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Abstract: Smart contracts on blockchain platforms are susceptible to security issues that can lead
to significant financial losses. This study converts the Solidity code into abstract syntax trees and
generates control flow graphs and data flow graphs. These graphs train a graph convolutional
network model to detect security weaknesses. The proposed system outperforms traditional tools,
achieving higher accuracy, recall, precision, and F1 scores when detecting weaknesses such as integer
overflow/underflow, reentrancy, delegate call to the untrusted callee, and time-based issues. This
study demonstrates that leveraging control and data flow analysis with graph neural networks
significantly enhances smart contract security and provides a robust and reliable solution.

Keywords: smart contract security; graph neural network; control flow graph; data flow graph;
Solidity weakness detection

1. Introduction

Recent advancements in blockchain technology, which is known for its decentralized
and tamper-resistant characteristics, have led to rapid developments in various applica-
tions. Blockchain is essentially a distributed and shared ledger of transactions maintained
across a network of miners following a consensus protocol [1]. Smart contracts, which
are programs that automatically execute or enforce the terms of a contract, leverage the
tamper resistance of blockchain technology to enhance the transparency and reliability
of transactions. However, poorly designed smart contracts are susceptible to weaknesses
that can be exploited by malicious actors [2]. A notable example is the Decentralized
Autonomous Organization (DAO) event, where hackers exploited a reentrance bug in the
DAO contract, leading to a theft of 3.6 million Ether [3]. These weaknesses are continuously
being discovered and exploited.

Smart contracts on blockchain platforms are susceptible to security issues that can
lead to significant financial losses. Existing security analysis tools for smart contracts are
primarily rule-based, which makes them specialized for detecting specific weaknesses
but prone to generating many false positives. To address these limitations, this study
proposes a novel method that considers a program’s control and data flows to detect
security weaknesses. Our approach begins by converting the Solidity code into an abstract
syntax tree (AST) and then generating control flow graphs (CFGs) and data flow graphs
(DFGs). These graphs are then used to train a graph convolutional network (GCN) model
to classify security weaknesses in the code. The key novelty of our approach lies in
the integration of control and data flow analysis with graph neural networks (GNNs),
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which provides more comprehensive and accurate detection of weaknesses compared to
traditional rule-based tools.

Blockchain networks adopt existing test and dynamic execution methods from pro-
gramming language communities to detect smart contract weaknesses [4,5]. However,
these approaches encounter two significant challenges. First, they rely heavily on prede-
fined rules (or patterns) established by experts, which can result in high false-positive rates
and difficulties handling complex code patterns. However, some attackers can easily cir-
cumvent these rules [6]. Second, the scalability of these rule-based approaches is inherently
limited because they depend on a small group of experts to define accurate rules [7]. With
the rapid increase in smart contracts, it has become impractical for a few experts to verify
all contracts [8].

To address these limitations and to align them with intelligent approaches for solving
software problems using AI techniques, this study proposes a method that utilizes a CFG
and a DFG to detect security weaknesses in smart contracts. The CFG represents the
execution flow of a program, whereas the DFG represents data flow. By analyzing these
graphs, we can effectively detect security weaknesses in complex smart contracts and
reduce the number of false positives. This approach is aligned with the fundamental
concepts of artificial intelligence, software engineering, and data security.

The proposed method employs GNN to process graph-shaped data. By learning and
analyzing graph data using a GNN, we aim to develop a more effective weakness detection
tool than existing rule-based tools, thereby enhancing the security of smart contracts and
protecting user assets. This leverages the advancements in AI service development, model
optimization, and data integration [9].

This study analyzed security weaknesses in Solidity, the core programming language
of the Ethereum blockchain platform. Specifically, we targeted four types of weaknesses:
reentry, timestamp, overflow/underflow, and delegate call. These weaknesses were se-
lected to demonstrate the effectiveness of the proposed method over existing rule-based
detection tools.

We parsed the Solidity code into an AST to consider both the execution and data flows
of the program. The AST is represented as a tree structure in JSON format, containing
structural elements, execution flow, and data flow information. However, ASTs include ex-
traneous information beyond what is necessary for GNN learning. Therefore, we extracted
the CFG and DFG from the AST, focusing on the relevant parts representing the execution
and data flows. The CFG nodes represent the basic blocks, the edges represent the control
flow, the DFG nodes represent the data processing operations, and the edges represent the
data flow.

By integrating these graphs and their attributes into a single dataset, along with the
corresponding labels, we generated multiple datasets to train the GNN model. This process
allows us to input the Solidity code, convert it into an AST, generate graphs, and determine
whether the code contains security weaknesses. Our proposed method aims to provide
an effective weakness detection tool that considers both execution and data flow, thereby
improving the security of smart contracts.

2. Related Work
2.1. Blockchain and Smart Contracts

Smart contracts are blockchain-based programs that automatically enforce or execute
contractual terms when conditions are met [10]. They operate without a centralized inter-
mediary, thus enhancing cost efficiency and reliability over centralized systems. The entire
code and execution results of smart contracts are stored in the blockchain, ensuring trans-
parency and trust among the participants. The overall operation of a smart contract involves
users developing the contract, which is then converted into an Ethereum Virtual Machine
(EVM) bytecode executed by an EVM. This bytecode is stored in the Ethereum network as
part of the blockchain. Figure 1 illustrates the general operation of a smart contract.
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2.1.1. Ethereum and Solidity

Ethereum is a blockchain platform that implements a decentralized Web 3.0 [11].
Similar to Bitcoin, Ethereum is based on blockchain technology, a decentralized ledger
maintained by miners following a consensus protocol. Ethereum focuses on the develop-
ment and execution of smart contracts and decentralized applications (DApps).

The most significant feature of Ethereum includes smart contracts, which are self-
executing contracts written in code that are automatically executed when predefined
conditions are satisfied. For instance, after purchasing goods, payments are automatically
processed once the conditions are fulfilled. Ethereum also employs blockchain to store
and verify transactions and contract information, ensuring data integrity without a central
authority. Ethereum uses Ether, a cryptocurrency, as a value exchange to execute smart
contracts or process transactions.

Ethereum uses a gas unit to execute smart contracts or process transactions in the
network. Gas represents the computational resources required for processing, which limits
the resources required to prevent network overloading or malicious contract execution.

Ethereum is structured into four primary layers: the application, consensus, data,
and network layers [12]. The application layer develops and executes DApps based on
smart contracts, enabling user interactions through browsers or applications without a
central intermediary. The consensus layer comprises consensus protocols that validate
transactions and generate blocks, initially using proof of work (PoW) but transitioning
to proof of stake (PoS) to address issues such as high energy consumption and mining
centralization. The data layer stores and manages various data types in the blockchain,
including smart contracts, transactions, and state data. Finally, the network layer repre-
sents the infrastructure that manages the Ethereum blockchain, involving nodes and P2P
communications to ensure network stability and security.

Solidity is a high-level programming language designed to develop smart contracts
on the Ethereum blockchain [13]. It allows the writing and deployment of smart contracts
executed on an EVM. Solidity’s syntax is similar to that of C++, JavaScript, and Python,
incorporating familiar elements such as declarations, data types, access modifiers, and
functions. It enables the development of trustless and automated applications by allowing
code to interact with the blockchain directly. This interaction includes reading and writing
data and managing assets (typically Ether) without a central intermediary. Moreover, it
supports complex data types and control structures, enabling developers to create intricate
smart contracts capable of performing various functions, ranging from simple transactions
to more complex operations involving multiple parties. It also includes features that
enhance security and prevent common weaknesses. For example, it supports custom error
handling, function modifiers controlling access to contract functions, and events facilitating
monitoring logging and contract interactions. These features help developers write more
secure and reliable smart contracts, which are crucial for maintaining the integrity and
trustworthiness of blockchain applications.
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2.1.2. Smart Contract Weakness Classification

The smart contract weakness classification (SWC) framework standardizes categoriz-
ing patterns and weaknesses related to smart contracts. Inspired by common weakness
enumeration (CWE), SWC is tailored to smart contracts’ unique environments and con-
ditions. Each weakness in the SWC has a unique ID and includes descriptions, severity
levels, attack scenarios, preventive measures, and relevant code examples.

Smart contract weaknesses can have severe consequences, including financial losses
and a loss of trust in blockchain platforms. Notable weaknesses include reentrancy, where
an attacker can repeatedly call a function before the initial execution is completed, and
integer overflow/underflow, resulting in unexpected behaviors due to arithmetic errors.
Other common weaknesses include timestamp dependence, where contract execution relies
on the block timestamp, and improper delegation calls, which can expose the contract to
unauthorized access.

The SWC framework aims to assist developers in identifying and mitigating weak-
nesses by providing a comprehensive and structured approach to smart contract security.
By adhering to the guidelines and best practices outlined in SWC, developers can improve
the security and robustness of their smart contracts, reduce the risk of exploitation, and
enhance overall trust in the blockchain ecosystem. Table 1 presents the metrics provided by
SWC, including unique identifiers (IDs), weakness titles, and their corresponding CWE
IDs (relationships).

Table 1. SWC IDs and weakness titles.

SWC ID Title Related CWE ID

SWC-100 Function default visibility CWE-710
SWC-101 Integer overflow and underflow CWE-682
SWC-102 Outdated compiler version CWE-937
SWC-103 Floating pragma CWE-664
SWC-104 Unchecked call return value CWE-252
SWC-105 Unprotected Ether withdrawal CWE-284
SWC-106 Unprotected SELFDESTRUCT instruction CWE-284
SWC-107 Reentrancy CWE-841
SWC-108 State variable default visibility CWE-710
SWC-119 Uninitialized storage pointer CWE-824
SWC-110 Assert Violation CWE-670
SWC-111 Use of deprecated solidity functions CWE-477
SWC-112 Delegatecall to untrusted callee CWE-829
SWC-113 DoS with failed call CWE-703
SWC-114 Transaction order dependence CWE-362
SWC-115 Authorization through tx. origin CWE-477
SWC-116 Block values as a proxy for time CWE-829

These weaknesses highlight the security concerns developers must address when
writing smart contracts. By understanding and implementing measures to mitigate these
weaknesses, developers can enhance the security of their applications, thereby contributing
to the overall robustness and reliability of the Ethereum ecosystem.

2.2. Program Analysis

Program analysis involves examining and understanding the structure and behavior of
code to detect potential issues and optimize its performance. Program analysis is a crucial
aspect of software engineering that examines code to understand its behavior, structure,
and properties. This process helps improve code quality, optimize performance, and ensure
security. This section discusses the main components of the program analysis used in this
study: the AST, CFG, and DFG.
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2.2.1. Abstract Syntax Tree

An AST is a tree representation of the abstract syntactic structure of the source code [14].
Each node in the AST denotes a construct occurring in the source code, such as variable
declarations, operators, or function calls. The AST is generated through parsing, which
analyzes the source code to produce a structured representation.

When compiling or interpreting source code, the initial step typically involves con-
verting the code into an AST. This tree provides a clear understanding of the code’s syntax
and semantics, enabling the identification of the code’s flow and data structure. Static
code analysis tools utilize ASTs to analyze code structure and detect errors or security
weaknesses. In addition, development environments use ASTs to facilitate features such as
code refactoring and automatic code generation.

2.2.2. Control Flow Graph and Data Flow Graph

The AST is a foundational element for generating CFGs, essential for detecting security
weaknesses in smart contracts.

The CFG represents the execution flow of the code. Each node in the CFG represents
a basic block, a straight-line code sequence with no branches except at the entry and exit
points. The edges between nodes indicate possible control flow paths [15]. The nodes in
the CFG depict entry and exit points within the code, such as function definitions, control
statements, and variable declarations. Edges represent conditional statements’ true/false
branches or loops’ entry/exit points. The CFG provides a detailed view of how the program
executes, highlighting the various paths the execution may take under different conditions.

Similarly, the DFG illustrates how the data moves within the code. Each node in
the DFG represents a data processing operation, and the edges represent the data flow
between these operations. Nodes include variable assignments, operations, function calls,
and literals, whereas edges indicate how data are transferred from one node to another [16].
DFGs help understand data flow through a program and identify how data are manipulated
and passed between different parts of the code. This is crucial for detecting weaknesses
related to data handling, such as incorrect variable initialization, unintended data leaks,
and improper handling of sensitive information.

These graphs were labeled CFG or DFG and integrated into a single dataset with the
corresponding label data. Multiple datasets were generated and fed into the GNN for
training. This method enables the analysis and detection of security weaknesses in the
Solidity code by considering control and data flows. The proposed approach provides an
effective tool for detecting weaknesses in smart contracts by analyzing the execution and
data flows within the code.

The program analysis techniques discussed herein, particularly the use of ASTs, CFGs,
and DFGs, are integral to our approach to detecting security weaknesses in smart con-
tracts. By leveraging these techniques, we can generate detailed representations of the
smart contract’s execution and data flows, which are crucial for constructing the graphs
required for our GNN model. These graphs provide input data for our machine learning
model, enabling the application of advanced AI techniques to identify potential security
weaknesses in the code.

In summary, the AST, CFG, and DFG program analysis techniques played vital roles
in our methodology. They allow us to systematically deconstruct the smart contract code,
extract relevant features, and build the necessary models to enhance the security detection
mechanisms. The integration of program analysis with advanced AI techniques underpins
the effectiveness of the proposed solution for securing smart contracts on the Ethereum
platform.

2.3. Machine Learning for Security Analysis

Machine learning has significantly advanced the field of security analysis by providing
sophisticated tools for identifying and mitigating security weaknesses. Traditional security
analysis methods often rely on predefined rules and patterns, which are limited in scope
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and scalability. In contrast, machine-learning models can learn from large datasets, adapt
to new threats, and identify complex patterns that may not be apparent through rule-
based approaches.

In smart contracts, machine learning can analyze extensive code datasets, detect
anomalies, and identify potential security weaknesses. By training models on known
weaknesses, these techniques can detect similar patterns in new, unseen smart contracts,
thereby enhancing the robustness and reliability of the security analysis.

Incorporating machine learning into security analysis has numerous advantages.
Machine learning models can handle large volumes of data and scale efficiently, making
them well-suited for environments with substantial data inputs. They are adaptable
and respond to new and evolving threats more flexibly than static rule-based systems.
Moreover, machine learning excels in recognizing complex patterns and correlations within
data, which is crucial for identifying subtle weaknesses that may otherwise go unnoticed.

2.3.1. Comparative Analysis of Machine Learning Models for Smart Contract Security

Several machine learning (ML) models, each with strengths and weaknesses, can be
employed for smart contract security analysis. Convolutional neural networks (CNNs) are
highly effective for image and grid-like data analysis, excelling in detecting spatial hierar-
chies. In smart contract security, CNNs can potentially analyze the visual representations
of code or detect patterns in structured data. However, their fixed grid structure limits their
ability to process graph-structured data, which is essential for understanding the complex
interdependencies within smart contracts.

Recurrent neural networks (RNNs) and long short-term memory (LSTM) networks are
designed for sequential data processing, making them suitable for tasks involving temporal
dependencies such as code sequences or execution traces. They can model the sequence of
operations within a smart contract, helping to identify the patterns that lead to weaknesses.
However, these studies struggle to capture the complex relational structures crucial for
smart contract analysis.

Random forest and gradient boosting machine (GBM) are ensemble learning methods
known for their robustness and effectiveness in many classification tasks. Smart con-
tract security can classify code snippets or detect anomalies based on predefined features.
However, these models cannot naturally incorporate the relational information in graphs,
limiting their effectiveness in capturing intricate dependencies in smart contract codes.

GNNs are designed to operate on graph-structured data. Smart contracts can be
naturally represented as graphs, where nodes represent code elements (e.g., functions,
variables) and edges represent relationships (e.g., data flows, control flows). GNNs leverage
these structures to capture local and global dependencies, making them particularly well-
suited for detecting complex security weaknesses.

GNNs offer several key advantages in smart contract security analyses. They capture
the complex relationships and dependencies within the code, which are crucial for iden-
tifying security issues that depend on control and data flows. GNNs are highly scalable
and can efficiently process large graphs, making them suitable for analyzing increasingly
complex smart contracts deployed on blockchain platforms. Finally, GNNs exhibit strong
generalization capabilities, allowing them to generalize from training data to new, unseen
data and improve the detection of novel weaknesses not explicitly represented in the
training dataset. This generalization is essential for maintaining robust security as new
weaknesses emerge and smart contract technology evolves.

By leveraging the unique strengths of GNNs, the proposed method provides a com-
prehensive and accurate tool for detecting security weaknesses in smart contracts. This
approach considers the execution and data flows within the code. It integrates advanced
AI techniques to enhance security detection mechanisms, offering a robust solution for
improving the reliability and safety of smart contracts.
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2.3.2. Graph Neural Networks

GNNs represent a powerful class of deep learning models designed to operate on
graph-structured data. Unlike traditional neural networks, which process data in grid-
like structures such as images or sequences, GNNs can handle graphs’ intricate, non-
Euclidean structures. This capability makes GNNs particularly suitable for tasks involving
relationships and interactions between entities, such as analyzing smart contracts.

Smart contract codes can naturally be represented as graphs, with CFGs and DFGs
capturing the flow of execution and data. GNNs can effectively analyze and detect security
weaknesses by converting smart contracts into graph representations.

GNNs offer several advantages for this application. First, they capture the complex
relationships and dependencies within the code that are crucial for identifying security
issues. They can efficiently process large graphs, making them suitable for analyzing
complex smart contracts. In addition, GNNs can generalize training data to new, unseen
data, thereby improving the detection of novel weaknesses.

The basic operation of a GNN model involves several steps, as illustrated in Figure 2.
Initially, each node in the graph is assigned a feature vector representing various node
attributes. During the message-passing phase, nodes gather information from their neigh-
bors. This information is aggregated using the mean, sum, or max functions. After passing
messages, the nodes update their feature vectors using neural network layers incorporat-
ing aggregated information. A readout function is then applied to extract the final graph
representation, which can be used for various tasks such as node or graph classification [17].
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In this study, we leverage GNNs to analyze graph representations of smart con-
tracts. By converting the contract code into a CFG and a DFG, we can utilize GNNs’
powerful capabilities to capture complex patterns and relationships within the code. This
approach enables more effective detection of a wide range of security weaknesses than
traditional methods.

The integration of GNNs into the proposed methodology provides several benefits.
GNNs enable the detection of subtle and complex weaknesses that can be overlooked
using rule-based detection tools. They efficiently process and analyze large smart contracts,
making them suitable for real-world applications. Furthermore, GNNs are robust to code
variations, thereby improving the reliability of weakness detection.

By employing GNNs, we aimed to develop a comprehensive and effective tool for
smart contract security analysis. This approach contributes to blockchain applications’
overall security and reliability by offering a robust mechanism for detecting and mitigating
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potential security weaknesses in smart contracts. Specifically, we employed a basic GNN
model, the Graph Convolutional Network (GCN), to analyze the generated CFGs and
DFGs. The GCN model is trained to classify the types of security weaknesses present in the
code, thereby enhancing the security detection capabilities of smart contracts.

3. Proposed System

The proposed system is a software weakness analysis tool for smart contracts written
in Solidity, a high-level programming language used to develop smart contracts on the
Ethereum blockchain. This system converts the Solidity code into an AST representing
the syntactic structure of the program and then generates CFGs and DFGs from the AST.
The CFGs and DFGs were subsequently used to train a GNN model to detect security
weaknesses in the code. This multistep approach allows the system to analyze the execution
and data flows within smart contracts effectively. Figure 3 shows the overall architecture of
the proposed system.
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Algorithm 1 illustrates the pseudocode of the proposed system. Initially, the Solidity
code is translated into an AST using the Translate_AST_from_Solidity function. From this
AST, the Generate_CFG_from_AST function creates a list of CFGs. An empty container,
viz_code, is initialized to store the dot-format visualization code. For each CFG in the list,
the CFG is converted to dot format using Convert_CFG_to_dot and appended to viz_code.
The complete visualization code in viz_code is then transformed into a DGL dataset format
using Convert_viz_to_DGL. A dataset object is created with the Create_Dataset function,
including the DGL dataset and corresponding labels. This dataset is then batched using a
data loader initialized by Create_DataLoader, which shuffles the data for robust training.
Next, the GNN model is instantiated with Initialize_GNN, and an optimizer is initialized
using Initialize_Optimizer with the model parameters. The model is trained over a
predefined number of epochs. For each batch of data, the model performs a forward pass
with Model_Forward_Pass, computes the loss with Compute_Loss, and updates the model
parameters using the optimizer with Update_Model. Finally, the trained model is saved
using the Save_Model function, resulting in a classification model ready for deployment.
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Algorithm 1 Pseudocode for the process of the proposed system

Input: Solidity code file
Output: Trained classification model

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

ast = Translate_AST_from_Solidity(file)
cfg_list = Generate_CFG_from_AST(ast)
viz_code = ““

for cfg in cfg_list do
viz_code += Convert_CFG_to_dot(cfg)

dgl_dataset = Convert_viz_to_DGL(viz_code)
dataset = Create_Dataset(dgl_dataset, labels)
dataloader = Create_DataLoader(dataset, batch_size, shuffle=True)
model = Initialize_GNN()
optimizer = Initialize_Optimizer(model_parameters)

for epoch in range(num_epochs) do
for batched_graph, labels in dataloader do
logits = Model_Forward_Pass(model, batched_graph)
loss = Compute_Loss(logits, labels)
Update_Model(optimizer, loss)

Save_Model(model)

This comprehensive process ensures that the system can effectively learn from the
graph representations of smart contracts, thereby allowing accurate detection of security
weaknesses. Using CFGs and DFGs to represent different aspects of code behavior enables
a GNN to capture complex relationships and dependencies within the code, leading to
improved performance over traditional rule-based methods.

3.1. AST Generation from Solidity Code

The first step in implementing the proposed system was to convert the Solidity code
into an AST using a Solidity parser. Converting the Solidity code to an AST involves several
stages: tokenization, syntax parsing, AST generation, and AST analysis and processing. The
selected security weaknesses are classified according to the SWC registry, which provides a
standardized method for identifying and categorizing smart contract weaknesses [18].

In the tokenization stage, the Solidity parser reads the Solidity code and breaks it
into tokens. These tokens represent the smallest elements of the code, such as keywords,
variable names, operators, and literature. Each token provides information about the
structure and content of the code.

The parser analyzes the tokenized code during syntax parsing to create an AST. This
involves checking the code’s structure and grammar and generating a tree structure that
reflects the code’s hierarchical organization. Each node in the AST represents a syntac-
tic construct, such as function definitions, control statements, and variable declarations.
The resulting tree structure is then converted into an AST, which provides an abstract
representation of the code structure.

Through this process, the Solidity code is transformed into an AST. The AST is typically
represented in the JSON format and contains essential information about the execution
flow and data flow within the code. This structured representation enables the extraction
of CFGs and DFGs from the AST, which are crucial for further analysis.

By converting the Solidity code into an AST, we obtained a comprehensive repre-
sentation that captured both the syntactic and semantic details of the code. This AST
is the foundation for generating the CFGs and DFGs used to train the GNN model for
security analysis.
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3.2. Generation of Control Flow Graph and Data Flow Graph

The AST represents the overall execution flow and data flow of the code. However,
the direct use of the AST for GNN training includes unnecessary information and is not in
graph form, making it unsuitable for GNNs. Thus, we extract information representing
only the control flow from the AST to generate a CFG and data flow information to generate
a DFG.

The steps in generating a CFG include initialization, AST traversal, basic block creation,
control structure handling, node connections, and final processing. In the initialization
stage, the start and end nodes of the CFG are created, and the current node pointer is set as
the start node. During the AST traversal, the AST is traversed in pre-order, processing each
node. Continuous statements form a basic block, and new basic blocks begin with control
structures, such as conditionals and loops. Control structures, such as conditionals (e.g.,
if-else) and loops (e.g., for, while), are processed by adding the corresponding CFG nodes
and connecting them appropriately to represent true/false branches and loop structures.
Jump statements (e.g., break, continue, and return) are handled by adding CFG nodes and
making the necessary connections, such as connecting return statements directly to the end
node. After processing all AST nodes, the final CFG is formed by connecting the last CFG
node to the end node.

To generate a DFG, we analyzed the program’s data flow and tracked the relationships
between variable definitions and uses. This process involves AST traversal, tracking
variable definitions and uses, handling operators and expressions, processing function
calls and returns, considering the control flow, and optimizing the DFG by removing
unused variables or dead codes. This generates a DFG from the AST, representing the data
dependencies within the code.

Algorithm 2 and Figure 4 illustrate the CFG and DFG generated from the Solidity code
example. These visualizations aid in understanding how the control and data flows are
represented in graph form for further analysis.

Algorithm 2. Example of a CFG generated from Solidity code

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
20:
21:
22:
23:
24:
25:
26:
27:
28:

. . .
contract BREBuy {

struct ContractParam {
uint32 totalSize;
uint256 singlePrice;
uint8 pumpRate;
bool hasChange;

}
uint32 gameIndex = 0;
ContractParam public setConfig;
ContractParam public curConfig;
address[] public addressArray = new address[](0);
function startNewGame() private {

gameIndex++;
if(curConfig.hasChange) {

if(curConfig.totalSize != setConfig.totalSize) {
curConfig.totalSize = setConfig.totalSize;

}
if(curConfig.singlePrice != setConfig.singlePrice){

curConfig.singlePrice = setConfig.singlePrice;
}
if(curConfig.pumpRate != setConfig.pumpRate) {

curConfig.pumpRate = setConfig.pumpRate;
}
curConfig.hasChange = false;

}
addressArray.length=0;

}
. . .
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Algorithm 2 shows the CFG generated using the Solidity code. This algorithm shows
how the execution flow is captured, with the nodes representing the basic blocks and the
edges representing the flow between them. Figure 4 illustrates the CFG generated for each
function within the Solidity contract. This example shows how multiple functions within a
single contract can be visualized, highlighting the control flow for each function.

By processing the AST into CFGs and DFGs, we can capture both the execution and
data flow within the code, enabling effective analysis and weakness detection using GNNs.

3.3. Training the GNN Model

After converting the Solidity code into an AST and generating the corresponding CFG
and DFG, these graphs were prepared to train the GNN model. The GNN model used in
our study consists of three layers, including two convolutional layers followed by one fully
connected layer. Each layer utilizes the ReLU activation function to introduce non-linearity.
To prevent overfitting, we applied dropout with a rate of 0.5. The model was trained
using the Adam optimizer with a learning rate of 0.001. We conducted the training over
100 epochs with a batch size of 32. The training process involved early stopping criteria to
monitor the validation loss and stop training when the validation loss did not improve for
10 consecutive epochs. The generated CFG and DFG contain node and edge information
essential for creating graph representations suitable for GNN training.

The node and edge information are stored in two separate files: nodes.csv for node
information and edges.csv for edge information. Each file includes the identifiers and
attributes necessary to reconstruct the graphs. Specifically, the nodes.csv file contains
columns for graph_id, num_node, and type. The graph_id uniquely identifies each graph,
num_node indicates the number of nodes, and type distinguishes between CFG (0) and
DFG (1). The edges.csv file includes columns for graph_id, src, dst, and type, with src and
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dst specifying each edge’s start and end nodes. These CSV files served as the input data for
the GNN model training process, with nodes and edges encoded to facilitate learning.

Each graph can be uniquely identified and reconstructed using the ‘graph_id’ present
in both nodes.csv and edges.csv. These CSV files were then used to generate the final graph
data structures required for the GNN training. This is accomplished using a DGL, which
helps create and manipulate graph data for deep learning applications.

Figure 5 depicts the conversion of a CFG into a visual representation using Viz,
facilitating an understanding of the code control flow. The visualization was then converted
into a format suitable for deep learning (DGL), enabling the use of graph data to train the
GNN. The graph structure includes the number of nodes and edges, node types, edge types,
and metagraphs, which provide an overview of the relationships between the different
node types.
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Using this graph structure, a program’s complex execution and data flow can be
effectively represented and learned. The GNN model leverages this representation to
analyze and detect potential security weaknesses within the smart contract code. By
capturing the intricate relationships and dependencies within the code, the GNN model
provides a robust mechanism for identifying subtle and complex security issues that
traditional static analysis tools may miss.

4. Experiments and Results
4.1. Selection and Description of Security Weaknesses

To validate the proposed system, we selected security weaknesses from the SWC list,
in which existing detection tools are not fully detected. The selection criteria included
the severity of the weakness, if it occurred, the inability of existing detection tools to
reliably identify the weakness, and the feasibility of detecting the weakness by analyzing
the execution and data flows of the program. Based on these criteria, we identified four
security weaknesses: SWC-101 (integer overflow and underflow), SWC-107 (reentrancy),
SWC-112 (delegatecall to untrusted callee), and SWC-116 (Block values as a proxy for time).
The selected weaknesses are summarized in Table 2.

Table 2. Selected security weaknesses.

SWC ID Title Related CWE ID Content

SWC-101 Integer overflow and underflow CWE-682 Incorrect calculation
SWC-107 Reentrancy CWE-841 Improper enforcement of behavioral workflow
SWC-112 Delegatecall to untrusted callee CWE-829 Inclusion of functionality from untrusted control sphere
SWC-116 Block values as a proxy for time CWE-829 Inclusion of functionality from untrusted control sphere
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• SWC-101 (integer overflow and underflow): Integer overflow and underflow weak-
nesses occur when an integer variable exceeds its maximum or falls below its minimum
limit. Integer overflow occurs when an integer variable exceeds its maximum value,
which can cause unexpected initialization to zero or overwrite the other variables.
Conversely, integer underflow occurs when an integer variable falls below its mini-
mum value, potentially causing unexpected initialization to the maximum value or
overwriting other variables. These weaknesses are critical in the Solidity code, as they
can lead to significant economic losses if Ether values are tampered with in smart
contracts. An example of this weakness is shown in Algorithm 3.

• SWC-107 (reentrancy): Reentrancy weaknesses occur when a smart contract calls
an external contract or function and the external contract or function calls back to
the original contract before the first invocation is complete. This can result in unex-
pected states or drain the balance of contracts. Algorithm 4 shows an example of
this weakness.

• SWC-112 (delegatecall to untrusted callee): The delegatecall weakness occurs when
the delegatecall function in Solidity executes code from another contract within the
context of the caller’s contract. If not handled properly, this can lead to security issues,
because the contract can manipulate the state of the calling contract. An example of
this weakness is shown in Algorithm 5.

• SWC-116 (block values as a proxy for time) arises when Solidity smart contracts
use block values such as block.timestamp or now as a proxy for time. Miners can
manipulate such dependencies, leading to unexpected behaviors or invalid contract
states. Algorithm 6 shows an example of this weakness.

Algorithm 3 Example of Solidity code with integer overflow and underflow weakness

1:
2:
3:
4:
5:
6:
7:
8:

. . .
contract IntegerOverflowMappingSym {

mapping(uint256 => uint256) map;
function init(uint256 k, uint256 v) public{

map[k] -= v;
}

}
. . .

Algorithm 4 Example of Solidity code with reentrancy weakness

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:

. . .
contract SimpleDAO {

mapping(address => uint) public credit;
function donate(address to) payable public {

credit[to] += msg.value;
}
function withdraw(uint amount) public {

if (credit[msg.sender] >= amount) {
require(msg.sender.call.value(amount)());
credit[msg.sender] -= amount;

}
}
function queryCredit(address to) view public returns (uint) {

return credit[to];
}

}
. . .
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Algorithm 5 Example of Solidity code with delegatecall weakness

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:

. . .
contract Proxy {

address owner;
constructor() public {

owner = msg.sender;
}
function forward(address callee, bytes _data) public {

require(callee.delegatecall(_data));
}

}
. . .

Algorithm 6 Example of Solidity code with block values as a proxy for time weakness

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

. . .
contract TimeBasedVault {

address owner;
uint256 unlockTime;
constructor(uint256 _unlockHours) public {

owner = msg.sender;
unlockTime = now + (_unlockHours * 1 hours);

}
function withdraw() public {

require(msg.sender == owner, “Only the owner can withdraw.”);
require(now >= unlockTime, “Funds are locked until the unlock time.”);
msg.sender.transfer(address(this).balance);

}
}
. . .

To evaluate the performance of the proposed system, we used a dataset collected
from the Ethereum platform and GitHub repositories, which included instances of selected
weaknesses. The dataset consisted of 372 instances of SWC-101, 382 instances of SWC-107,
202 instances of SWC-112, and 504 instances of SWC-116. Each weakness is categorized
into safe codes or codes that contain weaknesses. Table 3 summarizes the numbers of safe
and at-risk instances for each weakness type.

Table 3. Number of data instances per software weakness.

Weakness SWE-101 SWE-107 SWE-112 SWE-116

Label 0 1 0 1 0 1 0 1
Count 278 94 209 173 127 75 278 226

The selected weaknesses and their respective datasets were used to train and validate
the proposed system, demonstrating its effectiveness in detecting security issues in solid,
smart contracts.

4.2. Selection of Comparative Analysis Tools

Experiments were conducted using existing analytical tools on the constructed dataset
to demonstrate the validity and significance of the proposed system. The selection criteria
for these tools included being open source, freely available, and commonly used for
analyzing security weaknesses in Solidity smart contracts. Based on these criteria, we
selected four software weakness analysis tools for comparative analysis: sFuzz, Smartcheck,
Osiris, and Mythril. The characteristics of each tool are as follows.

sFuzz [19] is an automated tool for detecting weaknesses in smart contracts. It analyzes
Solidity-based smart contracts to identify weaknesses. sFuzz automatically examines
smart contracts for various weaknesses and addresses common security concerns. It
can detect various weakness types, including reentry, integer overflow/underflow, and
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timestamp issues. In addition, sFuzz can generate automated transactions to invoke
contract functions and analyze transaction results. The tool produces summary reports that
include details regarding the discovered weaknesses, their locations in the smart contract,
and the outcomes of the executed transactions.

Smartcheck [20] is another tool for detecting security weaknesses in Solidity-based
smart contracts. It analyzes the Solidity code to identify security issues, such as reentrancy,
integer overflow/underflow, logic errors, and incorrect permission settings. A key feature
of SmartCheck is its web-based interface, which allows users to upload smart contracts
and review the results easily. The tool automatically generates a report summarizing the
findings, including information regarding the identified weaknesses, their locations in the
code, detection methods, and risk levels.

Osiris [21] is also designed to detect smart contracts’ security weaknesses. It focuses
on weaknesses such as reentry, integer overflow/underflow, logic errors, and incorrect
permission settings. Similar to SmartCheck, Osiris provides a web interface for users
to visualize results. A notable feature of Osiris is its application programming interface
(API), which enables integration with other systems, making it easy to incorporate into
development and automated security testing processes.

Mythril [22] is a tool for analyzing the security weaknesses of Ethereum smart contracts.
It targets the codes of smart contracts running on the Ethereum blockchain platform, detects
various security issues, and provides relevant information. Mythril performed both static
and dynamic analyses of smart contracts. Static analysis allows code to be examined
without executing it, thus identifying weaknesses early in development. On the other hand,
dynamic analysis allows Mythril to execute the smart contract and monitor for potential
weaknesses and issues during execution.

By comparing the performance of these selected tools against the proposed system
on the constructed dataset, we can evaluate the effectiveness of the proposed approach in
detecting security weaknesses in Solidity smart contracts.

4.3. Training and Evaluation of the Proposed Model

To validate the effectiveness of the proposed system, we utilized a dataset from
Jiang [4] that included samples of Solidity smart contract codes with specific security
weaknesses. The dataset focuses on four weaknesses: SWC-101 (integer overflow and
underflow), SWC-107 (reentrancy), SWC-112 (delegatecall to untrusted callee), and SWC-
116 (block values as a proxy for time). Each weakness category contained labeled samples
indicating whether the code was unexposed (label 0) or exposed (label 1), with the following
distribution: 372 samples for both unexposed and exposed SWC-101; 382 samples for both
unexposed and exposed SWC-107; 202 samples for both unexposed and exposed SWC-
112; and 504 samples for both unexposed and exposed SWC-116. This balanced dataset
facilitates the robust training and evaluation of the proposed security analysis model.

Four key metrics were used to evaluate the performance of the proposed model and the
existing tools: accuracy (ACC), recall (RE), precision (PRE), and F1-score (F1). These metrics
are essential for evaluating the models’ performance and providing a comprehensive view
of their effectiveness in detecting security weaknesses.

Figure 6 illustrates the performance of different analysis tools across the four evaluated
security weaknesses using radar charts. These charts provide a visual comparison of the
tools’ performance based on the four key metrics: accuracy (ACC), recall (RE), precision
(PRE), and F1-score (F1). Each subfigure focuses on a specific weakness: (a) SWE-101,
(b) SWE-107, (c) SWE-112, and (d) SWE-116. The radar charts demonstrate that the proposed
GNN-based model consistently outperforms existing tools across all metrics, showcasing
its robustness and reliability in detecting security weaknesses in Solidity smart contracts.
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Table 4 presents the results of training the proposed model and the comparative
experiments with existing tools. This table summarizes the performance of each tool across
the four selected security weaknesses.

The results show that the proposed GNN-based model achieves significant perfor-
mance improvements across all evaluated security weaknesses compared with existing
tools. The proposed model’s accuracy, recall, precision, and F1-scores were consistently
high, demonstrating its effectiveness in detecting security issues in Solidity smart contracts.
In contrast, existing tools exhibit varying performance levels, excelling at detecting specific
weaknesses and failing in others.
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Table 4. Experimental results of different analysis tools in terms of accuracy (ACC), recall (RE),
precision (PRE), and F1-score (F1).

Weakness/Tools
SWE-101 SWE-107 SWE-112 SWE-116

ACC RE PER F1 ACC RE PER F1 ACC RE PER F1 ACC RE PER F1

sFuzz
[19] 0.45 0.25 0.25 0.25 0.55 0.14 0.10 0.12 0.64 0.47 0.58 0.52 0.33 0.27 0.23 0.24

Smartcheck
[20] 0.53 0.68 0.42 0.52 0.54 0.16 0.45 0.24 0.62 0.56 0.45 0.50 0.47 0.79 0.47 0.59

Osiris
[21] 0.68 0.34 0.60 0.43 0.56 0.63 0.40 0.49 n/a n/a n/a n/a 0.66 0.55 0.59 0.57

Mythril
[22] n/a n/a n/a n/a 0.64 0.75 0.42 0.54 0.75 0.62 0.72 0.66 0.62 0.49 0.57 0.53

Proposed
Method 0.72 0.71 0.72 0.71 0.72 0.77 0.74 0.76 0.67 0.69 0.64 0.67 0.65 0.69 0.70 0.69

This comprehensive evaluation highlights the robustness and efficacy of the proposed
model, suggesting that it provides a reliable tool for smart contract security analysis by
capturing intricate relationships and dependencies within the code more effectively than
traditional static analysis tools.

5. Conclusions

In the current landscape, most security analysis tools for smart contracts are rule-
based, making them specialized for detecting specific weaknesses and prone to generating
many false positives. To address these limitations, this study proposes a novel method
that integrates control and data flow analysis with GNNs to detect security weaknesses
in Solidity smart contracts. This approach begins by converting the Solidity code into an
AST, then generating a CFG and a DFG, which are used to train a GCN model to classify
security weaknesses.

Our method offers a significant advancement over traditional rule-based tools by
providing a robust and reliable solution for detecting a wide range of weaknesses. The
experimental results demonstrate that our system outperforms existing rule-based detection
tools, achieving higher accuracy, recall, precision, and F1 scores in identifying weaknesses
such as integer overflow/underflow, reentrancy, delegate calls to untrusted callees, and
time-based issues. These findings highlight the practical benefits of combining control and
data flow analysis with GNNs to enhance smart contract security.

The key contribution of this research lies in the innovative integration of program
analysis techniques with advanced AI models. By leveraging CFGs and DFGs, our system
captures intricate relationships within the code, often overlooked by traditional tools,
leading to more comprehensive and accurate detection of weaknesses.

While our method shows significant improvements, there are limitations and chal-
lenges to consider. One limitation is the computational complexity associated with gen-
erating and analyzing CFGs and DFGs for large and complex smart contracts. The GNN
model requires substantial computational resources for training, which may not be readily
available in all settings. The accuracy of the model also depends on the quality and diver-
sity of the training dataset, making the availability of comprehensive datasets a potential
challenge. Future research should focus on addressing these limitations and optimizing the
computational efficiency of our method.

The experimental results demonstrate the effectiveness and significance of the pro-
posed system. As more datasets are collected and training is conducted on additional
weaknesses, the system is anticipated to detect a broader range of security weaknesses.
Techniques such as generating synthetic datasets have shown promise in enhancing model
training and evaluation. This study utilized a basic GCN model, but higher performance is
expected by using more advanced and specialized GNN models tailored to specific datasets.



Electronics 2024, 13, 3162 18 of 19

This study also suggests future research directions, such as improving efficiency by
simplifying graphs to include only parts related to security weaknesses and exploring
more advanced GNN models tailored to specific datasets. Additionally, our method can be
extended to incorporate privacy-preserving techniques, such as those used in Blockshare
and SymmeProof, to enhance both security and privacy in smart contracts. Combining our
approach with other blockchain security methods could further enhance overall security,
providing a more comprehensive and resilient solution.

In summary, this study highlights the potential for integrating control flow and data
flow analysis with advanced AI techniques to enhance the detection of security weak-
nesses in smart contracts. Similar to using advanced computational techniques in medical
analyses for precise diagnostics, the proposed approach uses AI to improve software weak-
ness detection. The findings suggest that focusing on the relevant sections of code for
graph generation and exploring more sophisticated GNN models can further improve the
effectiveness and efficiency of the system.

This study’s contributions are significant in enhancing the detection accuracy of smart
contract weaknesses and addressing the limitations of existing tools by reducing false
positives and covering a wider range of weaknesses. This study paves the way for future
advancements by promoting safer and more reliable blockchain environments.
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