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Abstract: With the continuous advancement of deep learning technology, U-Net–based algorithms
for image denoising play a crucial role in medical image processing. However, most U-Net-based
medical image denoising algorithms typically have large parameter sizes, which poses significant
limitations in practical applications where computational resources are limited or large-scale patient
data processing are required. In this paper, we propose a medical image denoising algorithm called
AsymUNet, developed using an asymmetric U-Net framework and a spatially rearranged multilayer
perceptron (MLP). AsymUNet utilizes an asymmetric U-Net to reduce the computational burden,
while a multiscale feature fusion module enhances the feature interaction between the encoder and
decoder. To better preserve the image details, spatially rearranged MLP blocks serve as the core
building blocks of AsymUNet. These blocks effectively extract both the local and global features of
the image, reducing the model’s reliance on prior knowledge of the image and further accelerating
the training and inference processes. Experimental results demonstrate that AsymUNet achieves
superior performance metrics and visual results compared with other state-of-the-art methods.

Keywords: medical image denoising; asymmetric U-Net; multi-scale feature fusion module; spatially
rearrangement MLP blocks

1. Introduction

With the rapid advancement of medical technology, the field of medical image denois-
ing has made significant progress as a fundamental task in computer vision. Despite the
improvements in imaging equipment, medical image denoising continues to present chal-
lenges in real-world applications. As a result, there is a growing interest among scholars
in developing effective medical image denoising algorithms. Medical image denoising is
not only an essential preprocessing step in medical imaging workflows, but it also has a
direct impact on the accuracy and reliability of subsequent analyses. Therefore, achieving
accurate image denoising is crucial for enhancing the quality of medical images.

Traditional denoising methods often rely on filters to remove noise from images. While
these filter-based algorithms are effective, they do have a few drawbacks: (1) each denoising
task requires a specific model, (2) iterative denoising methods are time consuming, (3) they
lack generality for various data types, and (4) manual or semi-automatic parameter tuning
is necessary. These limitations greatly affect the performance of medical image denoising
algorithms. However, with significant advancements in deep-learning algorithms for
medical image denoising, deep-learning-based methods have achieved state-of-the-art
performance by adaptively extracting more complex features from medical image data.
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Among these methods, convolutional neural networks (CNNs) [1–3] stand out for their
ability to learn local patterns from extensive medical image datasets. For medical image
denoising based on deep learning, U-Net-based CNNs [4] are widely used. Meanwhile,
transformers [5–7] have shown impressive results on large datasets by relying less on
predefined data assumptions during training. However, both CNNs and transformers face
challenges: CNNs often struggle with limited receptive fields, which leads to suboptimal
denoising outcomes, while transformers require intricate self-attention mechanisms to
process input data, resulting in a high computational overhead and prolonged inference
times. Therefore, the MLP-mixer architecture, which is based on multilayer perceptrons
(MLPs), emerges as a favorable balance between the two. Specifically, MLPs have lower
data priors and larger receptive fields compared with CNNs, while also being simpler
with smaller computational demands compared with transformer networks. Moreover,
MLPs primarily rely on matrix multiplication, which makes them highly efficient on GPUs
designed for parallel processing. However, despite the excellent performance of MLPs in
many tasks, they do not effectively account for the local information of images. In medical
image denoising tasks, the local self-similarity of images is a crucial attribute, and this
limitation can hinder the performance of MLPs in handling such tasks.

Initially used in biomedical image segmentation, U-Net has also shown outstanding
results in image denoising. Recent research has investigated ways to improve its denois-
ing capabilities by combining U-Net with transformers or adversarial neural networks.
Zhang et al. [7] merged U-Net with transformers, effectively utilizing global image features
at different scales and employing local attention mechanisms to enhance the local image
information. Huang et al. [8] integrated U-Net with adversarial networks to capture both
global and local variations between denoised and original images, resulting in superior
performance metrics. Despite their effectiveness in extracting multiscale feature maps
through their encoder–decoder structure, these U-Net variants become more computation-
ally demanding when additional basic modules are stacked. Additionally, conventional
U-Nets primarily rely on skip connections, which restrict feature map interactions between
different scales. These approaches fail to consider the structural and texture similarities
present in both multiscale and same-scale feature maps, ultimately limiting their denois-
ing capabilities.

To overcome these limitations, we propose the asymmetric multilayer perceptron
U-Net (AsymUNet) for medical image denoising. AsymUNet uses an asymmetric U-Net
architecture to reduce computational load, along with a multiscale feature fusion mod-
ule (MSFFM) to enhance the information interaction between the encoder and decoder.
Furthermore, spatially rearranged multilayer perceptron blocks function as core building
blocks, effectively extracting local features by reorganizing feature map spatial structures.
AsymUNet demonstrates superior performance metrics and improved visual effects com-
pared with existing methods. Extensive experiments confirm AsymUNet’s exceptional
performance across various metrics and its ability to deliver exceptional visual quality. The
primary contributions of this study are summarized as follows:

1. We propose AsymUNet, a denoising algorithm for medical images based on an
asymmetric U-Net framework and a spatially rearranged MLP. AsymUNet effectively
reduces the computational load compared to conventional U-Net structures, while main-
taining an excellent denoising performance.

2. We introduce a MSFFM that integrates the feature information from all scales,
including both multiscale and same-scale feature maps. This improvement in the decoder
greatly enhances the denoising effectiveness and achieves higher performance metrics.

3. We use MLP blocks that are spatially rearranged as core modules in our approach.
These blocks extract local information from a spatial perspective and global information
from a channel perspective, improving image feature representations and preserving image
details. Additionally, MLPs utilize basic matrix multiplication for feature extraction, which
results in a superior inference speed in practical applications.
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The remainder of this paper is organized as follows: Section 2 reviews related work.
Section 3 introduces the AsymUNet model. In Section 4, we present extensive experiments
conducted to evaluate the performance of AsymUNet. Finally, Section 5 concludes the
paper with a summary of findings and potential future directions.

2. The Related Work

In this section, our focus is primarily on two aspects of medical image denoising:
denoising Gaussian grayscale/color medical images and denoising low-dose CT images.

2.1. Grayscale/Color Medical Image Denoising

CNNs have shown a strong performance in denoising Gaussian grayscale/color med-
ical images, particularly in capturing local information and other relevant image priors.
In the early stages of denoising grayscale/color medical images, researchers mainly used
filters for noise reduction. Xu et al. [9] proposed a parallel NLM algorithm that enhances
the noise-weighted kernel function to achieve a higher denoising quality in medical images.
They also utilized GPU-accelerated algorithms for faster inference times. Diwakar et al. [10]
introduced a method that combines the NLM filter with wavelet transform, effectively sup-
pressing noise in medical images by adjusting the wavelet transform threshold, resulting in
improved performance metrics. Fisnandya et al. [11] utilized the block matching and 3D
collaborative filtering (BM3D) algorithm [12] for medical image denoising. This algorithm
aggregates similar feature maps through block matching to achieve excellent measurement
metrics. However, these algorithms often require significant computational resources
and are sensitive to parameter settings, which limit their practical application. Conse-
quently, researchers have increasingly turned their attention to deep learning approaches.
Liu et al. [13] proposed a model for denoising medical images based on a genetic algorithm.
This model enhances performance by using a greedy approach to retain high-performance
genes and suppress defective ones. Rawat et al. [14] developed CVMIDNet, a model based
on complex domain CNNs that combines phase and amplitude information to extract the
feature maps, demonstrating an excellent denoising performance. Dong et al. [15] intro-
duced the feature-guided denoising convolutional neural network, which incorporates
a feature masking layer and hierarchical framework to effectively preserve key feature
information. Geng et al. [16] proposed the content-noise complementary learning method,
which accurately removes noise by separately predicting image content and noise com-
ponents. Sharif et al. [17] introduced a deep dynamic residual attention network that
integrates attention mechanisms into residual CNNs for superior medical image restoration
results. Finally, Ghahremani et al. [18] proposed ADL, leveraging residual blocks and
a feature pyramid to enhance image feature extraction and improve the visual effects in
medical image denoising tasks.

2.2. Low-Dose CT Image Denoising

Low-dose CT (LDCT) denoising of medical images has become a prominent area of
research in deep learning. Traditional methods, such as NLM algorithms and BM3D, have
been widely used for LDCT denoising. For example, Zhang et al. [19] proposed a region-
adaptive NLM algorithm that divides LDCT image pixels based on edge information,
adjusting search windows, block sizes, and filtering parameters to improve visual quality.
Chen et al. [20] introduced an improved BM3D method for reducing noise in LDCT, inte-
grating a visual attention technique to highlight lesions and enhance the imaging contrast
of diseased tissues. However, these traditional approaches rely on manual prior knowledge
and parameter tuning, often resulting in over-smoothing during denoising, which can be
particularly problematic in LDCT due to non-uniform noise that can degrade texture and
structural details. In response, deep learning has emerged as a promising approach by inte-
grating LDCT denoising algorithms with neural networks to automatically extract image
feature maps, achieving a robust performance and better generalization compared with
traditional methods. Chen et al. [21] developed the residual encoder–decoder CNN (RED-
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CNN), which combines auto-encoders, deconvolution networks, and skip connections into
residual networks to effectively preserve more detailed image information. Liang et al. [22]
introduced the edge-enhanced CNN (EDCNN), which incorporates dense connections to
integrate extracted edge information throughout the network, facilitating end-to-end image
denoising. Luthra et al. [23] introduced the transformer architecture into medical image de-
noising, enhancing edge information using learnable Sobel–Feldman operators (EFormer),
thereby improving denoising performance. Additionally, Wolterink et al. [24] combined
GANs with CNNs to effectively suppress noise in LDCT images while maintaining visual
quality. Ma et al. [25] introduced StruNet, an encoder–decoder architecture that integrates
Swin transformer modules and residual blocks, leveraging perceptual loss and low-rank
regularization to reduce noise and artifacts in CT images. Yang et al. [26] proposed a GAN
based on Wasserstein distance and perceptual similarity (WGAN), optimizing network
performance by minimizing differences in feature space and preserving image texture infor-
mation. These advancements underscore how deep learning has enabled the development
of more sophisticated techniques, offering enhanced generalization and better preservation
of intricate image details.

3. AsymUNet

In this section, we provide a detailed explanation of the proposed AsymUNet for
denoising medical images. This explanation covers the overall model structure, the design
of multiscale feature fusion module, the design of basic blocks, and the loss function used
during training.

3.1. Main Framework

As we know, the U-Net architecture has gained widespread popularity in image de-
noising due to its ability to preserve image details through skip connections that transfer
feature maps from the encoder to the decoder. However, this method primarily focuses
on feature maps at specific scales, which can limit its denoising performance. Moreover,
integrating computationally intensive modules such as MLPs or transformers can fur-
ther burden the neural network, impacting its efficiency. To address these challenges,
we propose AsymUNet, a medical image denoising algorithm based on an asymmetric
U-Net framework and spatially rearranged multilayer perceptrons. AsymUNet adopts
an asymmetric U-Net structure to reduce the computational load and processing time
while effectively capturing both global and local information. Additionally, it includes an
MSFFM to enhance the integration of feature maps. Figure 1 illustrates the overall structure
of AsymUNet.
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Figure 1. The overall structure of AsymUNet.
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To reduce the computational load, the asymmetric U-Net reduces the number of basic
blocks in the encoder while enhancing the encoder structure to maintain the denoising
performance despite the smaller model size. At each downsampling layer, the encoder
incorporates feature maps from the degraded image as additional inputs, ensuring that
the texture information at different scales is preserved during the downsampling process.
Effective feature map transfer between the encoder and decoder is crucial for the denoising
performance. To optimize the utilization of multiscale feature maps and enhance the
denoising efficacy, we introduce an MSFFM. This module aims to combine features from
various scales and transfer them effectively to the corresponding decoder layers. The
detailed mechanism of this module will be explained in Section 3.2. As for the decoder
design, we propose an architecture that integrates inputs from three different sources: the
merged feature maps from the MSFFM (FI), the restored features from the previous decoder
layer (FI), and the texture features extracted from the degraded image (FI). By integrating
these three feature maps, the decoder becomes better at reconstructing both the overall
structure and fine details of the image. This decoder architecture functions similarly to a
compact neural network. By inputting comprehensive image features into the decoder, it
significantly reduces the encoder’s workload for feature extraction. To further improve
the model’s computational efficiency, we introduce spatially rearranged MLP blocks that
rely on matrix multiplication as fundamental components. These blocks restructure the
spatial arrangement of features to extract local features and derive global features from
the image from a channel perspective. This approach helps achieve superior performance
metrics. The detailed design of these basic blocks is presented in Section 3.3. Additionally,
AsymUNet uses a three-layer encoder–decoder architecture; at the bottleneck, the feature
maps extracted by the encoders are sent to spatially rearranged MLP blocks, which are then
ready to be decoded through the same number of stages as they were encoded.

3.2. Multiscale Feature Fusion Module

Skip connections are essential in U-Net as they enable crucial interaction between
the encoder and decoder, significantly enhancing feature fusion. However, despite being
efficient and effective, skip connections do not fully exploit the correlations between feature
maps at different scales. This limitation can restrict the denoising performance. Taking
inspiration from research by Li et al. [27], it becomes evident that image feature maps
exhibit commonalities on two levels. Firstly, within images at the same scale, feature
maps at the corresponding positions display significant texture similarity. Secondly, across
images of varying scales, structural feature maps exhibit clear similarities. Building on these
insights, this paper argues that preserving this intrinsic coherence is vital for achieving
comprehensive and effective information integration in multiscale feature fusion.

To effectively reduce noise in medical images, we propose an MSFFM that merges
image feature maps across different scales to preserve as much detail and structure as
possible. Taking a mid-scale MSFFM as an example (Figure 2), this module integrates
four inputs: the feature map FN from the decoder output at the current resolution, the
feature map FHD from the decoder output at a higher resolution, the feature map FLD from
the decoder output at a lower resolution, and the output from the preceding MSFFM. This
fusion process not only maintains the unique structural characteristics of each scale, but
also effectively preserves the texture information at the current scale. The operations of the
MSFFM are represented by Equation (1):

FO = ϕ(FN , FHD, FLD, FBO), (1)

where ϕ denotes the operation of integrating these four feature maps, involving a spatial
rearrangement MLP (SRCMLP) block and a channel attention module; FO represents the
output of the MSFFM at the current resolution; and FBO is the output from the previ-
ous MSFFM.

With the SRCMLP block, AsymUNet efficiently extracts detailed image feature maps.
By introducing the channel attention mechanism, it is able to capture global information



Electronics 2024, 13, 3191 6 of 14

within these feature maps. The resulting output from this module not only contributes
to the next higher resolution fusion feature module, but also significantly enhances the
denoising capability of the decoder within our proposed framework.

MLP

high resolution
feature

origin
 resolution feature

low
 resolution feature

channel  attention
module

output to next MSFFM

Before MSFFM Output

output to decoder

Figure 2. Diagram illustrating the structure of MSFFM.

3.3. Spatial Rearrangement Multilayer Perceptron Block

In MLP-Mixer [28], the Mix-Token MLP block accepts tokens that have been linearly
expanded as the input feature maps, and it uses fully connected layers to model the
relationships between these tokens. However, the fixed input dimensions of the fully
connected layers in the Mix-Token MLP block make it incompatible with the variable image
sizes that are encountered in medical image processing. Furthermore, as the Mix-Token
MLP block extracts global information directly from the sequence on each pass, there is a
risk of overlooking crucial local information.

To address this issue, we propose a SRCMLP block as the foundational block of the
model. Similar to MLP-Mixer, each SRCMLP consists of two sub-blocks: the rearrangement
module (RC) and the channel MLP module (CMLP). These sub-blocks are designed to
extract spatial and channel information from the input feature maps, respectively. Given an
input feature X with dimensions RH×W×C, where H, W, and C represent the height, width,
and original channel count of the image, respectively, the operations of the SRCMLP can be
expressed as shown in Equations (2) and (3):

Y = RC(X) + X (2)

Z = CMLP(Y) + Y (3)

where Y and Z represent the intermediate feature maps and the final output feature maps,
respectively. The specific operations of the RC module are shown in Figure 3. First, the
spatial dimension of the input feature maps is divided into multiple fixed-size blocks
according to a specified square region size. Then, the feature maps in these fixed-size blocks
are reorganized. Suppose the specified side length for division is Len. The input feature map
X with shape H × W × C is divided into T regions, each with a shape of Len × Len × C.
Next, the feature maps of each region are reorganized, transforming the shape of the
input feature map X into H

Len × W
Len × (C × Len × Len). By utilizing two fully connected

layers and a batch normalization (BN) layer, the local information within the input feature
maps are effectively extracted. Finally, the CMLP module is employed to derive global
information from these inputs, ultimately enhancing the network’s denoising performance.

As shown in Figure 4, to capture more detailed image features, the CMLP module
uses a fully connected layer to increase the feature map dimension to 4 × C. Furthermore,
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the inclusion of BN, GELU activation, and dropout improves the stability and performance
of the network, enabling the model to converge quickly. Lastly, a fully connected layer is
employed to restore the original number of channels.

Spatial rearrangement
H

W

C H/2

W/2

C×2×2

Spatial restoration

Figure 3. The proposed rearrangement module.

FC BN GELU Dropout FC Dropout

Input Output

Figure 4. The proposed channel multilayer perceptron module.

In the SRCMLP block, the fully connected layer operation is the primary computational
and parameter burden. Assume the shape of the input feature map is H × W × C. In the
RCMLP module, suppose the region’s side length after division is Len. After rearrangement,
the shape of the feature map becomes H

Len × W
Len × (C × Len × Len). Assume the feature

map dimension in the bottleneck is reduced to C/2. Therefore, the parameter count for the
rearrangement module is (C × Len × Len)× C

2 × 2 = C2Len2. The floating point opera-
tions per second (FLOPs) are calculated as H

Len × W
Len × (C × Len × Len)× C

2 × 2 = HWC2.
Next, in the CMLP module, assume the feature map dimension in the bottleneck is mod-
ified to 4 × C. The parameters and FLOPs for the CMLP are C × 4 × C × 2 = 8C2 and
H × W × C × 4 × C × 2 = 8HWC2, respectively. The total parameter count and FLOPs
are (8 + Len2)C2 and 9HWC2, respectively. If the fully connected layers are replaced by
conventional 3 × 3 convolution layers, the total parameter count and FLOPs would be
(72 + 9Len2)C2 and 81HWC2, respectively, which are significantly greater than the former.
Therefore, SRCMLP has fewer parameters and FLOPs compared with using convolution
operations. MLP uses matrix multiplication instead of convolutional kernels for feature
map processing, significantly improving the computational efficiency through parallel
computation on GPUs.

3.4. The Loss Function

Most image denoising algorithms primarily focus on calculating the loss between
the output image and the clean image. However, in the U-Net architecture, the image
is progressively restored through multiple hierarchical levels. If we only compute the
loss between the final output layer and the clean image, we will overlook the denoising
processes at various stages within the network. To address this issue, AsymUNet introduces
a multiscale loss function, which consists of multiple L1 loss functions. The L1 loss function
can be represented by Equation (4) as follows:

L1(IO, IR) = 1/T
T

∑
t=1

∥It
O − It

R∥ (4)

where IO is the set of original images, IR is the set of images restored by AsymUNet, and It
O

and It
R represent the t-th original image and denoised image, respectively. T is the number

of samples.
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Meanwhile, the multiscale loss function consists of three levels of loss functions, which
can be represented by Equation (5):

Lcout =
E

∑
e=1

Le
1(IO, IR) (5)

where E is the number of layers. The L1 loss will be accumulated between the input and
output images at each layer of the network to account for the overall loss.

To improve the performance of denoising, auxiliary loss terms can be incorporated
into the loss function. For AsymUNet, this involves integrating a multiscale frequency
reconstruction (MSFR) loss function with the existing multiscale loss function. The MSFR
loss measures the L1 distance in the frequency domain at different scales between the
original image and the denoised image. This relationship is represented by Equation (6):

LMSFR(IO, IR) = 1/T
T

∑
t=1

∥F(It
O)− F(It

R)∥ (6)

where F represents the fast Fourier transform (FFT), which converts the image signal into
the frequency domain information.

The overall loss function for training AsymUNet consists of two components: Lcout
and LMSFR. To control the influence of the auxiliary term LMSFR, parameter µ is introduced
as a coefficient before LMSFR. Therefore, the overall loss function can be represented as
shown in Equation (7):

Ltotal = Lcout + µLMSFR (7)

4. Experiments

Section 4.1 describes the experimental setup, while Section 4.2 presents the experimen-
tal results. Additionally, Section 4.3 presents the results of the ablation experiments.

4.1. Experimental Settings

We conducted relevant experiments on the proposed AsymUNet network for various
medical image denoising tasks, including: (1) Gaussian grayscale/color medical image
denoising and (2) LDCT image denoising.

(1) Gaussian Grayscale/Color Medical Image Denoising:Images from the HAM10000
dataset [29] and the Chest X-ray dataset [30] are used as the training and testing datasets.
During training, the white Gaussian noise is added to the training set images. The standard
deviation (σ) is randomly chosen from the interval [0, 55]. The HAM10000 dataset consists
of 10,000 RGB images of pigmented skin lesions from various individuals, each sized
450 × 600 × 3. For training, 9400 images are randomly selected, leaving 300 images for
testing. The chest X-ray dataset was collected from pediatric patients aged one to five at the
Guangzhou Women and Children’s Medical Center. It includes 5216 images for training
and 624 images for testing.

(2) Low-Dose CT Medical Image Denoising: To evaluate the proposed AsymUNet on
the actual medical images, we used the Mayo Clinic CT dataset [31] in our experiments.
This dataset was created for the 2016 Low Dose CT Grand Challenge, which was jointly
organized by the National Institutes of Health, the American Association of Physicists in
Medicine (AAPM), and the Mayo Clinic. Its purpose is to compare different LDCT image
denoising algorithms. The dataset consists of 150 sets of projection data and corresponding
image data obtained from clinical CT examinations using SOMATOM definition CT systems.
For our experiments, we chose 2167 pairs of quarter-dose and full-dose CT images for
training, and 100 pairs for testing.

The AsymUNet network is trained using the PyTorch framework on a workstation
equipped with an Intel(R) Core(TM) i5-13600KF CPU @3.50 GHz processor and an NVIDIA
RTX 3090 GPU. For all of the experiments, the training parameters are configured as
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follows: we employed the AdamW optimizer with parameters β1 = 0.9, β2 = 0.999, and
a weight decay of 1 × 10−4. The loss function used is L1 loss, and training proceeds for
300,000 iterations. The initial learning rate is set to 3 × 10−4 and is decreased gradually
to 1 × 10−6 using a cosine annealing strategy. To facilitate smooth training, a progressive
learning strategy is adopted. Initially, the patch size and batch size are set to 128 × 128 and
8, respectively. As training progresses and the number of iterations reaches 92,000, 156,000,
204,000, 240,000, and 276,000, the patch size and batch size pairs are adjusted as follows:
[(1602, 4), (1922, 3), (2562, 2), (3202, 2), (3842, 1)], respectively.

4.2. Results

In this section, we demonstrate the denoising capabilities of the proposed AsymUNet
on different types of medical images. This includes Gaussian grayscale and color images
from dermatological and pulmonary datasets. Additionally, we demonstrate the network’s
effectiveness in denoising LDCT images.

(1) Denoising of Gaussian Grayscale/Color Medical Images: We evaluated the per-
formance of AsymUNet against four competitive algorithms: the traditional BM3D [12]
algorithm, as well as three deep learning methods including DNCNN [1], ADL [18], and
DRANet [2]. To assess the effectiveness of AsymUNet, we utilized the peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) as evaluation metrics.

To improve the generalizability of the proposed AsymUNet, Gaussian white noise at
various random levels was added to the training images. During the testing phase, the net-
work’s ability to generalize was assessed across five different noise levels:
σ = 10, 15, 25, 35, 50. The experimental results are detailed in Table 1.

Table 1. Comparison of denoising results (AVERAGE ± STANDARD DEVIATION) on Gaussian
Color/Grayscale Medical Images.

Dataset Noise PSNR SSIM

Levels BM3D DNCNN ADL DRANet AsymUNet BM3D DNCNN ADL DRANet AsymUNet

10 37.47 ± 1.3 38.07 ± 1.4 38.82 ± 1.3 39.08 ± 1.4 39.30 ± 1.2 0.91 ± 0.02 0.91 ± 0.02 0.93 ± 0.02 0.93 ± 0.02 0.93 ± 0.01
Human 15 35.92 ± 1.3 35.85 ± 1.7 37.51 ± 1.3 38.01 ± 1.4 38.12 ± 1.3 0.87 ± 0.03 0.86 ± 0.03 0.92 ± 0.02 0.92 ± 0.02 0.92 ± 0.02

25 34.44 ± 1.5 34.94 ± 1.6 36.17 ± 1.4 36.48 ± 1.4 36.71 ± 1.3 0.85 ± 0.03 0.86 ± 0.04 0.87 ± 0.02 0.87 ± 0.03 0.88 ± 0.02
10,000 35 33.45 ± 1.6 33.97 ± 1.7 35.24 ± 1.5 35.63 ± 1.6 35.82 ± 1.4 0.84 ± 0.04 0.84 ± 0.05 0.86 ± 0.02 0.86 ± 0.03 0.87 ± 0.02

50 32.36 ± 1.6 31.28 ± 1.8 34.23 ± 1.6 34.44 ± 1.6 34.87 ± 1.5 0.83 ± 0.04 0.82 ± 0.05 0.84 ± 0.03 0.84 ± 0.03 0.86 ± 0.02

10 38.67 ± 1.1 38.82 ± 1.1 39.61 ± 1.1 39.23 ± 1.1 39.75 ± 1 0.94 ± 0.02 0.94 ± 0.02 0.96 ± 0.02 0.95 ± 0.02 0.96 ± 0.02
Chest 15 37.62 ± 1.1 37.94 ± 1.2 38.62 ± 1.2 38.04 ± 1.1 38.68 ± 1.1 0.91 ± 0.02 0.91 ± 0.02 0.94 ± 0.02 0.92 ± 0.02 0.95 ± 0.02

25 35.48 ± 0.9 35.86 ± 1 37.11 ± 1.2 36.57 ± 1.2 37.16 ± 1.1 0.86 ± 0.02 0.87 ± 0.02 0.89 ± 0.03 0.88 ± 0.02 0.90 ± 0.02
X-ray 35 33.84 ± 0.9 34.54 ± 0.9 35.74 ± 1.1 35.61 ± 1.3 36.15 ± 1.2 0.84 ± 0.02 0.84 ± 0.02 0.86 ± 0.03 0.86 ± 0.03 0.88 ± 0.02

50 32.16 ± 0.7 32.97 ± 1 34.45 ± 1.2 34.69 ± 1 34.95 ± 1 0.83 ± 0.03 0.83 ± 0.03 0.84 ± 0.03 0.84 ± 0.03 0.86 ± 0.03

From the data presented in Table 1, it is evident that AsymUNet shows significant
enhancements in both PSNR and SSIM measurements when compared with the classical
BM3D algorithm. This indicates that AsymUNet is able to make effective use of extensive
medical image datasets to obtain various denoising capabilities, and can adaptively reduce
noise through the application of these learned functions. Additionally, when compared with
other deep-learning algorithms, AsymUNet consistently exhibits a superior performance
across the evaluation metrics, thus underscoring its robust ability to effectively denoise
medical images across various levels of noise.

To showcase the visual capabilities of AsymUNet, Figures 5 and 6 depict the results of
AsymUNet alongside those of other comparable algorithms at a noise level of σ = 25. The
figures illustrate that AsymUNet outperforms the other three methods in terms of clarity
and preservation of image details. Whether applied to the HAM10000 color dataset or the
Chest X-ray grayscale dataset, AsymUNet effectively restores image edges and enhances
contrast, thereby preserving important image details.

(2) Low-Dose CT Image Denoising: This section highlights the effectiveness of Asy-
mUNet in reducing noise in LDCT medical images. The model’s performance was eval-
uated using the Mayo Clinic LDCT Grand Challenge dataset from the AAPM. Table 2
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presents the test results comparing AsymUNet to WGAN [26], EDCNN [22], REDCNN [21],
and Eformer [23] on the AAPM dataset. The results indicate that AsymUNet outperforms
all comparison algorithms, underscoring its superior denoising capability for medical im-
ages. Additionally, Figure 7 visually demonstrates AsymUNet’s performance on the AAPM
dataset, showing its ability to effectively reduce noise while preserving crucial image
details, thereby significantly mitigating the risk of misdiagnosis in medical applications.

Noisy Image BM3D DNCNN

ADL DRANet AsymUNet

Figure 5. Denoising results on the HAM10000.

Noisy Image BM3D DNCNN

ADL DRANet AsymUNet

Figure 6. Denoising results on the Chest X-ray.

Table 2. Comparison of Denoising Results(AVERAGE ± STANDARD DEVIATION) on Low-Dose
CT Images.

Dataset
PSNR SSIM

WGAN EDCNN REDCNN EFormer AsymUNet WGAN EDCNN REDCNN EFormer AsymUNet

AAPM 38.60 ± 1.7 42.08 ± 1.6 42.38 ± 1.6 43.48 ± 1.4 44.67 ± 1.4 0.9647 ± 0.0316 0.9866 ±
0.0287

0.9856 ±
0.0224

0.9852 ±
0.0292

0.9864 ±
0.0213

In real-world applications, the processing speed of neural networks is crucial. There-
fore, we also compared the inference times of different models. Figure 8 shows the total
inference time for each model on the HAM10000 test set. Among these models, AsymUNet
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demonstrates the fastest inference speed. This advantage is attributed to its asymmetric
U-Net architecture and MLP-based structure, which collectively reduce the computational
time significantly.

Noisy Image Denoised Image

Figure 7. Denoising results on the AAPM.
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Figure 8. Comparison of the inference time for each model.

4.3. Ablation Experiments

To further investigate the effectiveness of various components, this section carried out
several ablation experiments. All of the experiments were performed using the Chest X-ray
dataset, utilizing a consistent progressive training strategy. For testing, the test set from
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the Chest X-ray dataset was utilized, and all of the results were evaluated in the presence
of Gaussian noise with a noise level of σ = 25. The influence of each component will be
discussed in the subsequent sections.

(1) Multiscale Feature Fusion Module: In this subsection, we conducted experiments
where the skip connection part of the MSFFM in AsymUNet was removed, resulting in
a model referred to as Baseline. We compared the experimental results of Baseline, Base-
line + Skip Connection (SC), and Baseline + MSFFM. Table 3 illustrates that incorporating
MSFFM leads to better metrics compared with using only skip connections. This high-
lights that integrating feature maps across multiple scales and transmitting them to the
decoder allows the model to effectively utilize image features, thereby achieving a superior
denoising performance.

Table 3. Ablation experiments for the MSFFM.

NetWork PSNR (dB) SSIM
Baseline (a) 36.14 88.62

Baseline+SC (b) 36.85 90.34
Baseline+MSFFM (c) 37.16 90.73

(2) Spatial Rearrangement Multilayer Perceptron Block: To assess the effectiveness of
SRCMLP, we conducted an experiment where SRCMLP was removed from AsymUNet
and replaced with a standard MLP, denoted as W/O SRCMLP. As indicated in Table 4,
the denoising performance of the neural network notably decreased after the removal
of SRCMLP.

Table 4. Ablation experiments for the SRCMLP.

NetWork PSNR (dB) SSIM
AsymUNet 37.16 90.73

W/O SRCMLP 37.19 89.65

(3) Asymmetric U-Net: Table 5 presents the computational load and denoising perfor-
mance results comparing the Asymmetric U-Net with the Symmetric U-Net. It is evident that
the asymmetric variant reduced the computational load by nearly a quarter while maintaining
a equivalent denoising performance compared with the symmetric counterpart.

Table 5. Ablation experiments for the asymmetric U-Net.

NetWork PSNR (dB) SSIM FLOPs (G) Params (M)
SymUNet 37.18 90.74 220.93 20.52

AsymUNet 37.16 90.73 177.44 18.20

5. Conclusions

This paper presents AsymUNet, an asymmetric multilayer perceptron U-Net designed
to improve the denoising performance while reducing the inference time. AsymUNet
utilizes an asymmetric U-Net architecture, which contributes to its efficiency gains. Addi-
tionally, the model incorporates SRCMLP as a foundational block, enhancing performance
metrics and accelerating inference by utilizing RCMLP for local information extraction
and CMLP for global information extraction. Furthermore, taking inspiration from the
similarities in structure and texture across multiscale and same-scale feature maps, the
paper introduces an MSFFM. This module enhances information flow between the encoder
and decoder, thereby improving the overall denoising effectiveness. By combining these
advancements, AsymUNet achieves state-of-the-art performance in both color/gray image
denoising and LDCT image denoising tasks. Specifically, on the AAPM dataset, the pro-
posed AsymUNet demonstrated a superior performance, achieving PSNR and SSIM scores
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of 44.67 dB and 0.9864, respectively. Notably, it exhibited an average PSNR improvement
of 1.19 dB over its closest rival (EFormer).
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