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Abstract: A long-standing research goal is to develop computing technologies that mimic the brain’s
capabilities by implementing computation in electronic systems directly inspired by its structure,
function, and operational mechanisms, using low-power, spike-based neural networks. The Loihi
neuromorphic processor provides a low-power, large-scale network of programmable silicon neurons
for brain-inspired artificial intelligence applications. This paper exploits the Loihi processors and a
theory-guided methodology to enable unsupervised learning of spike patterns. Our method ensures
efficient and rapid selection of the network’s hyperparameters, enabling the neuromorphic processor
to generate attractor states through real-time unsupervised learning. Precisely, we follow a fast
design process in which we fine-tune network parameters using mean-field theory. Moreover, we
measure the network’s learning ability regarding its error correction and pattern completion aptitude.
Finally, we observe the dynamic energy consumption of the neuron cores for each millisecond
of simulation equal to 23 µJ/time step during the learning and recall phase for four attractors
composed of 512 excitatory neurons and 256 shared inhibitory neurons. This study showcases how
large-scale, low-power digital neuromorphic processors can be quickly programmed to enable the
autonomous generation of attractor states. These attractors are fundamental computational primitives
that theoretical analysis and experimental evidence indicate as versatile and reusable components
suitable for a wide range of cognitive tasks.

Keywords: neuromorphic computing; unsupervised learning; spiking neural networks; working
memory; attractor dynamics

1. Introduction

The concept of neuromorphic computing, as first presented in Mead’s work [1], in-
volves the creation of circuits, systems, and architectures that emulate the neuronal and
synaptic dynamics of neurobiological systems. The main goal is to achieve computa-
tional efficiency and functionalities similar to those found in biological systems but within
artificial devices.

One of the notable capabilities of the brain is decision-making, a vital function per-
formed within specific cortical regions such as the parietal, prefrontal, and premotor
areas [2,3]. Neurons within these regions display sustained activity during the brain’s pro-
cessing of sensory input, which it intends to retain within its working memory. Networks
that exhibit self-sustained activity have the potential to maintain memory and facilitate the
formation of bistable decisions, thus supporting various behaviors.

Importantly, slow-reverberating attractor networks offer a theoretical framework for
understanding how decision-making circuits in the neocortex form categorical choices [4,5].
Bistability allows these networks to generate two distinct states with low and high firing
rates, where the input stimulus level determines the specific state. This state representation
is known as an attractor or associative memory. Such properties emerge based on a balanced
interplay of excitatory and inhibitory interactions between neuronal populations [6,7].
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Replicating this behavior within large-scale neuromorphic devices holds potential
advantages in devising artificial intelligence systems with decision-making and working
memory abilities that draw inspiration from the brain and are grounded in the same under-
lying physical phenomena. However, the challenge of implementing large-scale recurrent
networks on neuromorphic devices through unsupervised online learning dynamics re-
mains open. This is because training recurrent dynamics with traditional backpropagation
methods requires storing the entire history of activations and the use of a surrogate gradient
approach [8], making training a computationally expensive task that is not bio-realistic and
subject to errors such as vanishing gradient and error accumulation. Many methods are
being proposed to solve these issues. Recently, Yin et al., focused on addressing memory
issues [9], while Deng et al., proposed a new surrogate model to reduce the accumula-
tion of gradient errors [10]. However, these methods are computationally expensive and
still require supervised training. Thus, this work explores neural parameters through a
theory-guided methodology rather than training the spiking recurrent neural network via
methods such as backpropagation or other supervised techniques.

In this work, we follow a theoretical approach proposed by Del Giudice et al. [11],
which obviates the need for extensive preliminary parameter training of the network.
Instead, the focus shifts towards configuring the network to be ready for learning. This
approach allows the network to adapt the network’s weights in an unsupervised fashion
and avoids the need for external supervision.

We employ a mean-field theory approach and demonstrate the autonomous learning
of attractor dynamics in a modern digital spike-based microchip, the Loihi neuromorphic
processor [12]. This mean-field technique allows us to showcase on-chip distributed
learning by creating self-sustained bi-stable activity (i.e., hi- and low-stable neuronal firing
rates). Moreover, we demonstrate how to facilitate the system’s rapid expansion into a more
extensive network featuring multiple attractors, demonstrating the system’s scalability.

Finally, we assess the on-chip system’s error correction and pattern-completion abili-
ties, and we evaluate the Loihi neuromorphic processor’s power consumption as a bench-
mark for gauging the attractor network’s performance.

In essence, the main contributions of this research are as follows:

• We exploit a mean-field theory-guided approach for unsupervised learning of attractor
dynamics in the Loihi neuromorphic processor.

• We demonstrate the on-chip attractor network’s pattern completion and error correc-
tion properties.

• We measure energy during unsupervised learning, infer attractor dynamics on the
Loihi neuromorphic processor, and compare our results with analog and in-memory
computing solutions.

2. Background

Over the past several decades, a significant body of research has been directed toward
understanding how the brain’s activity patterns correspond to the encoding of sensory
inputs. These investigations aim to explain how sensory information is integrated and pro-
cessed in the brain to generate contextual behavior. This includes but is not limited to, the
translation of spike patterns into muscle movements [13], the formation and maintenance of
working memories [14], spatial navigation [15], and also an abstract conceptual understand-
ing as the concept of quantity, known as numerosity [16], or perceptual decision-making
processes [5].

Within this context, attractor neural networks emerge as reusable components in
all these functions. Attractor neural networks are recurrent neural networks in which
the dimensionality of neural population activity is much lower than the population size.
Attractor states refer to the stable patterns of neural activity that a network can converge to
and maintain over time. These states are like “memories” that the network can recall when
given an input similar to what it has learned before. In the context of this work, attractor
states represent stable spiking frequencies of neuronal subpopulations that can persist
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even in the absence of the initial stimulus. These states are crucial, as they form the basis
for the network’s ability to store and retrieve information, demonstrating capabilities like
error correction and pattern completion. Moreover, the fact that recurrent neural networks
in the brain exhibit attractor dynamics suggests a strategy that maps low-dimensional
dynamics to a high-dimensional neural space as a standard feature of the brain’s systems
and is present in many functions, such as decision-making and working memories. While
this method is but one tool in a more extensive arsenal, this strategy provides a link
to the spiking neural activation, and it is used to explain and predict actions based on
sensory perceptions. Additionally, the inherent match between attractor dynamics and the
characteristics of biological neural systems, specifically their tolerance for noise, temporal
imprecision, and hardware heterogeneity, facilitate integrating these dynamics into many
neuromorphic platforms.

Self-sustained attractor dynamics and their formation can be modeled with integrate-
and-fire neurons endowed with plastic synapses [11]. We employ a mean-field theory
approach to simplify the analysis of recurrent networks composed of integrate-and-fire
neurons. Mean field theory is a mathematical approach that is helpful in simplifying
the analysis of large and complex networks by averaging the effects of all the individual
components. In the context of our work, mean field theory helps us predict the network’s
behavior by focusing on the average input and output activities of neurons rather than
tracking every single neuron’s activity. This approach is instrumental in guiding the
selection of network parameters, ensuring that the network can form stable attractor
states. We can use mean-field theory to determine the effective transfer function and set
parameters that facilitate the network’s ability to exhibit attractor dynamics. This approach
has often been used in computational neuroscience when modeling biological neural
networks [3–5,11].

Additionally, these models have been mapped into ultra-low-power neuromorphic
devices using a mixed-signal design style in several Very Large-Scale Integration (VLSI)
technology nodes. These mixed-signal implementations have demonstrated ultra-low-
power performance while emulating complex neuronal and synaptic dynamics [17,18].
In 2010, Camilleri et al. [19] investigated the use of mean-field theory to determine neu-
ronal parameters and successfully designed an attractor network capable of exhibiting
bistable spiking activity with low- and high-frequency firing states. The study demon-
strated the behavior of the network implemented on silicon and its alignment with the
effective transfer function (ETF) derived from the mean-field theory. Building upon this
work, in 2015, Giulioni et al. in [20] demonstrated an attractor network in an analog VLSI
system capable of learning to form two attractors and performing image classification
of non-overlapping input stimuli from a silicon retina [21]. Other studies have also en-
coded attractor networks in mixed-signal chips and demonstrated bio-realistic behaviors,
as the slow integration of perceptual evidence and the collapse in stable fixed points of
network’s dynamics [22–25] as modeled by computational neuroscientists [5]. More re-
cently, in 2023, Cotteret et al. [26] demonstrated stable persistent-firing attractor dynamics
in an analog on-chip network consisting of a hard Winner-Take-All SNN by implement-
ing silicon neurons with excitatory recurrent synapses. Although analog neurons better
capture the behavior of real biological neurons [27], the size of these networks has been
constrained by the engineering and fabrication effort required. For these reasons, Field
Programmable Gate Array (FPGA) implementations have also been proposed to model
attractor dynamics [28–31]; these allow the programming of many biophysically realistic
synaptic models with slow and non-linear synapses, which are essential in emulating slow
ramp-up activities in perceptual decision-making tasks.

In order to advance beyond these endeavors, our investigation focuses on the applica-
bility of such theories in a modern, large-scale digital neuromorphic device, the Intel Loihi.
The Loihi chip offers the advantage of being a large-scale spiking neural network device
realized with an advanced 14 nm technology node and can simulate up to 128 thousand
neurons within an area of 0.41 mm2. The newer version of Intel, the Loihi-2, is fabricated in
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a 4 nm technology node and can host up to 1 million neurons within an area of 0.21 mm2,
i.e., smaller than a fingertip. This quick scaling in large network sizes has challenges, such
as longer programming times. Therefore, it is crucial to develop programming methods that
enable rapid and efficient configuration of these devices without extensive pre-training. The
ease of programming digital neuromorphic devices is critical to ensuring their widespread
adoption and practical use of large-scale neuromorphic devices.

3. Methods
3.1. The Loihi Neuromorphic Processor

The Loihi neuromorphic processor [12] is an Intel research platform. It is a digital,
barrier-synchronized design for large-scale programmable spiking neural networks. The
chip architecture has 128 neuromorphic cores, each functioning independently of the
others. Each core processes 1024 neural units sequentially, which can be organized into
dendritic tree structures to shape neurons. Unlike other digital neuromorphic platforms
(e.g., SpiNNaker [32–34] and SENeCA [35,36]), Loihi’s default is to send barrier messages
between cores, ensuring system-wide synchronization. This approach offers the benefit of a
consistent and predictable system response but may lag due to the slowest core. However,
compared to a system that is synchronized by a global clock, this method ensures that each
time step is as brief as necessary. Additionally, the cores are linked by a two-level 2D mesh
network that operates both within the chip (intra-chip) and between chips (inter-chip).
This routing mesh facilitates direct spike communication between cores and manages
synchronizing tasks. A spike can be sent sequentially to a set of destination cores and
then disseminated to a specific group of neurons within each core. The digital distribution
of these spikes also incorporates adaptable connectivity templates to facilitate standard
neuron pool connections, such as fully connected and convolutional filters.

Additionally, Loihi offers diverse features that interest researchers who explore the
creation of large-scale SNNs. It allows for adding stochastic noise to its internal states, the
integration of discrete delays for spikes and postsynaptic currents, and the capability for
synapses to exhibit complex dynamics. Further, dendritic trees can be formed by repur-
posing neural units in each core. Neuron models can incorporate adaptive components;
learning rules are framed using a universal blueprint (see Section 3.7 for more details) and
support multiple weight compression methods, spike broadcasting, and integrated control
through built-in x86 cores. Furthermore, in the latest version of Loihi, the Loihi 2 device,
features such as graded spikes [37] and the efficient implementation of convolutional
synaptic connectivity [38] have been introduced.

Being completely digital and synchronized through barriers, Loihi offers fewer obsta-
cles to users than mixed-signal, solely analog, or entirely asynchronous digital solutions.
This ensures that the chip operates dependably and consistently. However, there are still
challenges when contrasting Loihi to the simulation of SNNs on conventional hardware,
such as Intel x86 CPUs or NVIDIA GPUs. These include quantizing or truncating ac-
tual values due to a limited bit precision and constraints on connectivity and storage.
Nevertheless, these effects can be considered thanks to the open-source Lava software
framework (developed by Intel Corporation (Santa Clara, CA, USA) and available via
https://github.com/lava-nc/lava (accessed on 8 June 2024)). The framework facilitates
the efficient placement of spiking neural networks (SNNs) on Loihi, optimizing power
consumption and accuracy while considering hardware constraints.

3.2. Neuron Model

The neuron model exploits the compartment parameters set via the NxSDK-2.0 soft-
ware package [39] (a Python package provided by Intel Corp.). NxSDK adopts the leaky
integrate and fire model based on current (CUBA) that has two internal states: the synaptic
response current ui(t) and the membrane voltage vi(t). This model integrates the spikes
into the incoming current and accumulates them as the membrane voltage. The current
and voltage decay with configurable time constants in a low-pass filter fashion. As the

https://github.com/lava-nc/lava
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membrane voltage exceeds the neuron’s firing threshold, the neuron emits a spike, and
the voltage is reset to 0 (i.e., the reset potential H is set to H = 0). The synaptic response
current is the sum of filtered input spike trains and a constant bias current as defined in [12]
and expressed as:

ui(t) = ∑
j ̸=i

wi,j(αu · σj)(t) + bi, (1)

where wi,j is the synaptic efficacy from presynaptic neuron j to postsynaptic neuron
i, σ(t) = ∑k δ(t − tk) is the spike train represented by Dirac functions where tk is the
kth spike timing, αu(t) = τ−1

u exp(− t
τu
)H(t) is the synaptic filter impulse response param-

eterized by the current decay time constant τu with the H(t) unit step function, and bi
is a constant bias. This current is further integrated into steps to derive the membrane
voltage, and neurons emit a spike as the voltage exceeds the firing threshold θi. Hence, the
membrane voltage dynamics can be expressed as

v̇i(t) = − 1
τv

vi(t) + ui(t)− θiσi(t), (2)

where τv is the voltage decay time constant [12]. The first term (− 1
τv

vi(t)) represents the
membrane voltage decay β parametrized by the time constant, the second term (ui(t)) rep-
resents the incoming synaptic response current to the neuron, and the third term (−θiσi(t))
represents the reset spikes generated when the voltage exceeds the firing threshold. We
must note that we use the terms ’voltage’ and ’currents’ to describe the membrane poten-
tial and its internal dynamics, aligning our model with the behavior of actual biological
neurons. However, in the context of the hardware implementation at hand, these terms are
purely symbolic and represent digital values, not literal electrical properties, and thus, we
omit physical units. The compartment parameters for our objectives are the firing threshold
θ, the voltage decay time constant τv, the current decay time constant τu and the refractory
period τre f . The refractory period is the time period in which the neuron does not integrate
the incoming spikes to recover the initial state from the previous spike event and is not
represented in the above equations. The firing threshold θ and the current decay time
constant τu are set to θ = 11,520 and τu = 1 time step, respectively, using the NxSDK-2.0
API. The voltage decay time constant τv and the refractory period τre f are tuned using the
procedures introduced in Section 3.4 and set to τv = 16 time step and τre f = 3 time step.

3.3. Design of Attractor Network

The neuronal network configuration used to establish the attractor dynamics on the
Loihi neuromorphic chip is detailed in Figure 1. Spike inputs are produced through on-
chip spike generators denoted as Sin, which introduce input stimuli with spike timing
following a Poisson distribution to each neuron within the excitatory population denoted
as E (implying individual connectivity). For the inhibitory stimulator, every pair of spike
generators Sin delivers an input stimulus to each neuron within the inhibitory population
labeled I, representing a two-to-one connectivity pattern, as inhibitory neurons are half of
the excitatory ones.

During the training phase, the synaptic strengths originating from the spike genera-
tors to the excitatory population denoted JE,Sin , and to the inhibitory population, denoted
JI,Sin , are set at JE,Sin = 0.194 and JI,Sin = 0.167, respectively. These efficacy values are
normalized with the neuron’s firing threshold value (θ = 11,520) and represent the instanta-
neous increase (or decrease) in the membrane potential upon the arrival of a presynaptic
spike. Furthermore, Enoise and Inoise introduce background noise into each neuron within
the excitatory and inhibitory populations, maintaining a one-to-one connectivity pattern.
Specifically, Enoise and Inoise are configured to emit spikes at 10 spikes per 100 time steps
and 50 spikes per 100 time steps, respectively. These noise-induced spiking rates are
used throughout the rest of this work and emulate background noise from distant neural
populations. The inhibitory population I makes only inhibitory connections, including



Electronics 2024, 13, 3203 6 of 22

self-recurrent ones, to balance excitation and inhibition. Moreover, this design aligns with
Dale’s principle, which states that neurons release only one type of neurotransmitter and
have the same functional effect at all termination sites [40].

The synaptic strengths associated with the noise generators within the excitatory popu-
lation, labeled JE,Enoise , and within the inhibitory population, labeled JI,Inoise , are established
at JE,Enoise = JI,Inoise = 0.056.

Within this architecture, the count of excitatory neurons is represented as 128P, while
the number of inhibitory neurons stands as 64P, where P denotes the capacity of the
network to grasp distinct spike patterns (i.e., the number of E, I pairs). In the context
of this paper, the terminology “subpopulation” designates each group of 128 excitatory
neurons, and each of these subpopulations is tasked with acquiring the ability to construct
an attractor.

Figure 1. Template network architecture programmed into the Loihi device. The switch at the
excitatory recurrent connections is open for the measurement of the ETF and closed for training and
inference. The scaling factor, P, corresponds to how many spike patterns the network can learn (i.e.,
each group of 128 excitatory neurons learns one spike pattern). Note that some values of efficacies are
changed in the learning and inference phase to encourage activity for faster learning at low recurrent
efficacies of the excitatory population. For those adjusted efficacies, the values used for learning and
inference are indicated on the left and right sides, respectively.

The connections between neural populations are drawn from a flat random distribution
and are as follows: from excitatory to excitatory neurons, represented as CE,E (constituting
recurrent connections within the excitatory population), the connectivity equals 0.25. This
means that each neuron in the excitatory population has a probability of 0.25 to connect
to any other neuron in the target population (excitatory). Furthermore, the excitatory
to inhibitory connections indicated as CI,E stand at 0.30, and the inhibitory to excitatory
connections indicated as CE,I , at 0.19. Connectivity within the inhibitory population, CI,I ,
indicating the recurrent connections of inhibitory neurons, is established at 0.53.

The effectiveness of connections originating from excitatory neurons to inhibitory
neurons and indicated by JI,E, is set at a value of JI,E = 0.194. On the contrary, the strengths
of connections from inhibitory to excitatory (JE,I) and from inhibitory to inhibitory (JI,I)
populations are both set at JE,I = JI,I = −0.167.

Finally, the recurrent strengths within the excitatory population, represented by JE,E,
are learned from spiking activity to facilitate the construction of attractors. The learning
rule for these connections is addressed in Section 3.7.
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3.4. Theory-Guided Parameter Tuning

Neuronal parameters must be thoroughly calibrated to devise an attractor network that
can exhibit self-sustained bistable activity. These parameters are determined by evaluating
the effective transfer function (ETF) while considering the spiking frequencies of recurrent
presynaptic and postsynaptic neurons and subsequently pinpointing the network stability
states through the self-consistency equation.

The mean-field self-consistency equation posits that a network of interconnected
neurons exhibits (meta) stability at frequency points where the mean input and output
frequencies are equal. The mean output firing frequency is expressed as νout = Φ(µ, σ),
where Φ is the population transfer function, and µ and σ indicate the mean and variance of
the presynaptic current, respectively. The stability line is represented by the solid black line
in Figure 2 and is expressed as νout = νin. In this context, νin and νout denote presynaptic
and postsynaptic spiking frequencies, respectively.

The mean postsynaptic frequency of a neuronal population is expressed as [41]

νout = Φ(µ, σ)

= [τre f +
σ2

2µ2 (e
−2µ(θ−H)

σ2 − 1 +
2µ(θ − H)

σ2 )]−1,
(3)

where τre f , θ, and H represent the refractory period, firing threshold, and reset potential of
the neurons in the network. By measuring this non-linear transfer function, we can find
the range of excitatory recurrent efficacies JE,E that satisfies the self-consistency equation
and thus the bistability. ETF measurements are obtained by first disconnecting excitatory
recurrent connections by opening the switch shown in Figure 1 and injecting presynaptic
spike inputs Spre with different spike frequencies into the excitatory population. We sweep
the mean presynaptic spiking frequency from 1 Hz to 350 Hz, and we measure the mean
output frequency of the postsynaptic neurons of the excitatory population. Connectivity
CE,Spre is set to 0.25 (that is, the same as CE,E). Figure 2 shows the measured ETFs for four
different efficacies: JE,Spre = 0.028, 0.083, 0.117 and 0.122. For recurrent efficacy JE,E = 0.028,
there is only one intersection at 0.0 Hz, meaning the system converges to the resting state for
any input stimulus. For recurrent efficacy JE,E = 0.117, the ETF intersects the stability line
at 0 spikes per 100 time steps, at slightly less than 2 spikes per 100 time steps, and around
12 spikes per 100 time steps. For recurrent efficacy equal to JE,E = 0.122, intersections
are found at 0 spikes per 100 time steps, slightly above 2 spikes per 100 time steps, and
at about 24 spikes per 100 time steps. When the ETF intersects three times the stability
line, the first and third points are stable, and the second point is metastable for both of
these efficacies. Hence, when the network is stimulated by some input and then released
from the stimulus, any level of recurrent spiking activity that is below the metastable point
converges to the lowest stable state of activity, and any level of recurrent spiking activity
that is above the metastable point converges to the high-frequency stable state. From these
measurements, the recurrent synaptic efficacies must evolve to an average value above
JE,E = 0.117 to endow the network with a metastable and highest stable state (investigated
in Section 4). As a result of this analysis, the compartment parameters that affect the shape
of the ETF, the membrane voltage decay, and the refractory period of neurons are chosen to
be τv = 16 time steps and τre f = 3 time steps, respectively. These values are determined
by measuring the ETFs for different parameter values and selecting a combination that
satisfies the bistability.
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Figure 2. Effective transfer function. The three lines represent the input (x-axis) and output (y-axis)
average firing frequencies of the excitatory population in the function of three distinct recurrent
synaptic weights. The error bars represent the standard deviation of the mean frequency. The mean
efficacy values as indicated in the inset are < JE,E > (Spre) = 0.028 (solid line), < JE,E(Spre) >= 0.083
(dashed line), < JE,E(Spre) >= 0.117 (dotted line), and < JE,E(Spre) >= 0.122 (dash-dotted line).
Empty circles “⃝” represent stable points of the network dynamics, while crossed circles “

⊗
” indicate

meta-stable points of the network dynamics.

3.5. Mapping Attract Networks in the Loihi Neuromorphic Processor

When mapping a neural network onto neuromorphic hardware, one must consider
the limitations of the available hardware resources because of the direct mapping of neuron
and synaptic models and parameters into physically limited resources. In constructing
connectivity, Loihi imposes the following restrictions on the mapping and design of the
attractor network [12]:

1. The maximum number of neurons in any given core must not exceed 1024.
2. The maximum fan-in state mapped to any given core must not exceed 128 KB.
3. The maximum number of core-to-core fan-out connections stored on the output side

of any given core must not exceed 4096.
4. The maximum number of axon_id stored on the input side of any given core must not

exceed 4096.

Given the extensive synaptic connections of the network, neurons are spread over
multiple cores to meet the final three constraints. As a result, each subgroup consisting
of 128 excitatory neurons and 64 inhibitory neurons is allocated to an individual core. In
total, P cores are used to house the entire neuron population as depicted in Figure 3a.
This method reduces hardware utilization efficiency, as there are 192 neurons in use out of
1024 neurons available per core. However, this is not the primary emphasis of this study.
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Figure 3. Mapping neurons to the Loihi neuromorphic processor. (a) The processor contains multiple
cores, each depicted as a grey block. Each core can support a maximum of 1024 neurons. The
attractor network is distributed across these cores, with the utilized sections shown in green. Within
each utilized section, there are 192 neurons, with a division of 128 excitatory neurons and 64 in-
hibitory neurons. (b) A streamlined flowchart illustrates how the neurons and synapses in the Loihi
processor operate.

Each neuron consists of multiple functional blocks at the lower level to mimic bio-
logical neuronal mechanisms, as depicted in Figure 3b. As a spike enters the neuron, the
axon_id of the presynaptic neuron becomes stored to be used in learning the synaptic effi-
cacy. Then, the synaptic efficacy is fetched and fed into the dendrite accumulator. The state
of the neuron is updated according to the accumulated change. If the voltage threshold
is reached and the neuron fires, the axon_id and the core_id of the postsynaptic neurons
are fetched, and the message is transmitted through the axon. This hardware model is
simplified to facilitate the understanding. In reality, more mechanisms such as parallelism
and read–modify–write memory accesses are deployed at the hardware level to accelerate
and ensure the correct computation.

3.6. Attractor Network Dynamics

Upon fine-tuning the parameters in accordance with the ETF and the self-consistency
equation, the recurrent connections are made operational, and the number of neuronal
subpopulations is set to 1. This step is undertaken to validate the potential formation of an
attractor at the stable points. To achieve this, we establish the recurrent excitatory strengths
at JE,E = 0.122. The outcome is illustrated in Figure 4.

In the setup, spike generators Sin are configured to generate presynaptic spikes, ap-
proximately 15 spikes per 100 time steps from 0 to 500, about 33 spikes per 100 time steps
from 500 to 1000, and again around 15 spikes per 100 time steps from 1000 to 1500. The
initial and final inputs symbolize subtle stimuli, while the intermediate input signifies a
robust stimulus.

As depicted in Figure 4, the neural spiking activity remains suppressed during the
initial stimulus and escalates during the final stimulus despite both being subjected to
the same stimulation frequency. This phenomenon suggests the network experiences
stimulation near its metastable point when introducing a weak stimulus. Slight deviations
from this point prompt the network to transition to either a low- or high-activity state. In



Electronics 2024, 13, 3203 10 of 22

this instance, the low-frequency state is initially triggered beneath the metastable point,
followed by the strong stimulus inducing the high-activity state of attractor dynamics.
Remarkably, this elevated state persists even after the cessation of the high-frequency input,
indicating working memory dynamics.

Figure 4. Attractor dynamics for one neuronal population, i.e., P = 1, and the excitatory recur-
rent efficacies set at JE,E = 0.122. (First Row) Raster plot of presynaptic spikes of the excitatory
neurons, (Second Row) raster plot of postsynaptic spikes of the excitatory neurons, (Third Row)
peristimulus time histogram (PSTH) representing the mean spiking frequencies of the excitatory
neurons. The dotted line indicates the stable point of the network dynamics as measured from the
ETF. (Fourth Row) membrane voltage in one of the excitatory neurons.

Figure 4 demonstrates the stability around 24 spikes per 100 time steps, which is in
agreement with the ETF measurement for the recurrent excitatory efficacy of JE,E = 0.122
(as measured in Section 3.4).

3.7. Learning Rule

Once the recurrent efficacy to form an attractor is determined and confirmed, the
learning rule is formulated so that the attractors are learned through autonomous online
learning. We introduce a spike-timing dependent plasticity (STDP) learning rule [42], in
which the efficacy of each recurrent connection JE,E is updated every two time steps. This
rule can mathematically be represented as

∆JE,E = (2−3x1y0 − 2−3y1x0 − sgn(JE,E − 0.139) · 2−4x1y0 − 2−4x1y0), (4)

where x0, y0, x1, and y1 represent the presynaptic spike, postsynaptic spike, presynaptic
spike trace, and postsynaptic spike trace, respectively. This equation is derived from the
programmable learning rule already available in the Loihi as described in [39]. More-
over, the spikes can be modeled as digital quantities, and the traces are real values. The
presynaptic trace x1 is an impulse generated at the occurrence of the presynaptic spike
x0, and it decays exponentially over time. This trace is multiplied by the postsynaptic
spike y0 to track the degree of correlation of the spike time between the presynaptic and
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postsynaptic terminals. Similarly, the postsynaptic trace y1 is an impulse generated at the
occurrence of the postsynaptic spike y0, and it decays exponentially over time. This trace is
multiplied by the presynaptic spike x0 to obtain the degree of decorrelation in the timing
of the spike between the presynaptic and postsynaptic terminals. Both of these traces, x1
and y1, are characterized by the initial impulse of 20 and the decay time constant of 4 to
learn the dynamics of the attractor as can be seen in Equation (4); the time correlation
increases synaptic efficacy, and the time decorrelation decreases synaptic efficacy. The last
two terms regulate the synaptic efficacy from increasing to a value greater than JE,E = 0.139.
They cancel each other out when the efficacy is lower than JE,E = 0.139, resulting in no
effect. When the efficacy is greater than JE,E = 0.139, the sum of the two terms cancels out
the first term, and the efficacy can stay constant or decrease depending on the degree of
decorrelation. From Figure 2, it is evident that JE,E = 0.117 yields attractor stability and
performance compared to JE,E = 0.122. However, any value above 0.117 provides a stable
fixed point due to the nature of recurrent connectivity. We use a threshold of JE,E = 0.139,
as determined by the ETF exploration, to regulate the synaptic efficacy. This threshold
ensures that the synaptic efficacy does not exceed 0.139, maintaining network stability and
attractor dynamics.

Since this formulation of the learning rule does not require disabling the learning
after convergence, the learning is on the fly, and it automatically enables the stopping of
learning without the use of any external signal. Such balancing mechanisms enable us to
leave on-the-fly learning always on, as once stability is reached (with a value greater than
0.139), there is no further effect. Maximum efficacy is selected to be JE,E = 0.139, as most
of the synaptic efficacy remains at the initial value as derived in Section 4.1. We note that
the purpose of training is to evolve the average excitatory recurrent efficacy of a pool of
excitatory neurons to a value greater than JE,E = 0.117 as determined in Section 3.4 so that
the network can exhibit attractor dynamics.

3.8. Experimental Setup and Configuration of the Loihi Neuromorphic Processor

The Loihi neuromorphic processor features 128 neuromorphic cores, each capable of
simulating up to 1024 neurons. The network topology is initialized according to the design
illustrated in Figure 1, encompassing multiple groups of excitatory and inhibitory neurons
arranged to form attractor networks. Initial excitatory recurrent strengths JE,E(0) are set
to a small value to facilitate the gradual formation of attractor states. Additionally, the
membrane voltage decay time constant (τv) and the refractory period (τre f ) are tuned to 16
and 3 time steps, respectively, to ensure appropriate neuronal dynamics. Multiple groups
of 128 spike generators are configured to excite the neurons at different, non-overlapping
time intervals, creating distinct sets of spatial activations within the excitatory population.
Background noise is introduced to both excitatory and inhibitory populations using noise
generators configured to emit spikes at 10 spikes per time step and 50 spikes per 100 time
steps, respectively, to emulate the natural background noise found in biological neural sys-
tems. The synaptic strengths from spike generators to the excitatory (JE,Sin) and inhibitory
(JI,Sin) populations are set at 0.194 and 0.167, respectively. Synaptic strengths associated
with noise generators (JE,Enoise and JI,Inoise) are set to 0.056 for both excitatory and inhibitory
populations. Recurrent connectivity within the excitatory population (CE,E) and between
excitatory and inhibitory populations (CI,E, CE,I , CI,I) is initialized with a connectivity
probability of 0.25 for excitatory and 0.52 for inhibitory populations. Mean field theory
is employed to experimentally measure the effective transfer function (ETF) using mean
input currents from a pool of interconnected neurons. This approach helps predict stable
activity points and identify parameter ranges that ensure stability and attractor dynamics.
Furthermore, the spike-timing-dependent plasticity (STDP) learning rule is implemented
to adjust synaptic efficacies based on the timing of pre- and postsynaptic spikes, allowing
for on-the-fly fine-tuning of the network and reducing the need for extensive pretraining
and manual adjustments.
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For running the simulations, the network is stimulated with spike trains from the
configured spike generators, each set to activate neuron groups at specified intervals. After
each stimulation, a strong spike train is sent to the inhibitory population to reset the excita-
tory population’s activity, ensuring it is returned to the low-frequency state. The activity of
neuronal subpopulations is monitored over time to observe the formation of self-sustained
attractor states, tracking the spiking frequencies and membrane voltages of neurons. The
network’s effectiveness in forming stable attractors, as well as its error correction and
pattern completion properties, is assessed by providing partial and ambiguous stimuli
and measuring the accuracy of attractor retrieval. Dynamic energy consumption during
the learning and inference phases is measured using the Nahuku32 board, which houses
32 Loihi chips. This involves monitoring the power usage and computing the energy
consumption per time step. In order to support these analyses, we use several software
libraries including matplotlib for plotting, nxsdk for interfacing with the Loihi hardware,
and numpy and pandas for data manipulation and analysis. We also make use of utilities
from the nxsdk package, such as plotRaster and graph monitoring probes, to visualize
neural activity and efficiently manage simulation data.

3.9. Attractor Formation via Unsupervised Stimuli

The methodology for forming stable attractors involves initializing the network topol-
ogy as shown in Figure 1 with the initial excitatory recurrent strength JE,E(0) set to a small
value. Spike generators then excite multiple groups of neurons at different times, with
non-overlapping time intervals. Specifically, to utilize the network for a classification task,
P groups of 128 spike generators, Sin,t1–Sin,tP are created (see Figure 5). Each group is
allocated a different time interval at which the generators in the respective group emit
spikes. In other words, the groups of generators inject non-overlapping/orthogonal sets of
spike patterns at given time intervals. In addition, after every stimulation by a group of
spike generators, strong resetting spikes are injected into the inhibitory population to reset
the membrane activity of the excitatory population and prevent the previous stimulus from
impacting the result of the current stimulus. Furthermore, the input stimulus is switched
from one group to another in multiple iterations such that the synapses in different neu-
ronal subpopulations learn the spike patterns as uniformly as possible at any arbitrary time
step. Importantly, attractors are formed by altering the recurrent connectivity strengths.
This is achieved thanks to a spike-timing-dependent plasticity (STDP) learning rule that
adjusts the synaptic efficacies based on the timing of pre- and postsynaptic spikes (see
Section 3.7). Over time, the activity of the neuronal subpopulations increases, forming
self-sustained attractors. These attractors exhibit stable spiking frequencies even in the
absence of the stimulus.

These attractors act as distributed memory and demonstrate robust error correction
and pattern completion properties. These properties are demonstrated in Section 4.2
by providing partial stimulation and observing full memory retrieval and by providing
ambiguous stimulation in which several groups of neurons are stimulated with some
overlap. The extent of partial stimulation (overlap) is measured using the Hamming
distance, which represents the number of differences between two sets of inputs.

To evaluate our attractor network’s error correction and pattern completion capabilities
implemented on the Loihi neuromorphic processor, we conduct a series of simulations using
a custom-built spiking neural network. The network is configured with multiple excitatory
and inhibitory neuron populations, and the synaptic connections are established using
pre-trained weight matrices. To simulate erroneous inputs, we generate target neurons
with varying portions of induced errors (bit flips). Spike generators are employed to create
precise spike timings for stimuli, noise, and reset signals, ensuring distinct activation
patterns across the network. The network’s activity is monitored during each simulation by
probing spikes and membrane voltages. The mean frequency of output spikes is calculated
for each subpopulation over time, allowing us to assess the stability and performance of
the attractor states.
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Figure 5. Spike generators, Sin injecting orthogonal/non-overlapping spike patterns into the excita-
tory neuronal population, E. The dashed vertical lines indicate the time of different stimuli onsets.

To quantify error correction, we measure the network’s ability to retrieve the original
attractor states despite introduced errors. An attractor is considered successfully retrieved
if the mean frequency of output spikes during the resting intervals exceeds a specified
threshold (e.g., 10 spikes per 100 time steps). Mathematically, if Fretr(t) represents the
mean frequency of the retrieved attractor at time t, the attractor is deemed successful if
Fretr(t) ≥ 10 spikes per 100 time steps during the evaluation period. Pattern completion is
evaluated by providing partial stimuli and observing the network’s capacity to generate
the complete pattern from incomplete inputs. The results are analyzed by plotting raster
plots of pre- and postsynaptic spikes, membrane voltages, and spiking activity over time,
which provide a comprehensive understanding of the network’s dynamic behavior and
robustness in handling noisy and partial inputs. In Section 4.2, we provide quantitative
analysis and experimental results.

4. Results
4.1. Unsupervised Learning of Attractor Dynamics

Here, we provide evidence of the network’s ability to autonomously learn the attrac-
tor dynamics without requiring external supervision. We initialize the initial excitatory
recurrent strengths JE,E(0) to zero, and we employ continuous online learning.

The results for four input groups (P = 4) are shown in Figure 6. It can be observed
that the activity of the four subpopulations of neurons increases over time as the learning
progresses. These subpopulations start showing self-sustained activities, hence forming
attractors around 25,000 time steps. Furthermore, in the magnified peristimulus time
histogram (PSTH) plot, the spiking frequencies of the four attractors are sustained at
around 15 spikes per 100 time steps. This result matches the stability analysis as predicted
using the ETF measurements.

Furthermore, the synaptic matrix of the recurrent connections is plotted in four dif-
ferent time instances in Figure 7a. An increase in the efficacies contained in squares at the
diagonal positions can be observed with time progression. The synaptic efficacy distribu-
tions in these squares (i.e., recurrent connections within each subpopulation) are plotted
over time in Figure 7b. As can be seen, most of the synapses stayed at low efficacies, except
for a few that learn up to high efficacies. These results indicate that learning occurs in the
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subset of neurons that fire together and that the network achieves a high degree of sparsity.
Table 1 reports average recurrent efficacies in the four neuronal subpopulations. It can be
observed that the synapses learned quickly until their efficacies converge to values in the
range of 0.125 < JE,E < 0.130, which is consistent with the theoretical value determined in
Section 3.4. Using the recorded synaptic matrices from the Loihi device, we can determine
the evolution of the effective transfer function for the four subpopulations. Figure 8 shows
the ETF for the four subpopulations at three time instances during the learning. At time
step 7650, the ETF shows the only stable point exists around 0 frequency (intersect between
diagonal and ETF for all subpopulations), while at time 15,300, the subpopulations 2 and 3
start reaching the diagonal line, indicating attractor formation. Finally, at time step 30,600,
all subpopulations reach the diagonal line and intersect it in three points: a low-frequency
state, an unstable point, and a stable point at high frequency.

Figure 6. Unsupervised learning of attractor dynamics. (First row) Raster plot of presynaptic
spikes of the excitatory neurons, (Second row) raster plot of postsynaptic spikes of the excitatory
neurons, (Third row) membrane voltage in one of the excitatory neurons within each subpopulation,
(Fourth row) PSTH within each subpopulation, and the (Fifth row) shows magnified plot of the
(Fourth row). The black dotted line indicates the stable point of the subpopulations as measured
from the ETF.



Electronics 2024, 13, 3203 15 of 22

Table 1. Average recurrent efficacies of four neuronal subpopulations over time.

Time Step JSubpop1
E,E JSubpop2

E,E JSubpop3
E,E JSubpop4

E,E

0 0 0 0 0

7650 0.017 0.030 0.015 0.014

15,300 0.048 0.126 0.095 0.044

22,950 0.127 0.121 0.112 0.109

30,600 0.125 0.127 0.119 0.130

(a) (b)

Figure 7. Synaptic evolution during training. (a) The synaptic matrix of the excitatory recurrent
connections at different time steps t during training. The color of each dot indicates the efficacy of a
specific synapse connecting the presynaptic and postsynaptic neurons. The synaptic matrix at t = 0
is completely blank, as all synaptic efficacies are set at 0. We note that only 25% of the excitatory
neurons are recurrently connected (i.e., CE,E = 0.25). (b) The probability distributions of excitatory
recurrent efficacies within four different subpopulations at different time steps t. In this scenario,
each colored square in (a) is a subpopulation.

Figure 8. Evolution of the effective transfer function of the excitatory population during the learning
process.
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4.2. Error Correction and Pattern Completion

The attractors’ error correction and pattern completion capabilities are demonstrated
using the synaptic strengths learned from the attractor dynamics. To probe the error-
correction properties of attractors, we exchange the stimuli with neurons in other attractors
(i.e., we perform cross-stimulation of multiple attractors). In this context, the count of
altered stimuli corresponds to the Hamming distance, where each alteration equates to a
bit flip. The reconstruction accuracies of the four attractors and the average accuracy across
them are reported in Figure 9a. The threshold where the accurate reconstruction starts to
decline (a reconstruction accuracy of 50%) emerges at approximately a Hamming distance
of 90–100.

This range of values is expected, as when four attractors are trained in an entirely
uniform manner (that is, their synaptic strengths are uniform), successful attractor recon-
struction requires stimuli from 1

4 · 100 = 25% of neurons within the respective attractor
to overcome the impact of stimuli from other attractors. Thus, to correctly reconstruct
an attractor, 32 out of 128 neurons must be stimulated concurrently (yielding a Hamming
distance of 96, which aligns with the expected range).

In our network, a gap between the reconstruction accuracy of attractor 3 and the
other attractors is apparent. This discrepancy arises because the synaptic strengths are not
learned in a perfectly uniform manner due to the stochastic nature of the attractor network.
This observation is consistent with the fact that the average efficacy of recurrent connections
in subpopulation 3 (at time step 30,600) is the highest among all neuronal subpopulations,
as demonstrated in Table 1.

(a) (b)

Figure 9. (a) Accuracies of attractor retrieval. (b) Ambiguous stimulation with a Hamming distance
of 30. Attractors are successfully retrieved.

4.3. Energy Profiling

The power consumption for the attractor network comprising four attractors, each
composed of 512 excitatory neurons and 256 inhibitory neurons, is carried out using the
Nahuku32 board, which houses 32 Loihi chips.

The summarized data, including the average power measurements in five trials and the
computed energy consumption per time step for the learning and inference tasks, are shown
in Table 2. It is important to note that only Neurocores (i.e., cores housing neurons within
Loihi) [39] are utilized in these programs. Consequently, the power consumption of CPU
cores responsible for time and power analysis is not factored into the energy calculation.
Furthermore, the static power of Neurocores, which encompasses power leakage from both
logic and memory, is omitted from consideration, as it does not directly correlate with
computation during execution.
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Table 2. Performance profiling on Nahuku32.

Learning Inference

Execution time per time step (µs) 3974 4658

Total power (mW) 786 808

Total static power (mW) 768 789

Total dynamic power (mW) 18 19

Static power in Neurocores (mW) 4 5

Dynamic power in Neurocores (mW) 6 5

Dynamic energy in Neurocores (µJ/time step) 23 22

Hence, the dynamic energy consumption per time step within Neurocores during the
learning phase is determined to be 23 µJ/time step, while during the inference phase, it
amounts to 22 µJ/time step.

Dynamic power consumption is lesser than static power consumption because there is
no continuous need to transfer data, especially when adjusting efficacies in the inference
phase. On the other hand, static power is higher because it involves keeping a large amount
of data, notably the efficacies, stored in memory.

5. Discussion

Traditional methods for tuning neural network parameters, such as backpropagation,
often rely on supervised training techniques. These methods require large amounts of
data and numerous iterations to find optimal parameters, making them computationally
intensive and time-consuming due to the need to store and process large volumes of
activation histories and gradients. In contrast, our approach leverages experimental and
theoretical methods, specifically mean field theory, to guide the selection and tuning of
network parameters and does not require the calculation of any gradient. This makes our
method particularly compatible with physical systems, such as neuromorphic hardware and
analog circuits, where gradient calculations could be more complex and practical. In these
systems, the continuous real-time nature of signal processing and the constraints of physical
components make traditional gradient-based methods infeasible. By eliminating the need
for gradient calculations, our method allows for efficient parameter tuning and adaptation
directly within the hardware, facilitating more practical and scalable implementations of
neural networks in such environments. The process we propose in this paper involves
three main steps; first, we conduct an experimental analysis using mean field behaviors
to measure the effective transfer function (ETF), which predicts stable activity points
and identifies parameter ranges that ensure stability and attractor dynamics. Second,
by focusing on average behaviors predicted by the ETF, we preselect a narrower range
of parameters likely to yield stable and effective network performance. And third, we
initialize the network in a state where only the efficacy of recurrent connections needs
adjustment to reach stable attractor states. We employ spike-timing-dependent plasticity
(STDP) for on-the-fly fine-tuning synaptic efficacies based on spike timing. This approach
offers several advantages: it is efficient, providing a high-level overview of network
dynamics and reducing trial-and-error iterations; it reduces computational demands by
avoiding extensive activation history storage and gradient calculations; and it accelerates
the learning process through real-time adaptation, eliminating the need for extensive
supervised training datasets.

Additionally, we adopt a method in which attractor dynamics function in a population-
based style without overlap or with minimal overlap, ensuring that one attractor does
not unintentionally activate another. However, this significantly limits the number of
memorizable attractor states. Potential solutions could be found in integrating more
bio-realistic neural mechanisms, such as spike frequency adaptations and homeostatic
plasticity [43], that can enhance the network’s stability. By incorporating these mechanisms,



Electronics 2024, 13, 3203 18 of 22

it could have been feasible for the network to acquire information from spike patterns
without altering the efficacy of input synapses as the system transitions from the training
to the testing phase. This adaptation ensures that neurons maintain appropriate spiking
frequencies, facilitating ongoing learning.

Due to constraints related to computational resources necessary for processing and
storing measurement data on the server, the network’s runtime poses challenges. The
prolonged operation, exceeding 1,250,000 time steps, is demanding in terms of memory
storage for spiking activity, and observing a gradual progression in synaptic plasticity
becomes challenging. These limitations also constrain the scale of the model, resulting in a
smaller configuration featuring only four subpopulations, each comprising 768 neurons.

The stochastic nature of the attractor network leads to variations in synaptic efficacy
in different subpopulations. This, in turn, results in discrepancies in learning and attractor
activation as observed in the reconstruction accuracy of different attractors. Fine-tuning
learning parameters, such as learning rate and timing, could mitigate this issue and foster more
uniform synaptic strengths.

Achieving a balance between synaptic plasticity and network stability emerges as a
central challenge. While synaptic strengths are needed to evolve for learning, they also
require stability to maintain attractor dynamics. The complex interplay between these factors
underscores the need for dynamic mechanisms that adjust synaptic weights while preventing
excessive interference between subpopulations.

Finally, even without these improvement possibilities, our experiment shows the ex-
tensive potential of attractor neural networks. The theory-guided approach enhances the
scalability of the network within state-of-the-art large-scale neuromorphic systems such as the
Intel Loihi.

5.1. Attractor Networks in Neuromorphic Hardware: Comparison and Trade-Offs

Even if what constitutes a synaptic operation differs from one neuromorphic archi-
tecture to another, neuromorphic systems that operate on spikes exploit the energy per
synaptic operation (ESOP) metric to assess energy consumption. This metric captures the
energy consumed in both synaptic activities and spike generation. Table 3 summarizes the
results for ESOP for five neuromorphic processors in which spike-based attractor dynamics
are implemented.

From Table 3, we note that mixed-signal neuromorphic devices can result in greater
energy efficiency than their digital counterparts; for example, the Braindrop mixed-signal
device is about four times more efficient than the Tianjic chip at peak performance. Impor-
tantly, attractor dynamics appear to be well suited for analog neuromorphic systems, as
they can accommodate mismatch, noise, and other deviations. This is guaranteed when
realizing attractor dynamics with sufficiently large networks in which currents and rates are
estimated using average net contributions, thus facilitating analog computation.

Table 3. Comparison of energy per synaptic operation ESOP in seven recent neuromorphic processors.
ESOP are obtained by dividing the total chip power consumption by the SOP rate. For the Tianjic chip,
the ESOP is derived from the peak performance of 650 giga synaptic operation per Watt reported in [44].
All measures come from the reference listed in the first row.

Loihi [12] SpiNNaker
[45,46]

SpiNNaker2
[47]

Tianjic
[48,49]

Braindrop
[50]

DynapSE
[51,52] BSS-2 [53]

Technology 14 nm FinFet 130 nm 22 nm FDSOI 28 nm HLP 28 nm FDSOI 180 nm 65 nm LP

Supply voltage (V) 0.50 V–1.25 V 1.2 V 0.45–0.6 0.85 V 1 V 1.3 V 0.9 V–1.26 V

Design Style digital digital digital digital mixed-signal mixed-signal mixed-signal

ESOP >23.6 pJ >26.6 nJ 10–20 pJ 1.54 pJ 381 fJ 2.8–17 pJ O (10 pJ)

Attractor dynamics are compatible with noisy but energy-efficient neuromorphic
platforms because neural and synaptic imperfections and inhomogeneities are averaged
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when estimating the stable points of the dynamics; this is because we exploit average
net input and output currents. As a result, spike-based attractor neural networks are
appealing for emerging, ultra-low-power computing materials that, while energy-efficient,
are affected by noise and inconsistencies. Persin et al. in [54] and Wang et al. in [55]
demonstrate, in simulations, that the unsupervised learning method can be applied in
memristor-based devices, thanks to the robust use of attractor dynamics.

5.2. Practical Implications and Potential Integrations

Neuromorphic computing contrasts artificial neural networks (ANNs) based on back-
propagation, which has been extensively studied and implemented on modern computer
systems by using biology-inspired algorithms such as spiking neural networks (SNNs)
endowed with bio-inspired learning mechanisms like spike-timing-dependent plasticity
(STDP), which are still in their early stages of research and development. While ANNs have
achieved significant success and dominate the field due to advanced graphics processing
units and vast training datasets, they are hindered by the conventional von Neumann
computing architecture. This architecture leads to high energy consumption during both
training and inference operations because of massive and frequent data movements, posing
substantial power efficiency and performance challenges. In contrast, non-volatile-memory-
based processing-in-memory neuromorphic computing architectures offer a promising
alternative, enabling neural networks to operate with much higher parallelism and reduced
data transfer [56]. However, these non-volatile-memory-based systems suffer from noise,
endurance, and variability issues.

Thus, the findings from our research demonstrate advancements in error correction
and pattern completion capabilities within neuromorphic computing, highlighting the
potential for integrating attractor networks into existing and emerging technologies. Our
approach, which leverages STDP for real-time learning, is particularly well suited for
applications requiring continuous adaptation and robust performance in the presence
of noise and errors. This makes it ideal for integrating memory technologies based on
emerging nanotechnologies [57,58], which often exhibit unreliable behavior and require
constant learning and adaptation. By incorporating attractor network methodologies, these
systems can achieve greater stability and reliability, enhancing their overall functionality.

The properties of real-time processing and low-energy requirements make neuromor-
phic technologies a perfect candidate for robotic systems integration. In these systems,
it is possible to integrate neural-inspired computational primitives thanks to neuromor-
phic processors like Intel’s Loihi, which offer substantial energy efficiency and benefits
from real-time adaptation. In particular, the use of spiking neural networks (SNNs) to
mimic brain computation methods demonstrates remarkable energy efficiency, consum-
ing significantly less power than traditional von Neumann architectures for a variety of
tasks [12], which is crucial for practical robotics applications. Moreover, the incorporation
of spike-timing-dependent plasticity (STDP) and decision-making behaviors using the
same computational primitives of the human brain, i.e., attractor dynamics, could enable
real-time learning and dynamic adaptation to new tasks and environments, enhancing
versatility and reliability in autonomous navigation and interaction. Attractor dynam-
ics has already been shown in the Loihi device for exploiting the inherent dynamics of
spiking neuron models to solve problems by converging to well-defined fixed points in
phase space [59]. Our work demonstrates the on-the-fly learning of attractor dynamics
and their robustness through enhanced error correction and pattern completion, which is
essential for high-precision tasks like object recognition and manipulation in unstructured
environments. The scalability and flexibility of neuromorphic hardware like Loihi allow
the rapid reconfiguration of robotic systems without extensive pretraining, supporting
advanced cognitive functions and improving decision-making capabilities essential for
complex tasks.
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6. Conclusions

We experimentally demonstrate the unsupervised formation of attractor states in
the Loihi neuromorphic processor. To streamline the network design process, we utilize
the effective transfer function (ETF) and the self-consistency equation to fine-tune the
compartment parameters. Learning the dynamics of the attractor is possible due to the
online STDP learning rule, which enables unsupervised on-chip learning. The trained
network achieves accurate retrieval of spike patterns with extensive (∼50%) corruption,
demonstrating its error correction and pattern completion capabilities. Finally, the attractor
network achieves a dynamic energy consumption of a 23 µJ/ per time step. These results
highlight the potential of neuromorphic computing systems, which can provide robust,
scalable, and energy-efficient solutions by enabling the use of emerging nanomaterials in
future neuromorphic computing technologies.
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