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Abstract: A miniaturized metamaterial (MTM) bandpass filter (BPF) based on end-fire coaxial
coupling is proposed. End-fire coaxial coupling is achieved by using the coaxial cavity to connect
with the SubMiniature version A connector. The subwavelength characteristics of the MTM lead to
the miniaturization advantages of the filter in transverse dimensions. Moreover, the longitudinal
length of the coaxial cavity can be sharply reduced by introducing matched blocks. As a result,
the proposed filter has miniaturization merit both in transverse and longitudinal dimensions. The
full-wave simulation results further reveal that the MTM BPF exhibits the advantages of low loss,
low reflection, and low group delay. Additionally, the fractional bandwidth is approximately 13%
when |S11| is less than −15 dB. The MTM BPF might have potential applications to array antennas
for easily being expanded to two dimensional arrays.

Keywords: bandpass filter; metamaterial; coaxial; end-fire

1. Introduction

Bandpass filters (BPFs) are the crucial components of transceiver systems, modern
communication systems, and radars, among other technologies [1,2]. As one of the primary
challenges, miniaturization means smaller sizes and lighter weights and thus attracts much
attention. There are many approaches to constructing compact BPFs, such as substrate
integrated waveguides (SIWs), gap waveguides, and metamaterials (MTMs) [3–7]. For
example, filters based on SIWs or MTMs with dielectric substrates have the advantage of
easy integration, but this limits their application to high-power fields. Filters based on gap
waveguides of the all-metal type have enlarged transverse sizes due to the electromagnetic
band gap structures, though they have a higher power capacity.

Recently, one kind of all-metal type MTM, which is formed by complementary elec-
tric split ring resonators (CeSRRs) vertically or horizontally loaded with hollow waveg-
uides, has shown the potential to address the above issues. This is because MTMs have
demonstrated their miniaturization merit and high power capacity as the novel slow-wave
structures in vacuum electronic devices (VEDs) [8–12]. The miniaturization merit and high
power capacity are derived from the subwavelength property and all-metal type of the
MTM, respectively. Here, the subwavelength property and the other property of the MTM
(i.e., frequency selectiveness) can provide the foundation for designing miniaturized BPFs.

Furthermore, in order to construct MTM filters, coupling technologies are essential.
At present, there are two kinds of coupling techniques for MTMs: waveguide coupling and
coaxial coupling. Waveguide coupling is especially large in low-frequency bands because
the transverse size of the waveguide is positively correlated to the wavelength [13–15]. As
a comparison, coaxial coupling can match the MTMs well, and it has been used to develop
the miniature couplers in MTM VEDs [16–21]. Moreover, with respect to end-fire coaxial
coupling, the broadside one is difficult to form a two-dimensional array with. Typically,
end-fire coaxial coupling has achieved a good match between SubMiniature version A
(SMA) connectors and CeSRRs vertically loaded with circular waveguides [22,23].
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In this paper, based on an all-metal MTM consisting of CeSRRs horizontally loaded
with a hollow square waveguide, we propose end-fire coaxial coupling to construct a
miniaturized BPF filter.

2. Filter Design

The overall view and side view of the proposed MTM BPF model are shown in
Figure 1a,b, respectively. As one can see, the filter consists of an MTM, two coaxial cavities,
and two end-fire SMA connectors. The MTM and the coaxial cavities are all-metal structures
with copper as the material, and the inside is filled with air. The SMA with a 0.6 mm inner
conductor radius and 2.1 mm outer conductor radius is filled with Teflon. The period
number of the MTM is nt. As shown in Figure 2a, the MTM unit cell is formed by a hollow
square waveguide horizontally loaded with CeSRRs [9,14]. By using the eigenmode solver
in CST [24], we obtained the dispersion characteristics of the MTM. In the simulation,
the periodic conditions were set in the z direction, in which a phase advance φ was set
between the two ends of the MTM unit cell. By scanning φ from 0 to 2π, we could obtain
the corresponding frequencies. As a result, the dispersion curves are plotted in Figure 2b.
Here, the MTM BPF operates at the passband of the MTM’s fundamental mode (mode 1)
from 2.82 GHz to 3.38 GHz rather than the first higher mode (mode 2) from 3.92 GHz to
4.58 GHz. As a comparison, the hollow square waveguide with a 14.5 mm transverse
length has a cut-off frequency of ~10.3 GHz. Hence, the MTM can operate below the
cut-off frequency of the hollow waveguide, which ensures miniaturization of the MTM.
Furthermore, the dispersion curves for different k and d values are shown in Figure 2c,d,
respectively. Here, k is the scale factor which can simultaneously enlarge or reduce the
parameters of the MTM. The results indicate that to enhance the filter’s operating frequency,
we could adjust it by decreasing k for coarse tuning or increasing d for fine tuning.
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Figure 2. (a) Model of the MTM and (b) dispersion curve of the MTM (a = 14.5, d = 1, g = 1, j = 1.5,
w = 4, h = 5.25, thickness = 1.2; unit = mm), with dispersion curves for different (c) k and (d) d values.

As shown in Figure 3a, the coaxial cavity consists of an inner conductor, a big square
waveguide, and a dielectric filled with air. The inner conductor can be regarded as the
extension of the SMA inner conductor and finally be fixed at the centre of the CeSRRs, as
shown in Figure 3b. The big square waveguide with a length of zg and a transverse size of
ae plays the role of the outer conductor of the coaxial cavity, as shown in Figure 3c,d. Here,
the SMA, coaxial cavity, and blend edge of the CeSRRs form the end-fire coaxial coupling
structure, providing a good match at the operating frequency of the MTM.
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In order to achieve the transformation from the TEM mode in the SMA to the
TM-dominated mode in the MTM, the longitudinal length of the coaxial cavity zg was
approximately λ/2, where λ is the TEM wavelength of the coaxial cavity. Also, the length
of the CeSRRs inserted into the coaxial cavity ar0 is necessary to ensure the electromagnetic
wave easily enters into the MTM. By using the time domain solver in CST Microwave
Studio [24], we analyzed the impact of the primary parameters on the filter performance.
In the simulation, waveguide ports were set at the two ends of the filter (i.e., the end faces
of the SMA connectors) to offer electromagnetic wave excitation along the z direction, and
the other directions were set as electric boundaries. Figure 4a,b shows |S11| for different
zg and ar0 values, respectively. As one can see, the MTM BPF maintained a good match
when zg and ar0 were approximately 51 mm and 4.5 mm, respectively. Meanwhile, the
transverse size of the coaxial cavity should be greater than 20 mm to achieve low reflection,
as shown in Figure 4c. Furthermore, as one can see in Figure 4d, the proper blend edge
u of the two CeSRRs at the two ends of the MTM were beneficial for impedance matching.
The |S11| for different blend edge values m is shown in Figure 4e. The results indicate that
m slightly influenced the reflection. As shown in Figure 4f, the electric field concentrated at
the CeSRR center rather than around the CeSRR corners. This means that the change in
m could hardly affect the electric field distribution and thus had a weak influence on the
electromagnetic wave transmission characteristics.
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3. Results of the MTM BPF

We obtained the optimized parameters listed in Table 1 based on the above analysis by
using a full-wave simulation in CST Microwave Studio. Here, we discuss the performance
of the MTM BPF for different MTM period numbers.

Table 1. Optimized parameters for the MTM BPF.

Parameter Value (mm) Parameter Value (mm)

Zg 51 ar0 4.5
Ae 20 u 1
M 2

Figures 5 and 6 show the |S11| and |S21| values for different MTM period numbers,
respectively. The results show that |S11| was approximately −15 dB and |S21| was greater
than −0.7 dB within the operating frequency band from 2.95 GHz to 3.20 GHz. The results
demonstrate the good match of end-fire coaxial coupling connecting the SMA to the MTM.
Furthermore, as the period number increased, the reflection remained nearly unchanged,
the intersection loss slightly increased, and the out-of-band suppression was significantly
enhanced. Typically, the out-of-band suppression at 2.8 GHz was 15.4 dB and 31.6 dB when
the value of nt was two and six, respectively. Also, the out-of-band suppression at 3.4 GHz
was enhanced by 10 dB when nt increased from 2 to 6.
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Figure 7 shows the group delay for different MTM period numbers. As one can see,
the group delay increased slightly with an increasing period number. Typically, the group
delay curve is relatively flat and only has a roughly 2 ns fluctuation from 2.95 GHz to
3.20 GHz, even if nt = 6. The results indicate that the MTM BPF had a rather low
group delay.
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Furthermore, the electric field distribution in the MTM BPF for different period num-
bers at 3 GHz is shown in Figure 8. It can be seen that the electromagnetic wave at 3 GHz
could be transformed from the TM-dominated mode in the MTM to the TEM mode in
the coaxial cavity. The results show that the electromagnetic wave at 3 GHz could easily
transport the MTM via end-fire coaxial coupling, which indicates a good match.
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Figure 8. Electric field distribution at 3 GHz for (a) nt = 2, (b) nt = 4, and (c) nt = 6. Inset: the electric
and magnetic field distribution between the MTM and the coaxial cavity.

As a comparison, the electric field distributions in the MTM BPF at 2.8 GHz and
3.4 GHz are shown in Figures 9 and 10, respectively. It is clear that the electromagnetic
waves at 2.8 GHz and 3.4 GHz underwent rapid attenuation after entering into the MTM.
This is because the two frequencies were beyond the cut-off frequency of the MTM, as
shown in Figure 2b. Additionally, as the period number increased, the electrometric waves
at 2.8 GHz and 3.4 GHz would experience greater attenuation, which resulted in higher
out-of-band suppression, as presented in Figure 6.
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4. Discussion

Compared with the standard rectangular waveguide WR-284 with transverse dimensions
of 72.14 mm × 34.04 mm operating from 2.6 GHz to 3.95 GHz, both the 20 mm × 20 mm
coaxial cavity and the 14.5 mm × 14.5 mm MTM exhibited a significant reduction in transverse
sizes. However, miniaturization was not achieved in the longitudinal dimension, owing to the
fact that each coaxial cavity had a longitudinal length of approximately λ/2. As a result, we
further discuss the performance of the MTM BPF when the longitudinal length of the coaxial
cavity was much less than λ.

The MTM BPF with compact coaxial cavities is shown in Figure 11a. The transverse
size of the coaxial cavity decreased to a in the y direction and maintained ae in the x direction,
as shown in Figure 11b,c, respectively. Importantly, the longitudinal length zg decreased to
roughly λ/10, as shown in Figure 11d. In order to compensate for the mismatch caused by
the shortening of the coaxial cavity, we introduced matched blocks into the CeSRRs. The
final optimized parameters of the coaxial cavity are listed in the caption of Figure 11. The
corresponding |S11| and |S21|values are shown in Figures 12 and 13, respectively. The
results indicate that the fractional bandwidth was approximately 13% when |S11| was less
than −15 dB. Typically, |S11| is close to −22 dB and |S21| is roughly −0.3 dB at 3 GHz
for nt = 2. As shown in Figure 14, the fluctuation in the group delay curve is less than 2 ns
from 2.95 GHz to 3.25 GHz. The above results clearly indicate that the MTM BPF could
realize miniaturization for both the transverse and longitudinal sizes.
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A comparison between previous works and this work is listed in Table 2. With respect
to the broadside ones, the MTM BPF with end-fire coaxial coupling was easily extended
in the two-dimensional plane and thus could be used to develop filtering array antennas.
Also, it exhibited miniaturization merit, especially in transverse sizes, over the current
end-fire coaxial coupling structures for MTMs. Furthermore, when compared with the
end-fire coaxial cavity resonator filters, the proposed filter exhibited slightly enhanced
performance, such as wider bandwidth, lower reflection, or low loss at the same level in
various dimensions. Importantly, we could adapt the coaxial cavity size of end-fire coupling
to meet the demands of different applications. For example, end-fire coaxial coupling with
a compact coaxial cavity is suitable for array antennas. As a comparison, end-fire coaxial
coupling with a large coaxial cavity would be applied to MTM VEDs, in which the collector
and the output structure can share the large coaxial cavity, thereby reducing the overall
size of devices.

Table 2. Comparison between previous works and this work.

Reference Freq. (GHz) FB * |S11| (dB) ** |S21| (dB) ** Coupling Type Size (λ3) ***

[17] 4.5 4.4% ~−3 ~−20 broadside 0.34 × 0.15 × 1.94
[19] 2.9 5% ~−15 ~−0.8 broadside 0.2 × 0.2 × 1.25
[22] 2.43 1% ~−15 ~−1 end-fire 0.81 × 0.81 × 3.2
[23] 6.6 10% ~−22 ~−0.54 end-fire 0.84 × 0.84 × 3.7
[25] 3 3% ~−13.5 ~−0.7 end-fire 0.17 × 0.17 × 0.58
[26] 2.8 9% ~20 ~0.5 end-fire 0.24 × 0.14 × 0.73
[27] 2.28 1% ~−20 ~0.9 end-fire 0.39 × 0.3 × 1.6

This work # 3 13% ~−22 ~−0.3 end-fire 0.22 × 0.15 × 0.59

* FB represents the fractional bandwidth. ** The data represent the value at the central frequency estimated from
figures or obtained from tables. *** Here, λ represents the free space wavelength corresponding to the central
frequency, and the sizes do not include the thickness of the metal shell. # The data result from the MTM BPF with
compact coaxial cavities.

5. Conclusions

In this paper, we presented end-fire coaxial coupling for an MTM and then devel-
oped a novel MTM BPF with miniaturization characteristics. The bandpass characteristics
were derived from the MTM. Hence, the filter’s operating frequency could be designed
by enlarging or reducing the MTM for coarse tuning and adjusting the gap in the CeSRR
for fine-tuning. Importantly, as the MTM period number increased, the low group delay
slightly changed, and the out-of-band suppression was significantly enhanced. Further-
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more, end-fire configuration can provide superior space utilization compared with the
broadside type. Next, we will carry out transmission experiments.
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