic fault samples are produced through the CGDM. This method synthesizes fault
samples that can be used to supplement real-world samples, enhancing the sample set for
CNN training. The mixer function M is used to combine these samples into a cohesive set.

The mixed sample set, Xmix, is determined using the mixer function M, integrating

the real samples X0 and synthetic samples
∼
X0:

Xmix = M(X0,
∼
X0) (10)

where M denotes the sample mixing process; X0 is the imbalanced real sample set; and
∼
X0 is the supplementary synthetic sample set, which is produced by CGDM’s synthesis
technique. This integration aims to create a balanced sample set for fault diagnosis.

3.4. Fault Diagnosis

After obtaining the mixed sample set, features from the image samples are extracted
to achieve accurate fault diagnosis. The ConvNeXt structure is combined with transfer
learning to enhance fault diagnostic accuracy. ConvNeXt’s excellent performance in image
classification tasks was validated using the ImageNet sample set [36]. As a deep CNN
model, ConvNeXt requires extensive parameter tuning after initialization. This tuning
can lead to unsatisfactory fault diagnostic accuracy when trained over limited epochs, as
it may not fully converge or learn the necessary features. Transfer learning significantly
reduces the need for extensive parameter tuning [37]. The pretrained ConvNeXt model can
leverage hierarchical representations learned from the ImageNet sample set, enhancing its
performance on the target task.

The ConvNeXt model was pretrained on the ImageNet sample set, while the target
dataset comprises GAF images. When there is dissimilarity between ImageNet images and
GAF images, more layers should be fine-tuned for effective fault diagnosis. Fine-tuning
adjusts the model to better recognize and classify the specific features of GAF images,
which are different from natural images of ImageNet. The fine-tuning process involves
adjusting ConvNeXt blocks and other layers at the lower level. The original output classes
of the last linear layer, corresponding to ImageNet, are replaced with classes representing
possible automotive machine working states. This ensures that the model’s predictions are
relevant to the fault diagnostic task. The fine-tuned ConvNeXt is illustrated in Figure 2,
which shows how the model’s architecture is adapted.

To sum up, the proposed method, shown in Figure 3, comprises a preprocessing
module, a sample synthesis module based on CGDM with FrDivEn trade-off, a sample mix
module, and a fault diagnostic module based on fine-tuning pretrained ConvNeXt.
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Figure 2. The fine-tuned ConvNeXt structure.
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Figure 3. The proposed imbalanced fault diagnostic method for automotive machines.
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4. Experiments and Discussion

To explore the correspondence between the proposed FrDivEn and the gradient scale,
and to verify the effectiveness and generalization of the imbalanced fault diagnostic method,
we conducted automotive machine fault diagnosis experiments.

4.1. Experimental Setup

In our experiments, the algorithms were implemented using PyTorch 2.2.1 and run on
a platform equipped with an i9 12900 K CPU, 16 G × 2 of DDR5 RAM, and an NVIDIA
GeForce RTX3090 GPU for training the proposed method.

Referring to the original paper [36,37] and considering the fault diagnosis effect as well
as hardware constraints, the training settings were as follows. The AdamW optimizer was
the network optimizer, and the cross-entropy loss function was selected as the loss function.
The batch size was set to 16. The training process of the entire ConvNeXt model comprised
120 epochs, sequentially divided into two stages: 20 epochs for the training output layer
and 100 epochs for training other layers: (1) Output layer training: The learning rate started
at 0.01 and decayed to 0.001 after 10 epochs, continuing for another 10 epochs; (2) Other
layer training: The learning rate was fixed to 0.0001 for fine-tuning, running for 100 epochs.
To minimize the impact of stochasticity on the experiments, we carried out five identical
fault diagnostic experiments for each method with varying settings or modules, such as
imbalance ratios, sample synthesizers, and fault classifiers. The median of these five fault
diagnostic accuracies was selected as the experimental result. The detailed training process
setup is presented in Table 2.

Table 2. Training process setup.

Epoch Training Layer Learning Rate Optimizer Loss Function Batch Size
1–10

Output layer
0.01

AdamW Cross-Entropy 1611–20 0.001
21–120 Other layers 0.0001

4.2. FrDivEn Trade-Off

To find a trade-off between synthetic samples’ diversity and fidelity and achieve
high-quality sample synthesis, we introduced FrDivEn, a sensitive measure of time series
diversity. In exploring the correspondence between the proposed FrDivEn and the CGDM’s
appropriate gradient scale, we chose the CWRU bearing vibration data as the dataset. This
was consistent with the calculation of DivEn in Section 2.2., ensuring a fair comparison. We
proceeded sequentially with the three steps described in Section 3.2.

Step 1: Fractional order analysis. We calculated the FrDivEn results of the automotive
machine vibration time series at different imbalance ratios and α values. The previously
calculated DivEn and FrDivEn results at different fractional orders α are illustrated in
Table 3 and Figure 4. From the calculation results, the following can be surmised: (1) When
other conditions are constant, with the gradual increase in the imbalance ratio, FrDivEn
gradually decreases. Taking FrDivEn0.1 as an instance, this decreases from 15.5899 at an
imbalance ratio of 2:1 to 6.7208 at an imbalance ratio of 40:1, indicating that the diversity of
the time series diminishes as the imbalance problem worsens. (2) When other conditions are
constant, with the gradual increase in the fractional order α, FrDivEn drastically increases,
with FrDivEn0.4 at an imbalance ratio of 2:1 even exceeding 140. (3) The difference between
the FrDivEn results computed from two adjacent imbalance ratios is larger than that of
DivEn. For example, the FrDivEn0 difference between vibration signals at imbalance
ratios of 2:1 and 5:1 is 0.9158, which is substantially larger than the DivEn difference of
0.0061. This indicates that the sensitivity of the proposed FrDivEn to the vibration signal is
enhanced compared to DivEn.



Electronics 2024, 13, 3155 12 of 35

Table 3. DivEn and FrDivEn at different fractional orders α.

Entropy

Imbalance Ratio
2:1 5:1 10:1 20:1 40:1

FrDivEn−0.1 3.3467 3.2108 3.0741 2.9016 2.6875
FrDivEn0 7.2782 6.3517 5.6654 4.9789 4.2881

FrDivEn0.1 15.5899 12.3727 10.2736 8.4003 6.7208
FrDivEn0.2 32.9366 23.7600 18.3490 13.9453 10.3497
FrDivEn0.3 68.6517 44.9805 32.2624 22.7574 15.6337
FrDivEn0.4 140.9853 83.7834 55.6922 36.3769 23.0469

DivEn 0.9496 0.9413 0.9357 0.9287 0.9195

Figure 4. DivEn and FrDivEn at different fractional orders α. (a) DivEn and FrDivEn when α = −0.1,
0, 0.1, 0.2, 0.3, and 0.4; (b) DivEn and FrDivEn when α = −0.1, 0, and 0.1.

Step 2: Gradient scale analysis. After completing the analysis of FrDivEn, we em-
ployed the CGDM with differing gradient scales to select appropriate values. Specifically,
for each imbalance ratio, finding the appropriate gradient scale was divided into coarse
and fine sampling: (1) Coarse sampling of the gradient scale: we swept over the gradient
scale values [0.5, 1, 1.5, 2, 2.5, 3, 3.5], consistent with Dhariwal et al.’s [18] method when
performing sample synthesis via the CGDM on ImageNet 256 × 256 (which is the same
size as our selected sample size). (2) Fine sampling of the gradient scale: we denoted the
gradient scale value that achieved the highest diagnostic accuracy in coarse sampling as
sc, and we swept over the interval (sc − 0.5, sc + 0.5) at intervals of 0.1, taking the gradient
scale that achieved the highest diagnostic accuracy here as the appropriate gradient scale.
The imbalanced sample set was allocated one normal state and n fault states to classify, as
shown in Table 4. The appropriate gradient scales selected at different imbalance ratios are
shown in Table 5.

Step 3: FrDivEn–gradient scale curve fitting. To find the appropriate gradient scale
value from any FrDivEn, we mapped the FrDivEn results calculated at different imbalance
ratios in Step 1 to the appropriate gradient scale found in Step 2, plotting them as FrDivEn–
gradient scale points in the coordinate plot. These points were then fitted to obtain the
FrDivEn–gradient scale curve. Considering that Dhariwal et al. [18] did not set the gradient
scale s of the CGDM smaller than 0, we used an exponential fit for the FrDivEnα–gradient
scale at different fractional orders α. For comparison, we applied the same method to fit
the DivEn–gradient scale curve. The fitted entropy–gradient scale curves are illustrated in
Figure 5.
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Table 4. Imbalanced sample set allocation of automotive machine.

Class Normal Fault_1 Fault_2 . . . Fault_n
Imbalance Ratio

No. 0 1 2 . . . n

Number of training samples

360 180 180 . . . 180 2:1
360 72 72 . . . 72 5:1
360 36 36 . . . 36 10:1
360 18 18 . . . 18 20:1
360 9 9 . . . 9 40:1

Number of test samples 90 90 90 . . . 90 1:1

Table 5. The appropriate gradient scales.

Imbalance Ratio 2:1 5:1 10:1 20:1 40:1

Gradient scale s 2.9 2.1 1.7 1.4 1.2

Figure 5. The fitted entropy–gradient scale curves. (a) DivEn– and FrDivEn–gradient scale when
α = −0.1, 0, 0.1, 0.2, 0.3, and 0.4; (b) DivEn– and FrDivEn–gradient scale when α = −0.1, 0, and 0.1.

From the entropy–gradient scale curves, the following can be surmised: (1) As the
fractional order α gradually increases, the gradient scale at the initial point of the FrDivEnα–
gradient scale curves also increases. For instance, the gradient scale for FrDivEn0.1 is
consistently larger than the initial value of 0.61, while for FrDivEn0.4, it is always larger
than the initial value of 1.08. (2) As the fractional order α continues to increase, the
FrDivEnα–gradient scale curves tend to flatten. For FrDivEn0.1, when it rises from 0 to
10, the corresponding gradient scale rises from 0.61 to 1.66, a change of 1.05, whereas for
FrDivEn0.4, the gradient scale increases by merely 0.08 for the same range. (3) When the
entropy shifts from 0.7 to 0.9, the DivEn–gradient scale curve transitions rapidly from near-
horizontal to near-vertical. In contrast, the FrDivEn0–gradient scale curve, for example, has
a more stable slope of about 0.12. This indicates the instability in the gradient scale values
derived from DivEn compared to FrDivEn.

Regarding the sample synthesizer, Dhariwal et al. [18] set the initial gradient scale
value to 0.5 and incrementally increased it for sample synthesis. Combined with Figure 5,
this led us to conclude that some of the minimum gradient scale values were too large
to be desirable. For instance, the gradient scale corresponding to FrDivEn0.4 could not
be taken to a value below 1. Considering the gradient scale range and the smoothness of
the FrDivEn–gradient scale curves, we selected FrDivEn results corresponding to the two
curves with initial gradient scale values around 0.5, i.e., FrDivEn0 and FrDivEn0.1, as the
basis for the gradient scale value in sample synthesis.
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4.3. Applications of the Proposed Method

To test the validity and generalizability of the proposed imbalanced diagnostic method,
we applied this method to (1) the CWRU bearing dataset with a motor load of 3 HP and a
speed of 1730 rpm; (2) the University of Connecticut (UConn) gearbox dataset [38]; and (3) the
Wuhan University (WHU) rotor dataset [39]. This allowed us to explore the diagnostic effect
under a different load and speed of the same machine, as well as across different machines.
After the GADF transformation, the imbalanced sample set of each automotive machine was
allocated consistently with the process in Section 4.2, as shown in Table 4.

In addition to the CGDMs using FrDivEn0 and FrDivEn0.1, we included the Wasser-
stein generative adversarial network (WGAN) [40], the CGDM with a gradient scale
consistent with the default value of 1 in the source code, and the CGDM using DivEn
as the basis for the gradient scale value for comparison. Regarding the fault classifier, in
addition to utilizing the pretrained ConvNeXt model based on transfer learning, we also
incorporated the pretrained VGG model [41], GoogLeNet model [42], ResNet model [7],
and DenseNet model [43] for comparison. The application of the proposed diagnostic
method to the three different automotive machine datasets is demonstrated below.

4.3.1. Bearing (Motor Load: 3 HP; Speed: 1730 rpm)

We calculated the DivEn, FrDivEn0, and FrDivEn0.1 of the time series at each imbalance
ratio. The gradient scale s corresponding to each entropy was obtained by referencing the
entropy–gradient scale curves. The entropy–gradient scale s and the diagnostic accuracy
with ConvNeXt as the fault classifier are presented in Table 6. The imbalanced diagnostic
accuracy with various sample synthesizers and fault classifiers of the bearing dataset is
shown in Table 7.

The fault diagnostic results obtained using different sample synthesizers and fault
classifiers provided a few key insights: (1) When other conditions are constant, the CGDM
with a gradient scale corresponding to FrDivEn0 achieves the highest fault diagnostic
accuracy across all five imbalance ratios. For instance, with an imbalance ratio of 40:1
and the fine-tuned pretrained ConvNeXt as the fault classifier, the CGDM using FrDivEn0
synthesizes samples achieving a fault diagnostic accuracy of 91.22%, which is 7.32% higher
than the accuracy of samples synthesized using the WGAN. The samples synthesized from
the CGDM with a gradient scale corresponding to FrDivEn0 for each fault state are provided
in Figure 6. (2) The diagnostic accuracy of samples synthesized using the CGDM with a
gradient scale corresponding to DivEn is lower than those of FrDivEn0 and FrDivEn0.1.
With an imbalance ratio of 40:1 and ConvNeXt as the fault classifier, the fault diagnostic
accuracy of samples synthesized from the CGDM using DivEn is 87.67%, which is 3.89%
lower than the accuracy of samples synthesized using FrDivEn0, and even lower than the
90.22% accuracy of the default CGDM where the gradient scale is fixed to 1. (3) ConvNeXt
consistently maintains a high accuracy advantage over other fine-tuned pretrained models
under the same conditions. With an imbalance ratio of 40:1 and the sample synthesizer
as the CGDM using FrDivEn0, the fault diagnostic accuracy using ConvNeXt is 91.22%,
which is 10.20% higher than the accuracy when using VGG and 3.40% higher than that
with ResNet.

Table 6. The entropy–gradient scale s and the diagnostic accuracy of bearing data.

Entropy–s

Imbalance Ratio
2:1 5:1 10:1 20:1 40:1

FrDivEn0, s 7.3113, 2.84 6.3955, 2.17 5.7001, 1.76 5.0058, 1.44 4.3094, 1.17
Accuracy 99.44% 98.56% 97.67% 95.56% 91.22%

FrDivEn0.1, s 15.6910, 2.93 12.4886, 2.12 10.3552, 1.72 8.4554, 1.42 6.7594, 1.20
Accuracy 99.22% 98.33% 97.00% 95.11% 90.89%
DivEn, s 0.9539, 3.39 0.9478, 2.83 0.9415, 2.35 0.9337, 1.87 0.9241, 1.41
Accuracy 99.11% 98.11% 96.11% 94.44% 87.67%
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Table 7. Diagnostic accuracy with imbalanced bearing sample set (motor load: 3 HP; speed: 1730 rpm).

Imbalance Ratio
Classifier

Synthesizer
N/A 1 WGAN

CGDM
Default 2 DivEn 3 FrDivEn0

4 FrDivEn0.1
5

2:1

VGG 93.44% 96.44% 96.44% 96.56% 97.00% 96.67%
GoogLeNet 95.44% 96.67% 97.11% 97.44% 97.67% 97.56%

ResNet 96.00% 97.00% 97.44% 97.89% 98.00% 98.00%
DenseNet 96.56% 97.44% 97.67% 98.11% 98.22% 98.11%
ConvNeXt 97.89% 98.56% 98.67% 99.11% 99.44% 99.22%

5:1

VGG 90.56% 92.00% 93.56% 94.78% 96.78% 95.22%
GoogLeNet 91.67% 94.33% 95.33% 96.33% 97.22% 97.11%

ResNet 92.22% 94.78% 95.56% 96.67% 97.78% 97.22%
DenseNet 92.89% 95.00% 96.44% 97.67% 97.78% 97.78%
ConvNeXt 94.67% 97.33% 97.56% 98.11% 98.56% 98.33%

10:1

VGG 86.67% 89.89% 91.44% 91.89% 93.67% 93.00%
GoogLeNet 88.89% 91.67% 92.78% 93.89% 94.78% 94.22%

ResNet 89.22% 92.44% 93.78% 94.56% 95.00% 94.67%
DenseNet 89.56% 92.56% 94.44% 94.56% 95.33% 95.11%
ConvNeXt 92.11% 94.00% 95.78% 96.11% 97.67% 97.00%

20:1

VGG 81.33% 85.44% 88.33% 90.11% 91.11% 90.78%
GoogLeNet 82.78% 88.56% 91.33% 92.00% 92.44% 92.33%

ResNet 86.00% 89.00% 91.44% 92.44% 93.33% 92.89%
DenseNet 86.56% 89.78% 91.67% 92.44% 93.56% 93.56%
ConvNeXt 87.56% 92.11% 93.33% 94.44% 95.56% 95.11%

40:1

VGG 77.33% 79.33% 81.44% 80.67% 82.78% 82.44%
GoogLeNet 77.67% 80.33% 84.00% 83.67% 86.78% 85.11%

ResNet 81.11% 83.67% 87.00% 86.22% 88.22% 87.78%
DenseNet 82.78% 84.56% 88.00% 86.56% 89.89% 88.44%
ConvNeXt 83.44% 85.00% 90.22% 87.67% 91.22% 90.89%

1 Without synthesizer; 2 default CGDM with gradient scale fixed to 1; 3 CGDM with gradient scale corresponding
to DivEn; 4 CGDM with gradient scale corresponding to FrDivEn0; 5 CGDM with gradient scale corresponding
to FrDivEn0.1.

Figure 6. Cont.
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Figure 6. Real (left) and synthetic (right) samples synthesized from CGDM with a gradient scale
corresponding to FrDivEn0. (a) 7_BA; (b) 7_IR; (c) 7_OR; (d) 14_BA; (e) 14_IR; (f) 14_OR; (g) 21_BA;
(h) 21_IR; (i) 21_OR.

T-distributed stochastic neighbor embedding (t-SNE) [44] was applied for the visualiza-
tion and interpretation of latent features captured by the ConvNeXt models. T-SNE helped
in visualizing high-dimensional data. The analysis compared the fine-tuned ConvNeXt
model’s performance without a sample synthesizer and with different sample synthesizers
at a moderate imbalance ratio of 10:1. Figure 7 shows the visualization of features. Com-
pared to other sample synthesizers, the CGDM with a gradient scale corresponding to
FrDivEn0 results in better clustering of scatter points for each state. Taking the “7_OR” and
“21_OR” states as examples, the CGDM using FrDivEn0 enables ConvNeXt to cluster them
separately without overlapping, unlike other sample synthesizers.

Figure 7. Cont.
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Figure 7. Feature visualization through t-SNE at bearing sample imbalance ratio of 10:1. (a) Without
synthesizer; (b) WGAN; (c) default CGDM with gradient scale fixed to 1; (d) CGDM with gradient
scale corresponding to DivEn; (e) CGDM with gradient scale corresponding to FrDivEn0; (f) CGDM
with gradient scale corresponding to FrDivEn0.1.

A confusion matrix was employed to categorize the captured features into various
labels, as shown in Figure 8. The diagonal elements from top left to bottom right indicate
the number of correctly categorized samples in each class. The off-diagonal elements
indicate the number of incorrectly categorized samples as other classes. In the test set, each
bearing state contains 90 samples. The closer the value on the diagonal of a state class is
to 90, the more accurately that state class is diagnosed. The CGDM with a gradient scale
corresponding to FrDivEn0 yields the greatest predictive accuracy.
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Figure 8. Confusion matrices at bearing sample imbalance ratio of 10:1. (a) Without synthesizer;
(b) WGAN; (c) default CGDM with gradient scale fixed to 1; (d) CGDM with gradient scale cor-
responding to DivEn; (e) CGDM with gradient scale corresponding to FrDivEn0; (f) CGDM with
gradient scale corresponding to FrDivEn0.1.



Electronics 2024, 13, 3155 19 of 35

The receiver operating characteristic (ROC) curves are shown in Figure 9. In the ROC
curves, “CGDM-Default” means “default CGDM with gradient scale fixed to 1”, “CGDM-
DivEn” means “CGDM with gradient scale corresponding to DivEn”, “CGDM-FrDivEn0”
means “CGDM with gradient scale corresponding to FrDivEn0”, “CGDM-FrDivEn0.1”
means “CGDM with gradient scale corresponding to FrDivEn0.1”. Compared to other
models, the ROC curve of the CGDM with a gradient scale corresponding to FrDivEn0 is
closest to the upper left corner, with an area under the curve (AUC) of 0.9962, indicating its
excellent performance. The evaluation metrics are shown in Table 8. The CGDM with a
gradient scale corresponding to FrDivEn0 achieves the highest precision of 0.9768, recall of
0.9767, and F1-score of 0.9767, demonstrating its excellent performance. The errors made by
the proposed method and other methods are shown in Table 9. The CGDM with a gradient
scale corresponding to FrDivEn0 achieves the lowest mean absolute error (MAE) of 0.0656
and root mean squared error (RMSE) of 0.4933. After combining the confusion matrix and
comparing other methods, we believe that the misdiagnosis of some “21_BA” samples as
“14_IR” is the main reason for the limitations of the proposed method. In addition, other
failures such as pitting and multi-failure fusion, which are not considered in this bearing
dataset, may also contribute to the limitations of the proposed method. The validity of the
diagnostic method was tested by utilizing a dataset different from the previous bearing
working conditions.

Figure 9. ROC curves at bearing sample imbalance ratio of 10:1.

Table 8. Evaluation metrics at bearing sample imbalance ratio of 10:1.

Evaluation Metric N/A 1 WGAN
CGDM

Default 2 DivEn 3 FrDivEn0
4 FrDivEn0.1

5

Macro-Precision 0.9245 0.9418 0.9584 0.9617 0.9768 0.9703
Macro-Recall 0.9211 0.9400 0.9578 0.9611 0.9767 0.9700

Macro-F1 0.9211 0.9401 0.9578 0.9610 0.9767 0.9699
1 Without synthesizer; 2 default CGDM with gradient scale fixed to 1; 3 CGDM with gradient scale corresponding
to DivEn; 4 CGDM with gradient scale corresponding to FrDivEn0; 5 CGDM with gradient scale corresponding
to FrDivEn0.1.
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Table 9. Errors at bearing sample imbalance ratio of 10:1.

Evaluation Metric N/A WGAN
CGDM

Default DivEn FrDivEn0 FrDivEn0.1

MAE 0.2767 0.1856 0.1589 0.1378 0.0656 0.1289
RMSE 1.1289 0.8762 0.8320 0.7760 0.4933 0.7902

4.3.2. Gearbox

The University of Connecticut (UConn) gearbox dataset includes nine different gear
states: normal state (N), missing tooth (Miss), root crack (Crack), spalling (Spall), and five levels
of chipping tip severity (Chip1, Chip2, Chip3, Chip4, and Chip5) [38]. The accelerometers,
positioned on the input end of the gearbox housing, capture the gear vibration signals.

The entropy–gradient scale s and the diagnostic accuracy with ConvNeXt as the fault
classifier are presented in Table 10. At an imbalance ratio of 40:1, given that the gradient
scales corresponding to FrDivEn0 and FrDivEn0.1 are both 1.39 to two decimal places, we
take the CGDM with a gradient scale of 1.39 as the sample synthesizer’s fault diagnostic
result for both FrDivEn0 and FrDivEn0.1. The diagnostic accuracy with different sample
synthesizers and fault classifiers of the gearbox dataset is shown in Table 11.

The diagnostic results obtained using different sample synthesizers and fault classifiers
provide a few key insights: (1) The similar fault diagnostic accuracies achieved by the
CGDMs using FrDivEn0 and FrDivEn0.1 are due to the minimal differences in the gradient
scales. When the imbalance ratio is 40:1, the gradient scales for FrDivEn0 and FrDivEn0.1
are identical, even to two decimal places, at 1.39. At this point, when using the fine-
tuned pretrained ConvNeXt as the fault classifier and the CGDM with a gradient scale
corresponding to FrDivEn as the sample synthesizer, the fault diagnostic accuracy reaches
87.90%, which is 11.59% higher than that of WGAN and 9.53% higher than the default
CGDM. (2) At several imbalance ratios, the CGDM with gradient scales corresponding to
FrDivEn0 and FrDivEn0.1 achieves high fault diagnostic accuracy. For instance, with an
imbalance ratio of 20:1 and ConvNeXt as the fault classifier, the CGDM using FrDivEn0
achieves a fault diagnostic accuracy of 98.89%. This is 7.37% higher than the WGAN, 4.71%
higher than the default CGDM, and 1.66% higher than the CGDM using DivEn. When
comparing FrDivEn0 and FrDivEn0.1, the CGDM with a gradient scale corresponding to
FrDivEn0 achieves a slightly higher diagnostic accuracy. (3) As the imbalance problem
worsens, the advantages of ConvNeXt over other CNN models become evident. With an
imbalance ratio of 40:1 and the CGDM with a gradient scale corresponding to FrDivEn
as the sample synthesizer, ConvNeXt achieves a diagnostic accuracy of 87.90%, which is
19.06% higher than VGG and 7.72% higher than ResNet.

Figure 10 illustrates a t-SNE visualization of the features. Compared to other sample
synthesizers, the scatter points for each state are better clustered when the CGDM with
a gradient scale corresponding to FrDivEn0 is used as a synthesizer. For example, the
CGDM using FrDivEn0 enables ConvNeXt to cluster the scatter points for the “Chip1” state
without overlap, unlike the other sample synthesizers.

Table 10. The entropy–gradient scale s and the diagnostic accuracy of gearbox data.

Entropy–s

Imbalance Ratio
2:1 5:1 10:1 20:1 40:1

FrDivEn0, s 7.9003, 3.39 6.9777, 2.58 6.2801, 2.09 5.5864, 1.71 4.8914, 1.39
Accuracy 100% 99.88% 99.63% 98.89% 87.90%

FrDivEn0.1, s 18.1116, 3.73 14.5613, 2.61 12.2008, 2.06 10.1035, 1.67 8.2299, 1.39
Accuracy 100% 99.88% 99.51% 98.52% 87.90%
DivEn, s 0.9758, 6.47 0.9644, 4.63 0.9539, 3.40 0.9418, 2.37 0.9267, 1.52
Accuracy 100% 99.75% 99.26% 97.28% 86.05%
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Table 11. Diagnostic accuracy with imbalanced gearbox sample set.

Imbalance Ratio
Classifier

Synthesizer
N/A 1 WGAN

CGDM
Default 2 DivEn 3 FrDivEn0

4 FrDivEn0.1
5

2:1

VGG 98.02% 98.15% 99.01% 99.26% 99.38% 99.38%
GoogLeNet 99.63% 99.88% 99.88% 99.88% 100% 99.88%

ResNet 99.75% 99.88% 99.88% 99.88% 100% 100%
DenseNet 99.88% 99.88% 99.88% 100% 100% 100%
ConvNeXt 99.88% 99.88% 100% 100% 100% 100%

5:1

VGG 92.96% 95.93% 98.52% 98.89% 99.51% 99.01%
GoogLeNet 96.67% 98.27% 99.01% 99.51% 99.63% 99.51%

ResNet 95.56% 98.77% 99.26% 99.75% 99.88% 99.88%
DenseNet 97.65% 99.14% 99.51% 99.75% 99.88% 99.88%
ConvNeXt 98.27% 99.14% 99.63% 99.75% 99.88% 99.88%

10:1

VGG 82.35% 88.15% 92.72% 94.94% 96.30% 96.05%
GoogLeNet 88.27% 94.69% 96.54% 97.28% 98.52% 98.27%

ResNet 89.26% 95.06% 97.78% 98.15% 99.14% 98.89%
DenseNet 91.98% 96.79% 98.15% 98.89% 99.14% 99.14%
ConvNeXt 94.32% 97.78% 99.01% 99.26% 99.63% 99.51%

20:1

VGG 68.40% 78.77% 85.68% 88.89% 92.22% 91.98%
GoogLeNet 77.16% 85.68% 89.26% 92.22% 95.31% 95.06%

ResNet 79.01% 87.53% 89.75% 93.33% 95.68% 95.56%
DenseNet 82.59% 91.36% 93.58% 95.19% 98.02% 97.78%
ConvNeXt 84.44% 92.10% 94.44% 97.28% 98.89% 98.52%

40:1

VGG 55.19% 60.62% 65.56% 68.89% 73.83%
GoogLeNet 59.38% 73.09% 75.06% 78.52% 81.23%

ResNet 63.21% 73.95% 77.65% 78.64% 81.60%
DenseNet 64.20% 78.27% 79.38% 84.81% 86.42%
ConvNeXt 68.15% 78.77% 80.25% 86.05% 87.90%

1 Without synthesizer; 2 default CGDM with gradient scale fixed to 1; 3 CGDM with gradient scale corresponding
to DivEn; 4 CGDM with gradient scale corresponding to FrDivEn0; 5 CGDM with gradient scale corresponding
to FrDivEn0.1.

Figure 10. Cont.
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Figure 10. Feature visualization through t-SNE at gearbox sample imbalance ratio of 10:1. (a) Without
synthesizer; (b) WGAN; (c) default CGDM with gradient scale fixed to 1; (d) CGDM with gradient
scale corresponding to DivEn; (e) CGDM with gradient scale corresponding to FrDivEn0; (f) CGDM
with gradient scale corresponding to FrDivEn0.1.

The confusion matrix was employed to further evaluate the sample synthesizers, as
shown in Figure 11. In the test set, each gearbox state contains 90 samples. The closer
the value on the diagonal of a state class is to 90, the more accurately that state class is
diagnosed. The CGDM with a gradient scale corresponding to FrDivEn0 achieves the
highest predictive accuracy, while the CGDM with a gradient scale corresponding to
FrDivEn0.1 is slightly less accurate.
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Figure 11. Confusion matrices at gearbox sample imbalance ratio of 10:1. (a) Without synthesizer;
(b) WGAN; (c) default CGDM with gradient scale fixed to 1; (d) CGDM with gradient scale cor-
responding to DivEn; (e) CGDM with gradient scale corresponding to FrDivEn0; (f) CGDM with
gradient scale corresponding to FrDivEn0.1.
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The receiver operating characteristic (ROC) curves are shown in Figure 12. In different
models, the CGDMs using gradient scales corresponding to FrDivEn0 and FrDivEn0.1
achieve excellent performance levels, with their AUCs reaching 0.9998 and 1.0000, respec-
tively. The evaluation metrics are shown in Table 12. The F1-score exceeds 0.99 when the
CGDMs are used as the sample synthesizers, with the CGDMs using gradient scales corre-
sponding to FrDivEn0 and FrDivEn0.1 achieving F1-scores of 0.9963 and 0.9951, respectively.
The confusion matrices and evaluation metrics indicate that both CGDMs using FrDivEn0
and FrDivEn0.1 provide high-quality samples for the ConvNeXt model. The errors made
by the proposed method and other methods are shown in Table 13. The CGDM with a
gradient scale corresponding to FrDivEn0.1 achieves the lowest MAE of 0.0111 and RMSE
of 0.1685. After combining the confusion matrix and comparing other methods, we believe
that the limitation is mainly due to some of the samples being misdiagnosed as the “Chip
2” state. In addition, other faults that may occur in gearboxes but are not considered in this
dataset, such as shaft bending and multi-fault fusion, may also contribute to the limitations
of the proposed method. By using a different automotive machine dataset from the bearing
in the previous analysis, the validity and generalizability of the imbalanced fault diagnostic
method in automotive machines were tested.

Figure 12. ROC curves at gearbox sample imbalance ratio of 10:1.

Table 12. Evaluation metrics at gearbox sample imbalance ratio of 10:1.

Evaluation Metric N/A 1 WGAN
CGDM

Default 2 DivEn 3 FrDivEn0
4 FrDivEn0.1

5

Macro-Precision 0.9438 0.9780 0.9902 0.9927 0.9963 0.9951
Macro-Recall 0.9432 0.9778 0.9901 0.9926 0.9963 0.9951

Macro-F1 0.9427 0.9776 0.9901 0.9926 0.9963 0.9950
1 Without synthesizer; 2 default CGDM with gradient scale fixed to 1; 3 CGDM with gradient scale corresponding
to DivEn; 4 CGDM with gradient scale corresponding to FrDivEn0; 5 CGDM with gradient scale corresponding to
FrDivEn0.1.

Table 13. Errors at gearbox sample imbalance ratio of 10:1.

Evaluation Metric N/A WGAN
CGDM

Default DivEn FrDivEn0 FrDivEn0.1

MAE 0.1358 0.1037 0.0284 0.0210 0.0123 0.0111
RMSE 0.6648 0.7569 0.3201 0.3002 0.2277 0.1685
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4.3.3. Rotor

The Wuhan University (WHU) rotor dataset was collected from an experimental
automotive machinery system. Vibration signals were collected for four rotor states: normal
(N), unbalanced (Unbal), misalignment (Misalign), and contact rubbing (Rub). The eddy
current sensors, mounted on the sensor bracket, collected the vibration signals. The rotor
vibration signals were denoised based on wavelet thresholding [39], resulting in samples
with distinct characteristics and significant differences between states, thus reducing the
difficulty of fault diagnosis. We used an image size of 32 × 32, the same as the CIFAR-10
small-sized image sample set, for the input sample size of both the sample synthesizer and
fault classifier. This approach was aimed at increasing the variability by using different
models, and testing the proposed method’s effectiveness on small-sized samples.

The entropy–gradient scale s and the diagnostic accuracy with ConvNeXt as the fault
classifier are presented in Table 14. The imbalanced diagnostic accuracy with various
sample synthesizers and fault classifiers is shown in Table 15.

The entropy–gradient scale calculations and the fault diagnostic results provide a
couple of key insights: (1) The DivEn, FrDivEn0, and FrDivEn0.1 of the denoised rotor
vibration signals are reduced compared to the previous bearing and gearbox datasets. For
example, the FrDivEn0 results of bearing and gearbox data at an imbalance ratio of 2:1
are 7.3113 and 7.9003, respectively, while the FrDivEn0 of denoised rotor data is 3.6170.
A decrease in the gradient scale of the CGDM accompanies this decrease in DivEn and
FrDivEn. It should be noted that the gradient scale loses its ability to tune according to
DivEn at five different imbalance ratios. Although DivEn still varies with the imbalance
ratios, the gradient scale remains at 0. We believe this is due to the DivEn–gradient scale
curve approximating the straight-line y = 0 when DivEn is less than 0.7 (as shown in
Figure 5). The gradient scale being constantly 0 results in the CGDM using DivEn having
the least diagnostic accuracy in the CGDMs. At an imbalance ratio of 40:1 and with the fine-
tuned pretrained ConvNeXt as the fault classifier, the CGDM using DivEn as the sample
synthesizer achieves a diagnostic accuracy of 97.22%, which is 1.69% lower than the CGDM
using FrDivEn0 and slightly lower than both the default CGDM and the CGDM using
FrDivEn0.1. This phenomenon reflects the limitations of setting the gradient scale according
to DivEn, which may not be applicable to unfamiliar machines. (2) With all other conditions
constant, ConvNeXt achieves the highest diagnostic accuracy compared to other CNN
models on a sample set of size 32 × 32. This is consistent with its excellent performance in
the bearing and gearbox datasets. With an imbalance ratio of 40:1 and taking the CGDM
using FrDivEn0 as the sample synthesizer, ConvNeXt achieves a diagnostic accuracy of
97.50%, which is 12.50% higher than ResNet and 8.86% higher than DenseNet. Notably, the
fine-tuned pretrained VGG is second only to ConvNeXt in diagnostic accuracy. We believe
this is due to the stacked small-sized 3 × 3 convolutional kernels used in VGG, which make
it suitable for small-sized sample classification tasks like those with the size of 32 × 32.

Table 14. The entropy–gradient scale s and the diagnostic accuracy of rotor data.

Entropy–s

Imbalance Ratio
2:1 5:1 10:1 20:1 40:1

FrDivEn0, s 3.6170, 0.95 3.0164, 0.80 2.6692, 0.72 2.0982, 0.61 1.5783, 0.52
Accuracy 100% 100% 100% 99.72% 98.89%

FrDivEn0.1, s 6.7020, 1.19 5.2597, 1.03 4.4257, 0.95 3.3008, 0.85 2.3345, 0.77
Accuracy 100% 100% 99.72% 99.44% 97.50%
DivEn, s 0.4321, 0.00 0.4046, 0.00 0.3948, 0.00 0.3458, 0.00 0.2936, 0.00
Accuracy 100% 100% 99.44% 98.61% 97.22%



Electronics 2024, 13, 3155 26 of 35

Table 15. Diagnostic accuracy with imbalanced rotor sample set.

Imbalance Ratio
Classifier

Synthesizer
N/A 1 WGAN

CGDM
Default 2 DivEn 3 FrDivEn0

4 FrDivEn0.1
5

2:1

VGG 98.61% 98.89% 99.44% 99.17% 99.44% 99.44%
GoogLeNet 95.28% 96.67% 98.06% 96.67% 98.06% 98.06%

ResNet 96.67% 97.50% 98.33% 97.78 98.33% 98.06%
DenseNet 97.78% 98.33% 98.61% 98.33% 98.89% 98.61%
ConvNeXt 100% 100% 100% 100% 100% 100%

5:1

VGG 97.78% 98.61% 99.17% 98.61% 99.17% 98.89%
GoogLeNet 91.94% 95.00% 96.67% 95.83% 96.67% 96.39%

ResNet 93.06% 95.83% 96.67% 96.39% 97.50% 96.67%
DenseNet 95.00% 96.11% 98.06% 96.94% 99.17% 97.78%
ConvNeXt 99.72% 99.72% 100% 100% 100% 100%

10:1

VGG 97.22% 97.50% 98.06% 98.06% 98.61% 98.33%
GoogLeNet 86.67% 91.94% 94.17% 92.78% 95.28% 94.44%

ResNet 90.56% 93.89% 95.28% 94.17% 95.83% 95.56%
DenseNet 91.94% 94.17% 96.11% 95.00% 96.67% 96.39%
ConvNeXt 99.44% 99.44% 99.72% 99.44% 100% 99.72%

20:1

VGG 95.83% 97.22% 97.50% 97.22% 98.06% 97.78%
GoogLeNet 81.11% 87.50% 90.28% 88.61% 93.33% 90.56%

ResNet 84.17% 88.89% 91.67% 90.28% 93.61% 91.67%
DenseNet 86.67% 91.94% 93.33% 92.78% 94.44% 93.61%
ConvNeXt 97.78% 98.33% 99.17% 98.61% 99.72% 99.44%

40:1

VGG 86.94% 93.06% 93.61% 93.33% 96.11% 95.56%
GoogLeNet 75.83% 76.39% 81.11% 80.56% 86.11% 84.17%

ResNet 77.78% 78.06% 84.44% 83.06% 87.50% 86.67%
DenseNet 81.67% 79.17% 84.72% 83.61% 88.89% 87.78%
ConvNeXt 89.72% 95.56% 97.50% 97.22% 98.89% 97.50%

1 Without synthesizer; 2 default CGDM with gradient scale fixed to 1; 3 CGDM with gradient scale corresponding
to DivEn; 4 CGDM with gradient scale corresponding to FrDivEn0; 5 CGDM with gradient scale corresponding
to FrDivEn0.1.

The visualization through t-SNE is shown in Figure 13. Compared to other sample
synthesizers, the scatter points for each state are better clustered when the CGDM using
FrDivEn0 is used as a synthesizer. Taking the “contact rubbing” and “unbalanced” states
as examples, the CGDM using FrDivEn0 enables ConvNeXt to cluster them separately
without overlapping, unlike other sample synthesizers.

Figure 13. Cont.
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Figure 13. Feature visualization through t-SNE at rotor sample imbalance ratio of 10:1. (a) Without
synthesizer; (b) WGAN; (c) default CGDM with gradient scale fixed to 1; (d) CGDM with gradient
scale corresponding to DivEn; (e) CGDM with gradient scale corresponding to FrDivEn0; (f) CGDM
with gradient scale corresponding to FrDivEn0.1.

The confusion matrix was employed to further evaluate the sample synthesizers, as
shown in Figure 14. In the test set, each rotor state contains 90 samples. The closer the value
on the diagonal of a state class is to 90, the more accurately that state class is diagnosed.

The evaluation metrics are presented in Table 16. The CGDM with a gradient scale
corresponding to FrDivEn0 achieves a predictive accuracy of 100% and an F1-score of 1,
demonstrating its excellent performance in sample synthesis tasks. The errors made by the
proposed method and other methods are shown in Table 17. The CGDM with a gradient
scale corresponding to FrDivEn0 achieves the lowest MAE of 0 and RMSE of 0. After
combining the confusion matrix and comparing other methods, we believe that diagnosing
the “rub” state is the most challenging, which may limit the effectiveness of diagnostic
methods. In addition, other faults that may occur in the rotor, such as bar breaking and
multi-fault fusion, which are not considered in this dataset, may also affect the limitations
of the proposed method.
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Figure 14. Confusion matrices at rotor sample imbalance ratio of 10:1. (a) Without synthesizer;
(b) WGAN; (c) default CGDM with gradient scale fixed to 1; (d) CGDM with gradient scale cor-
responding to DivEn; (e) CGDM with gradient scale corresponding to FrDivEn0; (f) CGDM with
gradient scale corresponding to FrDivEn0.1.
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Table 16. Evaluation metrics at rotor sample imbalance ratio of 10:1.

Evaluation Metric N/A 1 WGAN
CGDM

Default 2 DivEn 3 FrDivEn0
4 FrDivEn0.1

5

Macro-Precision 0.9946 0.9946 0.9973 0.9946 1.0000 0.9973
Macro-Recall 0.9944 0.9944 0.9972 0.9944 1.0000 0.9972

Macro-F1 0.9944 0.9944 0.9972 0.9944 1.0000 0.9972
1 Without synthesizer; 2 default CGDM with gradient scale fixed to 1; 3 CGDM with gradient scale corresponding
to DivEn; 4 CGDM with gradient scale corresponding to FrDivEn0; 5 CGDM with gradient scale corresponding to
FrDivEn0.1.

Table 17. Errors at rotor sample imbalance ratio of 10:1.

Evaluation Metric N/A WGAN
CGDM

Default DivEn FrDivEn0 FrDivEn0.1

MAE 0.0056 0.0056 0.0028 0.0056 0.0000 0.0028
RMSE 0.0745 0.0745 0.0527 0.0745 0.0000 0.0527

At the moderate imbalance ratio of 10:1 and with ConvNeXt as the fault classifier, the
accuracy of the rotor fault diagnosis without the help of the sample synthesizer reaches
99.44%, which leads to a subtle difference in the diagnostic accuracy results after using
different sample synthesizers to assist in the fault diagnosis. To further investigate the
impacts of various synthesizers on fault diagnosis, we charted a line graph of the diagnostic
accuracies over training epochs for the different synthesizers with a moderate imbalance
ratio of 10:1, as shown in Figure 15.

Figure 15. Diagnostic accuracy over training epochs for different synthesizers.

With a moderate imbalance ratio of 10:1 and ConvNeXt as the fault classifier, the rotor
fault diagnostic accuracy without a sample synthesizer’s aid reaches 99.44%. This leaves
little room for the different sample synthesizers to add boosts. The pretrained ConvNeXt’s
output layer is trained during epochs 1–20, with the learning rate decaying to 0.001 between
the 11th and 20th epochs, resulting in decreased oscillations in the accuracy lines compared
to the first 10 epochs. The 21st epoch marks the beginning of training for ConvNeXt’s other
layers. After 55 epochs, the accuracy lines for each CGDM stabilize, hovering around 98%
or 99%. Throughout the entire training process, the accuracy lines of CGDMs are smoother
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compared to the synthesizer-less models and the WGAN due to the higher-quality samples
provided by the CGDMs. Notably, using the CGDM with FrDivEn0 achieved the maximum
diagnostic accuracy of 100% for the first time at the 69th epoch. These results reflect the
advancement provided by the proposed FrDivEn trade-off for imbalanced fault diagnosis.

5. Conclusions

In the paper, to solve the problem of diversity entropy (DivEn) being insensitive to
the diversity of time series, we combined DivEn with fractional order calculus to propose
fractional diversity entropy (FrDivEn). Furthermore, we introduced FrDivEn to trade
off the classifier-guided diffusion model’s (CGDM) sample synthesis and presented an
imbalanced diagnostic method for automotive machines. Specifically, this method first
transforms the time series vibration signal into Gramian angular field (GAF) image samples
using GAF transformation. Next, it synthesizes high-quality samples using the CGDM with
a gradient scale corresponding to FrDivEn. These synthetic samples are then combined
with imbalanced real samples to create a mixed sample set, which is finally input into the
fine-tuned pretrained ConvNeXt for fault diagnosis.

The FrDivEn trade-off analysis, including the fractional order of FrDivEn and the
gradient scale of the CGDM, was performed using the CWRU bearing dataset with a motor
load of 0 and a speed of 1797 rpm. It should be noted that reliable diagnostic signals
are a prerequisite for high-precision fault diagnosis. Suitable sensor selection and correct
installation methods should not be overlooked, as they create the environment for obtaining
reliable and high-quality diagnostic signals. In our study, we used three datasets to validate
the effectiveness and generalizability of the proposed method: the CWRU bearing dataset
and UConn gearbox dataset, which were not denoised, and the WHU rotor dataset, which
was denoised. The results demonstrated the effectiveness of our method when using
diagnostic signals with different processing methods. The main innovations and results
were as follows:

(1) For fault diagnosis in automotive machines with imbalanced sample sets, it is crucial
to balance the diversity and fidelity of synthetic samples. We propose a novel signal
measure called fractional diversity entropy (FrDivEn) to address this need. FrDivEn
reflects vibration signal diversity at varying imbalance ratios and adjusts the gener-
ative model’s emphases on diversity and fidelity during sample synthesis. Unlike
the traditional DivEn, which is insensitive to signal diversity at different imbalance
ratios, FrDivEn sensitively adapts to these ratios, providing a more effective reflection
of signal diversity. In the CWRU bearing dataset, the differences in FrDivEn between
vibration signals are significantly greater than those in DivEn. For example, the
FrDivEn0 difference between vibration data at imbalance ratios of 2:1 and 5:1 is 0.9158,
which is substantially larger than the DivEn difference of 0.0061.

(2) To select the appropriate gradient scale of the CGDM and achieve high-quality sample
synthesis, we propose using FrDivEn to determine the ideal gradient scale. Utiliz-
ing the CWRU bearing dataset, we fit DivEn– and FrDivEn–gradient scale curves
with various fractional orders. According to the fitting results, the FrDivEn0– and
FrDivEn0.1–gradient scale curves exhibited a more suitable range of gradient scales
and smoothness compared to the DivEn–gradient scale curve.

(3) To enhance diagnostic accuracy in automotive machines, we propose a fault diagnostic
method utilizing the CGDM with a gradient scale determined by FrDivEn as the
sample synthesizer, and a fine-tuned pretrained ConvNeXt as the fault classifier. In
an experiment using the CWRU bearing dataset with a motor load of 3 HP, a speed of
1730 rpm, and an imbalance ratio of 40:1, the diagnostic accuracies achieved using
the CGDM with gradient scales corresponding to FrDivEn0 and FrDivEn0.1 were
91.22% and 90.89%, respectively. These results represent improvements of 7.32% and
6.93% over the WGAN, and 4.05% and 3.67% over the CGDM with a gradient scale
corresponding to DivEn. For the gearbox and rotor datasets, the diagnostic accuracies
using the CGDM with FrDivEn at an imbalance ratio of 40:1 were 87.90% and 98.89%,
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respectively, marking increases of 11.59% and 3.48% over the WGAN. Across these
three imbalanced fault diagnosis experiments for various automotive machines, the
CGDM with a gradient scale determined by FrDivEn consistently achieved a superior
diagnostic accuracy compared to other sample synthesizers, with the CGDM using
FrDivEn0 performing slightly better than FrDivEn0.1.

(4) Across the three imbalanced fault diagnosis experiments for various automotive
machines, the fine-tuned pretrained ConvNeXt consistently achieved the highest
diagnostic accuracy compared to other fine-tuned pretrained CNN models. This was
evident in both bearing and gearbox fault diagnoses with a sample size of 256 × 256,
as well as rotor fault diagnosis with a sample size of 32 × 32. For instance, in the
experiment using the CWRU bearing dataset with an imbalance ratio of 40:1 and
the CGDM using FrDivEn0 as the sample synthesizer, ConvNeXt achieved a fault
diagnostic accuracy of 91.22%. This was 10.20% higher than the accuracy achieved
using the pretrained VGG and 3.40% higher than that of the pretrained ResNet.

In summary, this study was focused on synthesizing high-quality samples by using
the FrDivEn trade-off to achieve excellent imbalanced fault diagnostic accuracy. In the
future, reducing the computational complexity and considering multi-fault fusion in the
imbalanced fault diagnostic method could be the subjects of further research.
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Appendix A

Case Western Reserve University (CWRU) bearing dataset: the bearing type chosen by
CWRU Bearing Data Center is a deep groove ball bearing with the following dimensional
specifications: an inside diameter of 0.9843 inches (25.0012 mm), an outside diameter
of 2.0472 inches (51.9989 mm), and a ball diameter of 0.3126 inches (7.9400 mm). The
accelerometers, situated on the drive end of the motor housing, were used to collect the
vibration signals. To verify the applicability of the proposed methodology to different
fault locations and degrees, data under the normal and fault states with varying locations
and diameters are selected in this study. These include normal baseline (N), 7 mils ball
fault (7_BA), 7 mils inner race fault (7_IR), 7 mils outer race fault (7_OR), 14 mils ball fault
(14_BA), 14 mils inner race fault (14_IR), 14 mils outer race fault (14_OR), 21 mils ball fault
(21_BA), 21 mils inner race fault (21_IR), and 21 mils outer race fault (21_OR). The CWRU
bearing vibration signal acquisition platform is illustrated in Figure A1. The imbalanced
time series allocation of bearing faults used to calculate the DivEn and the FrDivEn is
shown in Table A1.

Figure A1. The CWRU bearing vibration data acquisition platform.

Table A1. Imbalanced time series allocation of bearing faults.

Fault Diameter 7 mils 14 mils 21 mils
Total Imbalance RatioLabel 7_BA 1 7_IR 2 7_OR 3 14_BA 14_IR 14_OR 21_BA 21_IR 21_OR

Time series length

60,633 60,633 60,633 60,633 60,633 60,633 60,633 60,633 60,633 545,697 2:1
24,253 24,253 24,253 24,253 24,253 24,253 24,253 24,253 24,253 218,277 5:1
12,127 12,127 12,127 12,127 12,127 12,127 12,127 12,127 12,127 109,143 10:1
6064 6064 6064 6064 6064 6064 6064 6064 6064 54,576 20:1
3032 3032 3032 3032 3032 3032 3032 3032 3032 27,288 40:1

1 Ball; 2 Inner race; 3 Outer race.

Appendix B

Here, we provide a detailed derivation of the Gramian angular field (GAF) trans-
formation from Wang et al. [34]. For a given raw one-dimensional time series data
D = {d1, d2, . . . , dn}, which consists of n real-valued observations in chronological or-
der, we normalize and rescale D to the interval [−1, 1] by:

∼
d i =

(di − max(D)) + (di − min(D))

max(D)− min(D)
(A1)

where di is the i-th real-valued observation of the original one-dimensional data;
∼
d i is the

value corresponding to the i-th element of the normalized time series data.
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The Gramian matrix G is invoked to quantify the feature correlation between the

encoded data [45]. From the normalized one-dimensional time series data
∼
D, the Gramian

matrix G is defined as:

G =
∼
D

T ∼
D

=


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d2⟩ · · · ⟨
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
(A2)

where
∼
D is the normalized one-dimensional time series data,

∼
D =

{∼
d1,

∼
d2, . . . ,

∼
dn

}
.

The Gramian matrix G illustrates the degree of correlation between vectors by repre-
senting the inner product between them, which is determined by the angle between the

vectors. However, the value
∼
d i is not a vector. To address this,

∼
d i is transformed into an

angle representation ϕi through polar coordinate transformation. The angle ϕi is mapped

from the value
∼
d i, and the radius ri is mapped from the timestamp tmi corresponding to

the i-th element of data. Thus, the normalized data
∼
d i is represented in polar coordinates

instead of the typical Cartesian coordinates by:{
ϕi = arccos(

∼
d i), −1 ≤

∼
d i ≤ 1,

∼
d i ∈

∼
D

ri =
tmi
N , tmi ∈ N

(A3)

where tmi is the timestamp corresponding to the i-th element of the time series data, ensuring
that the polar coordinate data retains temporal relationship; N is the normalization factor.

With the above polar transformation code, the normalized data element
∼
d i and the

timestamp tmi are introduced into polar coordinates. The expression of polar coordinates is
a bijective function, meaning there is a one-to-one correspondence between the independent
and dependent variables. Over time, the data points unfold in polar coordinates, resembling
the pattern of water ripples.

After transforming from the typical Cartesian coordinates to polar coordinates, the
temporal correlation between the observed data at different time points is obtained according
to the Gramian matrix G. The Gramian angular summation field (GASF) is given by:

GASF =


cos(ϕ1 + ϕ1) cos(ϕ1 + ϕ2) · · · cos(ϕ1 + ϕn)
cos(ϕ2 + ϕ1) cos(ϕ2 + ϕ2) · · · cos(ϕ2 + ϕn)
...

...
. . .

...
cos(ϕn + ϕ1) cos(ϕn + ϕ2) · · · cos(ϕn + ϕn)


=

∼
D

T
·
∼
D −

√
I −

∼
D

T2

·
√

I −
∼
D

2

(A4)

where I is a unit row vector of length n.
Similarly, we can calculate the sine of the angular difference between all polar data.

The Gramian angular difference field (GADF) is given by

GADF =


sin(ϕ1 − ϕ1) sin(ϕ1 − ϕ2) · · · sin(ϕ1 − ϕn)
sin(ϕ2 − ϕ1) sin(ϕ2 − ϕ2) · · · sin(ϕ2 − ϕn)
...

...
. . .

...
sin(ϕn − ϕ1) sin(ϕn − ϕ2) · · · sin(ϕn − ϕn)


=

√
I −

∼
D

T2

·
∼
D −

∼
D

T
·
√

I −
∼
D

2

(A5)
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Each element of GASF or GADF is mapped to a pixel of an image to obtain a GASF
image or GADF image, respectively.
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