Unsupervised Classification of Spike Patterns with the Loihi Neuromorphic Processor
Abstract
:1. Introduction
- We exploit a mean-field theory-guided approach for unsupervised learning of attractor dynamics in the Loihi neuromorphic processor.
- We demonstrate the on-chip attractor network’s pattern completion and error correction properties.
- We measure energy during unsupervised learning, infer attractor dynamics on the Loihi neuromorphic processor, and compare our results with analog and in-memory computing solutions.
2. Background
3. Methods
3.1. The Loihi Neuromorphic Processor
3.2. Neuron Model
3.3. Design of Attractor Network
3.4. Theory-Guided Parameter Tuning
3.5. Mapping Attract Networks in the Loihi Neuromorphic Processor
- The maximum number of neurons in any given core must not exceed 1024.
- The maximum fan-in state mapped to any given core must not exceed 128 KB.
- The maximum number of core-to-core fan-out connections stored on the output side of any given core must not exceed 4096.
- The maximum number of stored on the input side of any given core must not exceed 4096.
3.6. Attractor Network Dynamics
3.7. Learning Rule
3.8. Experimental Setup and Configuration of the Loihi Neuromorphic Processor
3.9. Attractor Formation via Unsupervised Stimuli
4. Results
4.1. Unsupervised Learning of Attractor Dynamics
4.2. Error Correction and Pattern Completion
4.3. Energy Profiling
5. Discussion
5.1. Attractor Networks in Neuromorphic Hardware: Comparison and Trade-Offs
5.2. Practical Implications and Potential Integrations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mead, C. Analog VLSI Implementation of Neural Systems; The Kluwer International Series in Engineering and Computer Science; Springer: Boston, MA, USA, 1989; Volume 80. [Google Scholar] [CrossRef]
- Mattia, M.; Pani, P.; Mirabella, G.; Costa, S.; Del Giudice, P.; Ferraina, S. Heterogeneous attractor cell assemblies for motor planning in premotor cortex. J. Neurosci. 2013, 33, 11155–11168. [Google Scholar] [CrossRef] [PubMed]
- Deco, G.; Rolls, E.T. Attention, short-term memory, and action selection: A unifying theory. Prog. Neurobiol. 2005, 76, 236–256. [Google Scholar] [CrossRef] [PubMed]
- Rolls, E.T. Memory, Attention, and Decision-Making: A Unifying Computational Neuroscience Approach; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Wang, X.J. Probabilistic Decision Making by Slow Reverberation in Cortical Circuits. Neuron 2002, 36, 955–968. [Google Scholar] [CrossRef]
- Gigante, G.; Mattia, M.; Braun, J.; Del Giudice, P. Bistable perception modeled as competing stochastic integrations at two levels. PLoS Comput. Biol. 2009, 5, e1000430. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, B.A.; Yan, H.; Maffei, A.; Park, I.M.; Fontanini, A.; Wang, J.; La Camera, G. Metastable dynamics of neural circuits and networks. Appl. Phys. Rev. 2022, 9, 011313. [Google Scholar] [CrossRef]
- Zhang, W.; Li, P. Spike-train level backpropagation for training deep recurrent spiking neural networks. Adv. Neural Inf. Process. Syst. 2019, 32. Available online: https://proceedings.neurips.cc/paper_files/paper/2019 (accessed on 8 June 2024).
- Yin, B.; Corradi, F.; Bohté, S.M. Accurate online training of dynamical spiking neural networks through Forward Propagation Through Time. Nat. Mach. Intell. 2023, 5, 518–527. [Google Scholar] [CrossRef]
- Deng, S.; Lin, H.; Li, Y.; Gu, S. Surrogate Module Learning: Reduce the Gradient Error Accumulation in Training Spiking Neural Networks. In Proceedings of the 40 th International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023. [Google Scholar]
- Del Giudice, P.; Fusi, S.; Mattia, M. Modelling the formation of working memory with networks of integrate-and-fire neurons connected by plastic synapses. J. Physiol. Paris 2003, 97, 659–681. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 2018, 38, 82–99. [Google Scholar] [CrossRef]
- Gallego, J.A.; Perich, M.G.; Miller, L.E.; Solla, S.A. Neural manifolds for the control of movement. Neuron 2017, 94, 978–984. [Google Scholar] [CrossRef]
- Axmacher, N.; Mormann, F.; Fernández, G.; Cohen, M.X.; Elger, C.E.; Fell, J. Sustained neural activity patterns during working memory in the human medial temporal lobe. J. Neurosci. 2007, 27, 7807–7816. [Google Scholar] [CrossRef]
- Miller, J.F.; Neufang, M.; Solway, A.; Brandt, A.; Trippel, M.; Mader, I.; Hefft, S.; Merkow, M.; Polyn, S.M.; Jacobs, J.; et al. Neural activity in human hippocampal formation reveals the spatial context of retrieved memories. Science 2013, 342, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, P.; Nieder, A. Neuronal correlates of a visual “sense of number” in primate parietal and prefrontal cortices. Proc. Natl. Acad. Sci. USA 2013, 110, 11187–11192. [Google Scholar] [CrossRef]
- Chicca, E.; Stefanini, F.; Bartolozzi, C.; Indiveri, G. Neuromorphic electronic circuits for building autonomous cognitive systems. Proc. IEEE 2014, 102, 1367–1388. [Google Scholar] [CrossRef]
- Indiveri, G.; Linares-Barranco, B.; Hamilton, T.J.; Schaik, A.V.; Etienne-Cummings, R.; Delbruck, T.; Liu, S.C.; Dudek, P.; Häfliger, P.; Renaud, S.; et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 2011, 5, 73. [Google Scholar] [CrossRef]
- Camilleri, P.; Giulioni, M.; Mattia, M.; Braun, J.; Del Giudice, P. Self-sustained activity in attractor networks using neuromorphic VLSI. In Proceedings of the International Joint Conference on Neural Networks, Barcelona, Spain, 18–23 July 2010. [Google Scholar] [CrossRef]
- Giulioni, M.; Corradi, F.; Dante, V.; Del Giudice, P. Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems. Sci. Rep. 2015, 5, 14730. [Google Scholar] [CrossRef] [PubMed]
- Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128 × 128 120 dB 15 μs latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 2008, 43, 566–576. [Google Scholar] [CrossRef]
- Pfeil, T.; Grübl, A.; Jeltsch, S.; Müller, E.; Müller, P.; Petrovici, M.A.; Schmuker, M.; Brüderle, D.; Schemmel, J.; Meier, K. Six networks on a universal neuromorphic computing substrate. Front. Neurosci. 2013, 7, 11. [Google Scholar] [CrossRef]
- Qiao, N.; Mostafa, H.; Corradi, F.; Osswald, M.; Stefanini, F.; Sumislawska, D.; Indiveri, G. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses. Front. Neurosci. 2015, 9, 141. [Google Scholar] [CrossRef]
- Corradi, F.; You, H.; Giulioni, M.; Indiveri, G. Decision making and perceptual bistability in spike-based neuromorphic VLSI systems. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 2708–2711. [Google Scholar] [CrossRef]
- Partzsch, J.; Mayr, C.; Giulioni, M.; Noack, M.; Hänzsche, S.; Scholze, S.; Höppner, S.; Giudice, P.D.; Schüffny, R. Mean field approach for configuring population dynamics on a biohybrid neuromorphic system. J. Signal Process. Syst. 2020, 92, 1303–1321. [Google Scholar] [CrossRef]
- Cotteret, M.; Richter, O.; Mastella, M.; Greatorex, H.; Janotte, E.; Girão, W.S.; Ziegler, M.; Chicca, E. Robust Spiking Attractor Networks with a Hard Winner-Take-All Neuron Circuit. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; pp. 1–5. [Google Scholar]
- Zendrikov, D.; Solinas, S.; Indiveri, G. Brain-inspired methods for achieving robust computation in heterogeneous mixed-signal neuromorphic processing systems. Neuromorphic Comput. Eng. 2023, 3, 034002. [Google Scholar] [CrossRef]
- de Vangel, B.C.; Torres-Huitzil, C.; Girau, B. Spiking dynamic neural fields architectures on fpga. In Proceedings of the 2014 International Conference on ReConFigurable Computing and FPGAs (ReConFig14), Cancun, Mexico, 8–10 December 2014; pp. 1–6. [Google Scholar]
- Chappet De Vangel, B.; Torres-Huitzil, C.; Girau, B. Randomly spiking dynamic neural fields. ACM J. Emerg. Technol. Comput. Syst. 2015, 11, 1–26. [Google Scholar] [CrossRef]
- de Vangel, B.C.; Torres-Huitzil, C.; Girau, B. Event based visual attention with dynamic neural field on FPGA. In Proceedings of the 10th International Conference on Distributed Smart Camera, Paris, France, 12–15 September 2016; pp. 142–147. [Google Scholar]
- You, H.; Zhao, K. Neuromorphic Implementation of a Continuous Attractor Neural Network with Various Synaptic Dynamics. IEEE Access 2021, 9, 109224–109240. [Google Scholar] [CrossRef]
- Furber, S.B.; Galluppi, F.; Temple, S.; Plana, L.A. The spinnaker project. Proc. IEEE 2014, 102, 652–665. [Google Scholar] [CrossRef]
- Furber, S.; Bogdan, P. Spinnaker—A Spiking Neural Network Architecture; Now Publishers: Boston, MA, USA; Delft, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Yan, Y.; Stewart, T.C.; Choo, X.; Vogginger, B.; Partzsch, J.; Höppner, S.; Kelber, F.; Eliasmith, C.; Furber, S.; Mayr, C. Comparing Loihi with a SpiNNaker 2 prototype on low-latency keyword spotting and adaptive robotic control. Neuromorph. Comput. Eng. 2021, 1, 014002. [Google Scholar] [CrossRef]
- Yousefzadeh, A.; Van Schaik, G.J.; Tahghighi, M.; Detterer, P.; Traferro, S.; Hijdra, M.; Stuijt, J.; Corradi, F.; Sifalakis, M.; Konijnenburg, M. SENeCA: Scalable energy-efficient neuromorphic computer architecture. In Proceedings of the 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), Incheon, Republic of Korea, 13–15 June 2022; pp. 371–374. [Google Scholar]
- Tang, G.; Vadivel, K.; Xu, Y.; Bilgic, R.; Shidqi, K.; Detterer, P.; Traferro, S.; Konijnenburg, M.; Sifalakis, M.; van Schaik, G.J.; et al. SENECA: Building a fully digital neuromorphic processor, design trade-offs and challenges. Front. Neurosci. 2023, 17, 1187252. [Google Scholar] [CrossRef] [PubMed]
- Orchard, G.; Frady, E.P.; Rubin, D.B.D.; Sanborn, S.; Shrestha, S.B.; Sommer, F.T.; Davies, M. Efficient neuromorphic signal processing with loihi 2. In Proceedings of the 2021 IEEE Workshop on Signal Processing Systems (SiPS), Coimbra, Portugal, 19–21 October 2021; pp. 254–259. [Google Scholar]
- Davies, M. Taking neuromorphic computing to the next level with Loihi2. Intel Labs’ Loihi 2021, 2, 1–7. [Google Scholar]
- Lin, C.K.; Wild, A.; Chinya, G.N.; Cao, Y.; Davies, M.; Lavery, D.M.; Wang, H. Programming Spiking Neural Networks on Intel’s Loihi. Computer 2018, 51, 52–61. [Google Scholar] [CrossRef]
- Mosier, D.R. CHAPTER 1—Clinical Neuroscience. In Neurology Secrets, 5th ed.; Rolak, L.A., Ed.; Mosby: Philadelphia, PA, USA, 2010; pp. 7–17. ISBN 978-0-323-05712-7. [Google Scholar] [CrossRef]
- Fusi, S.; Mattia, M. Collective behavior of networks with linear (VLSI) integrate-and-fire neurons. Neural Comput. 1999, 11, 633–652. [Google Scholar] [CrossRef]
- Caporale, N.; Dan, Y. Spike timing-dependent plasticity: A Hebbian learning rule. Annu. Rev. Neurosci. 2008, 31, 25–46. [Google Scholar] [CrossRef]
- Susman, L.; Brenner, N.; Barak, O. Stable memory with unstable synapses. Nat. Commun. 2019, 10, 4441. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Deng, L.; Song, S.; Zhao, M.; Zhang, Y.; Wu, S.; Wang, G.; Zou, Z.; Wu, Z.; He, W.; et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 2019, 572, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.C.; Tully, P.J.; Kaplan, B.A.; Lansner, A.; Furber, S.B. Large-scale simulations of plastic neural networks on neuromorphic hardware. Front. Neuroanat. 2016, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Painkras, E.; Plana, L.A.; Garside, J.; Temple, S.; Galluppi, F.; Patterson, C.; Lester, D.R.; Brown, A.D.; Furber, S.B. SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid-State Circuits 2013, 48, 1943–1953. [Google Scholar] [CrossRef]
- Höppner, S.; Yan, Y.; Dixius, A.; Scholze, S.; Partzsch, J.; Stolba, M.; Kelber, F.; Vogginger, B.; Neumärker, F.; Ellguth, G.; et al. The SpiNNaker 2 processing element architecture for hybrid digital neuromorphic computing. arXiv 2021, arXiv:2103.08392. [Google Scholar]
- Deng, L.; Wang, G.; Li, G.; Li, S.; Liang, L.; Zhu, M.; Wu, Y.; Yang, Z.; Zou, Z.; Pei, J.; et al. Tianjic: A unified and scalable chip bridging spike-based and continuous neural computation. IEEE J. Solid-State Circuits 2020, 55, 2228–2246. [Google Scholar] [CrossRef]
- Yu, L.; Chu, T.; Zhao, Z.; Mi, Y.; Yang, Y.; Wu, S. Spiking continuous attractor neural networks with spike frequency adaptation for anticipative tracking. In Proceedings of the 2019 IEEE International Workshop on Future Computing (IWOFC), Hangzhou, China, 14–15 December 2019; pp. 1–3. [Google Scholar]
- Neckar, A.; Fok, S.; Benjamin, B.V.; Stewart, T.C.; Oza, N.N.; Voelker, A.R.; Eliasmith, C.; Manohar, R.; Boahen, K. Braindrop: A mixed-signal neuromorphic architecture with a dynamical systems-based programming model. Proc. IEEE 2018, 107, 144–164. [Google Scholar] [CrossRef]
- Moradi, S.; Qiao, N.; Stefanini, F.; Indiveri, G. A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE Trans. Biomed. Circuits Syst. 2017, 12, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Indiveri, G.; Corradi, F.; Qiao, N. Neuromorphic architectures for spiking deep neural networks. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 2–4. [Google Scholar]
- Cramer, B.; Kreft, M.; Billaudelle, S.; Karasenko, V.; Leibfried, A.; Müller, E.; Spilger, P.; Weis, J.; Schemmel, J.; Muñoz, M.A.; et al. Autocorrelations from emergent bistability in homeostatic spiking neural networks on neuromorphic hardware. Phys. Rev. Res. 2023, 5, 033035. [Google Scholar] [CrossRef]
- Pershin, Y.V.; Slipko, V.A. Dynamical attractors of memristors and their networks. Europhys. Lett. 2019, 125, 20002. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, L.; Wu, S.; Huang, R.; Yang, Y. Memristor-Based Biologically Plausible Memory Based on Discrete and Continuous Attractor Networks for Neuromorphic Systems. Adv. Intell. Syst. 2020, 2, 2000001. [Google Scholar] [CrossRef]
- Wei, Q.; Gao, B.; Tang, J.; Qian, H.; Wu, H. Emerging Memory-Based Chip Development for Neuromorphic Computing: Status, Challenges, and Perspectives. IEEE Electron Devices Mag. 2023, 1, 33–49. [Google Scholar] [CrossRef]
- Ielmini, D.; Milo, V. Brain-inspired memristive neural networks for unsupervised learning. In Handbook of Memristor Networks; Springer: Berlin/Heidelberg, Germany, 2019; pp. 495–525. [Google Scholar]
- Milo, V.; Pedretti, G.; Laudato, M.; Bricalli, A.; Ambrosi, E.; Bianchi, S.; Chicca, E.; Ielmini, D. Resistive Switching Synapses for Unsupervised Learning in Feed-Forward and Recurrent Neural Networks. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Davies, M.; Wild, A.; Orchard, G.; Sandamirskaya, Y.; Guerra, G.A.F.; Joshi, P.; Plank, P.; Risbud, S.R. Advancing Neuromorphic Computing with Loihi: A Survey of Results and Outlook. Proc. IEEE 2021, 109, 911–934. [Google Scholar] [CrossRef]
Time Step | ||||
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
7650 | 0.017 | 0.030 | 0.015 | 0.014 |
15,300 | 0.048 | 0.126 | 0.095 | 0.044 |
22,950 | 0.127 | 0.121 | 0.112 | 0.109 |
30,600 | 0.125 | 0.127 | 0.119 | 0.130 |
Learning | Inference | |
---|---|---|
Execution time per time step (s) | 3974 | 4658 |
Total power (mW) | 786 | 808 |
Total static power (mW) | 768 | 789 |
Total dynamic power (mW) | 18 | 19 |
Static power in Neurocores (mW) | 4 | 5 |
Dynamic power in Neurocores (mW) | 6 | 5 |
Dynamic energy in Neurocores (J/time step) | 23 | 22 |
Loihi [12] | SpiNNaker [45,46] | SpiNNaker2 [47] | Tianjic [48,49] | Braindrop [50] | DynapSE [51,52] | BSS-2 [53] | |
---|---|---|---|---|---|---|---|
Technology | 14 nm FinFet | 130 nm | 22 nm FDSOI | 28 nm HLP | 28 nm FDSOI | 180 nm | 65 nm LP |
Supply voltage (V) | 0.50 V–1.25 V | 1.2 V | 0.45–0.6 | 0.85 V | 1 V | 1.3 V | 0.9 V–1.26 V |
Design Style | digital | digital | digital | digital | mixed-signal | mixed-signal | mixed-signal |
>23.6 pJ | >26.6 nJ | 10–20 pJ | 1.54 pJ | 381 fJ | 2.8–17 pJ | O (10 pJ) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuo, R.; Elgaradiny, A.; Corradi, F. Unsupervised Classification of Spike Patterns with the Loihi Neuromorphic Processor. Electronics 2024, 13, 3203. https://doi.org/10.3390/electronics13163203
Matsuo R, Elgaradiny A, Corradi F. Unsupervised Classification of Spike Patterns with the Loihi Neuromorphic Processor. Electronics. 2024; 13(16):3203. https://doi.org/10.3390/electronics13163203
Chicago/Turabian StyleMatsuo, Ryoga, Ahmed Elgaradiny, and Federico Corradi. 2024. "Unsupervised Classification of Spike Patterns with the Loihi Neuromorphic Processor" Electronics 13, no. 16: 3203. https://doi.org/10.3390/electronics13163203
APA StyleMatsuo, R., Elgaradiny, A., & Corradi, F. (2024). Unsupervised Classification of Spike Patterns with the Loihi Neuromorphic Processor. Electronics, 13(16), 3203. https://doi.org/10.3390/electronics13163203