
Citation: Ye, H.; Zhang, Y.; Liu, H.; Li,

X.; Chang, J.; Zheng, H. Light

Recurrent Unit: Towards an

Interpretable Recurrent Neural

Network for Modeling Long-Range

Dependency. Electronics 2024, 13, 3204.

https://doi.org/10.3390/

electronics13163204

Academic Editors: Ping-Feng Pai

and Yingke Chen

Received: 3 July 2024

Revised: 23 July 2024

Accepted: 9 August 2024

Published: 13 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Light Recurrent Unit: Towards an Interpretable Recurrent Neural
Network for Modeling Long-Range Dependency
Hong Ye 1 , Yibing Zhang 1, Huizhou Liu 2,*, Xuannong Li 3, Jiaming Chang 1 and Hui Zheng 1,*

1 School of Internet, Anhui University, Hefei 230039, China; 20070@ahu.edu.cn (H.Y.);
y22301037@stu.ahu.edu.cn (Y.Z.); y02014454@stu.ahu.edu.cn (J.C.)

2 State Grid Anhui Electric Power Co., Ltd., Hefei 230041, China
3 State Grid Hefei County Electric Power Supply Company, Hefei 231200, China; 19810692337@163.com
* Correspondence: 18756027866@163.com (H.L.); huizheng@ahu.edu.cn (H.Z.)

Abstract: Recurrent neural networks (RNNs) play a pivotal role in natural language processing and
computer vision. Long short-term memory (LSTM), as one of the most representative RNNs, is built
upon relatively complex architecture with an excessive number of parameters, which results in large
storage, high training cost, and lousy interpretability. In this paper, we propose a lightweight network
called Light Recurrent Unit (LRU). On the one hand, we designed an accessible gate structure, which
has high interpretability and addresses the issue of gradient disappearance. On the other hand, we
introduce the Stack Recurrent Cell (SRC) structure to modify the activation function, which not only
expedites convergence rates but also enhances the interpretability of the network. Experimental
results show that our proposed LRU has the advantages of fewer parameters, strong interpretability,
and effective modeling ability for variable length sequences on several datasets. Consequently, LRU
could be a promising alternative to traditional RNN models in real-time applications with space or
time constraints, potentially reducing storage and training costs while maintaining high performance.

Keywords: interpretability; lightweight; long-range dependency; recurrent neural network

1. Introduction

With the development of deep learning, recurrent neural retworks (RNNs), as one of
the most representative deep neural networks (DNNs), have been widely used in various
fields, including mechanical fault diagnosis, emotion analysis, and stock forest [1–3].

Although RNNs theoretically can capture information from variable-length sequences,
their performance in practical applications is often suboptimal due to the problems of gradi-
ent vanishing and explosion [4,5]. Specifically, during the training process, the gradients of
weights tend to decay or grow rapidly in the back-propagation steps, resulting in instability
in updating network weights and hindering the ability of the RNN to model long-term
dependencies [6,7]. While the problem of exploding gradients can be tackled with a simple
clipping strategy [8,9], there is no easy way to adequately address vanishing gradients in a
vanilla RNN.

One of the most popular alternatives to the vanilla RNN is long short-term memory
(LSTM) [10,11], which addresses the gradient vanishing problem in the training process.
The core advantage of LSTM is that the hidden state is updated by superposition of multi-
ple component “gates” instead of using transfer operators such as matrix multiplication.
Although LSTM has improved the limitations of RNN to some extent, there are still some
problems. Concretely, LSTM significantly increases the model’s complexity, making the
model not only inefficient in training but also difficult to interpret [12]. These problems
also exist in another RNN variant, namely the Gated Recurrent Unit (GRU) model [13].

As such, to address the limitations inherent in LSTM and RNNs, in this work, we propose
a Light Recurrent Unit (LRU) model, which offers a compact structure coupled with enhanced
interpretability. The design philosophy of the Light Recurrent Unit (LRU) aims to balance

Electronics 2024, 13, 3204. https://doi.org/10.3390/electronics13163204 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13163204
https://doi.org/10.3390/electronics13163204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0632-0008
https://doi.org/10.3390/electronics13163204
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13163204?type=check_update&version=1

Electronics 2024, 13, 3204 2 of 18

model performance and computational efficiency. It employs a compact structure, reducing
the number of gating units to lower the network parameters and computational complexity
while maintaining accuracy in processing long sequences. This simplification not only makes
it easier to track hidden state changes across successive time steps but also enhances model
interpretability. In addition, the activation function is modified to accelerate the convergence
of the training process. In the meantime, this modification enhances the interpretability of the
function and improves the memory capacity of RNNs for capturing long-term dependency
information. Through these innovations, the LRU can retain long-term memory effectively,
thereby better handling various tasks involving long sequences.

Moreover, the design of the LRU theoretically suits environments with limited re-
sources. Due to its simplified structure and reduced computational requirements, the LRU
has the potential for deployment on platforms with constrained computational resources,
such as mobile devices and embedded systems. This design takes into account the typically
limited computational power and battery life of these devices, necessitating efficient algo-
rithms to handle complex tasks. By reducing the number of gating units, the LRU decreases
computational load and memory demands, theoretically exhibiting superior performance
in such environments.

For example, the study by Zhang et al. [14] presents a low-cost, low-power, and
privacy-preserving facial expression recognition system based on edge computing, evaluat-
ing four deep learning algorithms, including convolutional neural networks (CNNs), recur-
rent neural networks (RNNs), long short-term memory (LSTM) networks, and deep neural
networks (DNNs). This demonstrates the practical application potential of lightweight
RNN models in resource-constrained environments. Similarly, the study by
Al-Nader et al. [15] proposes a novel scheduling algorithm for improving the performance
of multi-objective, safety-critical wireless sensor networks using long short-term memory
(LSTM), further supporting the application potential of our model in these specific settings.
Future research can further validate the performance of the LRU in these specific settings.

The main contributions of this paper can be summarized as follows.

• The proposed LRU introduces a latent hidden state that is highly interpretable. It has
a minimal number of gates in all possible gated recurrent structures: only one gate to
control whether the past memories should be kept or not, so that the requirement for
training data, model tuning, and training time can be reduced, while at the same time,
the model accuracy is maintained.

• The proposed LRU leverages the Stack Recurrent Cells (SRCs) to modify the acti-
vation function, consequently improving the gradient flow in deep networks. This
modification leads to accelerated convergence rates of the network and enhances the
interpretability of the model learning parameter.

• Experimental results on various tasks demonstrate that LRU can keep long-term
memory to better process long sequences. Despite reduced model complexity, LRU
has overall better accuracy as well as faster convergence speed compared to LSTM.

The remaining sections are organized as follows. Section 2 discusses related work
on representative RNN variants. Section 3 demonstrates the design of the proposed LRU
model. Section 4 shows that LRU obtains competitive or even better performance compared
to previous RNN models on various tasks that require long-term dependencies. Section 5
draws conclusions.

2. Background for RNN

In recent times, self-attention-based models, including the Transformer architec-
ture [16] and its derivatives, have excelled in numerous tasks. For example, Huang et al. [17]
examined the relationship between peer feedback classified by deep learning and online
learning burnout, demonstrating the potential of deep learning techniques in educational
settings. Zheng et al. [18] proposed a modified Transformer architecture based on relative
position encoding, which showed outstanding performance across various tasks [18]. How-

Electronics 2024, 13, 3204 3 of 18

ever, RNNs have significantly fewer parameters and computational demands compared to
Transformer-based models, making them still very common in many applications.

By assigning additional weights to the network graph, RNNs create a loop mechanism
within the network that allows the network to explicitly learn and utilize the context
information of the input sequence, and they are therefore well-suited for processing tasks
involving sequence input. RNN architectures have made an enormous improvement in a
wide range of machine learning problems with sequential input involved [19–21].

In the widespread application of RNNs, particularly in tasks like text classification
and sentiment analysis that require learning long-term dependencies, optimizing RNN
parameters remains challenging. The primary reason is the “vanishing gradient” problem,
which hampers learning long-term dependencies. RNNs rely on temporal unfolding to fit
and predict time series data, updating parameters based on multiple time steps. However,
the vanishing gradient problem limits this unfolding, causing updates to be influenced
only by recent time steps and not capturing distant historical information. As the temporal
distance of dependencies increases, the difficulty of training RNNs also rises. In response
to these challenges, researchers have explored various approaches. The following sections
highlight some of the prominent directions in current RNN research aimed at addressing
these issues.

2.1. RNN with Special Initialization

Some researchers have attempted to capture long-term dependencies in simple, non-
gated RNN through better weight initialization. Le et al. [22] proposed IRNN, which
uses an identity matrix to initialize the recurrent weight matrix. The critical innovation
in IRNN is to produce near-identity projection at hidden states. However, this model is
reported to be fragile to hyperparameter settings and fails easily in training [23–25]. Talathi
et al. [26] proposed np-RNN based on IRNN. Their np-RNN adds a stronger constraint
on initial recurrent weights by forcing the recurrent weights to be a normalized-positive
definite matrix, with all except the highest eigenvalue less than one. While these models
help to ease the gradient vanishing problem at the beginning of training, they cannot
completely avoid the issue throughout the entire training process.

2.2. RNN with Structure Constraints

Another direction for addressing the gradient vanishing problem in RNN is to add
certain constraints to the model structure [27]. Mikolov et al. [28] proposed the Structure
Constraint Recurrent Network (SCRN), which forces a diagonal block of the recurrent
matrix to be equal to a reweighted identity throughout the training. They declare that the
reweighted identity block in the recurrent matrix changes their state slowly, which helps
the entire network capture a longer history. Hu et al. [29] analyzed the gating mechanisms
in LSTMs and proposed a structure called the Recurrent Identity Network (RIN), which
adds an extra identity map projection to the hidden layer. These models, however, cannot
efficiently improve the model performance, especially when compared with gated RNNs.

3. Proposed Model

In this section, we first introduce the traditional RNN and LSTM models and point
out existing issues. Secondly, we introduce the proposed LRU model. Compared with
traditional models, the contextual information stored in the hidden layer of LRU can be
transmitted over a longer distance in the time domain, and we further modify the activation
function to achieve faster model convergence and improved interpretability.

3.1. RNN and LSTM

As shown in Figure 1a, the state update in a basic RNN can be described as follows:

h𝑡 = 𝛿(𝑈h𝑡−1 +𝑊x𝑡 + 𝑏), (1)

Electronics 2024, 13, 3204 4 of 18

where index 𝑡 indicates the current position in the input sequence, x𝑡 and h𝑡 are the input
and hidden state at time 𝑡, 𝑈 and 𝑊 denote the parameter matrices related to h𝑡−1 and x𝑡 ,
respectively, 𝑏 is a bias term, and 𝛿 is an element-wise activation function that applies to
the hidden states. The term recurrent in RNN outlines that the last hidden state vector is
recurrently fed back to the input to compute the next state.

Gated RNNs, especially LSTM and its variants, address the gradient vanishing prob-
lem in RNNs mainly by introducing component-wise gates to control the information flow
within the network. The proposed LSTM model in [10] differs from the original RNN in
three aspects.

(1) There is one more state vector c𝑡 in the hidden layer in addition to h𝑡 . Also, c𝑡 is
designed as a “concealed” state that maintains long-term memories, while h𝑡 maintains
short-term memories. Further, c𝑡 is also called the Constant Error Carousel (CEC), since it
is updated additively instead of by using a matrix operation. This design ensures that the
gradient flow retains stable in updating c𝑡 .

(2) An input gate i𝑡 is applied to the input to determine which part of new information
can be added to c𝑡 at time 𝑡. The inputs are transformed as the update c̃𝑡 . Further, c̃𝑡 and
c𝑡−1 together form the new cell state c𝑡 .

(3) An output gate o𝑡 is added to control which part of c𝑡 should be output as the
hidden state h𝑡 .

tanh
ht

ht-1
xt

(a)

ʘ

σ

+

σ tanh σ

tanh

ʘ

ʘ

ct-1
ct

ht

otft it ct~

ht-1

xt

(b)

Figure 1. Data flow and operations in various RNN models, including basic recurrent neural network
(a) and long short-term memory RNN (b).

In [30], a forget gate f𝑡 was first applied to c𝑡 to determine which part of the old
memory should be kept, before adding new information to c𝑡 . This new LSTM structure

Electronics 2024, 13, 3204 5 of 18

with a forget gate has been widely applied thereafter. The overall structure of this three-
gated LSTM is illustrated in Figure 1b, and the update rules are as follows:

i𝑡 = 𝛿(𝑈𝑖h𝑡−1 +𝑊𝑖x𝑡 + 𝑏𝑖),
f𝑡 = 𝛿(𝑈 𝑓 h𝑡−1 +𝑊 𝑓 x𝑡 + 𝑏 𝑓),
o𝑡 = 𝛿(𝑈𝑜h𝑡−1 +𝑊𝑜x𝑡 + 𝑏𝑜),
c̃𝑡 = 𝑡𝑎𝑛ℎ(𝑈𝑐h𝑡−1 +𝑊𝑐x𝑡 + 𝑏𝑐),
c𝑡 = f𝑡 ⊙ c𝑡−1 + i𝑡 ⊙ c̃𝑡 ,

h𝑡 = o𝑡 ⊙ 𝑡𝑎𝑛ℎ(c𝑡).

(2)

In Equation (2), 𝑊 𝑗 and 𝑈 𝑗 (𝑗 = 𝑖, 𝑓 , 𝑜, 𝑐) are parameter matrices. The activation 𝛿 for
the gates usually uses logistic sigmoid to constrain the value of gates within [0, 1]. For
each dimension of information, a gate of value 0 means that the gate is “closed”, and 1
means that the gate is “fully open”. For example, 𝑖𝑡 of value 0 forces the model to discard
any input information in time 𝑡, and f𝑡 of value 1 allows the model to keep all previous
memories. The value of each gate is determined during training by the current input and
hidden information. A tanh nonlinearity is applied when computing c̃𝑡 and h𝑡 , while ⊙
indicates the element-wise product.

When LSTM was first proposed, researchers attempted to increase the model’s com-
plexity for better performance. For example, recent studies have explored adding “peephole”
connections between c𝑡and the three gates (f𝑡 , i𝑡 , o𝑡), allowing the cell state to influence the
gates more directly. While these modifications have shown performance improvements
in some applications, they can also introduce additional complexity and may not always
be effective [9,31]. On the other hand, some gates have been empirically found to be less
effective than others [32,33].

Recently, researchers have started to investigate the redundancy within the LSTM
structure [32,34–36]. Among these models, the most representative one is the Gated Re-
current Unit (GRU) [33], which lowers the number of gates in LSTM by removing the
output gate. Although GRU has fewer trainable weights than LSTM (about 3/4), it still
achieves similar performance on various tasks [32,37]. This phenomenon rests with the fact
that, among the three gates in LSTM, the forget gate is essential [6,33,38], and the effect
of the input and output gates is less obvious [32]. We argue that it is possible to design a
simplified gated RNN model that further lowers complexity while maintaining accuracy.

3.2. Proposed LRU

This section describes in detail the design of the proposed Light Recurrent Unit (LRU).
Our motivation is to present an RNN model with both an accessible structure and high
interpretability. The overall structure and data flow of LRU are illustrated in Figure 2. At
any time step t, LRU takes as input 𝑥𝑡 and updates its hidden state ℎ𝑡 as follows:

h̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎx𝑡),
f𝑡 = 𝛿(𝑈 𝑓 h𝑡−1 +𝑊 𝑓 x𝑡 + 𝑏 𝑓),
h𝑡 = (1 − f𝑡) ⊙ h𝑡−1 + f𝑡 ⊙ h̃𝑡 .

(3)

Here, h̃𝑡 is a transformed input that adds information to h𝑡 , and f𝑡 is a vector that
controls both:

• The portion that is remembered in the last state ℎ𝑡−1, for each component;
• The portion that is added to ℎ𝑡 from h̃𝑡 for each component.

Therefore, f𝑡 couples the input and forget gates in LSTM by specifying that

i𝑡 = 1 − f𝑡 ,∀𝑡. (4)

Electronics 2024, 13, 3204 6 of 18

Compared with the update vector c̃𝑡 that has similar functionality in LSTM, h̃𝑡 omits
the influence from the last hidden state. This change makes it easier to track the changes in
hidden states in consecutive time steps, as will be further discussed in Section 3.4.

tanh

ht

~

ht-1

xt

σ

ʘ

1- ʘ +
ft

ht

Figure 2. Data flow and operations in the proposed LRU (Light Recurrent Unit).

3.3. Stack Recurrent Cells

Similar to other RNN variants, LRU can be stacked with multiple recurrent layers to
improve its memorization capacity. This can be achieved by feeding the output vector of
the previous layer as the input to the next layer. Formally, considering an 𝐿-layered LRU,
the computation at time step 𝑡 is specified by the following equations:

h(0)
𝑡 = x𝑡 , (5)

For 𝑙 = 1, 2, . . . , 𝐿

h̃𝑡
(𝑙)

= 𝑡𝑎𝑛ℎ(𝑊 (𝑙)
ℎ

h(𝑙−1)
𝑡),

f(𝑙)𝑡 = 𝛿(𝑈 (𝑙)
𝑓

h(𝑙)
𝑡−1 +𝑊

(𝑙)
𝑓

x(𝑙)
𝑡 + 𝑏

(𝑙)
𝑓
),

h(𝑙)
𝑡 = (1 − f(𝑙)𝑡) ⊙ h(𝑙)

𝑡−1 + f(𝑙)𝑡 ⊙ ˜h(𝑙)
𝑡 .

(6)

The highway network [39] has been proven to improve the gradient flow in deep
networks such as CNN. It uses a skip connection that directly links the hidden state to the
input, allowing the gradient to propagate to the previous layer directly. This component
can be applied in a stacked LRU by specifying that, for 𝑙 ≤ 2, 𝑊 (𝑙)

ℎ
= I, and tanh activation

is replaced with identity mapping, such that:

h̃𝑡
(𝑙)

= h(𝑙−1)
𝑡 , 𝑓 𝑜𝑟 𝑙 ≥ 2. (7)

The following pseudocode in Algorithm 1 outlines this process, demonstrating the
step-by-step procedure involved in computing the relationship as described in Equation (6).

Description of the main variables:

• 𝑥𝑡 : Input sequence.
• ℎ

(𝑙)
𝑡 : Hidden state of layer 𝑙 at time step 𝑡.

• ℎ̃
(𝑙)
𝑡 : Candidate hidden state of layer 𝑙 at time step 𝑡.

• 𝑓
(𝑙)
𝑡 : Forget gate of layer 𝑙 at time step 𝑡.

• 𝑊
(𝑙)
ℎ

: Weight matrix for candidate hidden state of layer 𝑙.
• 𝑈

(𝑙)
𝑓

: Weight matrix for forget gate of layer 𝑙.

• 𝑊
(𝑙)
𝑓

: Weight matrix for forget gate input 𝑥𝑡 of layer 𝑙.

• 𝑏
(𝑙)
𝑓

: Bias for forget gate of layer 𝑙.
• 𝛿: Activation function (sigmoid).
• 𝑡𝑎𝑛ℎ: Activation function (hyperbolic tangent).
• ⊙: Element-wise multiplication.

Electronics 2024, 13, 3204 7 of 18

Algorithm 1 Computation of an 𝐿-layered Light Recurrent Unit (LRU)

1: Input: Input sequence 𝑥𝑡

2: Output: Hidden states ℎ
(𝑙)
𝑡 for all layers

3: Step 1: Initialization
4: Initialize the hidden state for the first layer: ℎ (0)𝑡 = 𝑥𝑡
5: Step 2: Computation for each layer
6: for 𝑙 = 1, 2, . . . , 𝐿 do
7: Compute the candidate hidden state:

ℎ̃
(𝑙)
𝑡 = 𝑡𝑎𝑛ℎ(𝑊 (𝑙)

ℎ
ℎ
(𝑙−1)
𝑡)

8: Compute the forget gate:

𝑓
(𝑙)
𝑡 = 𝛿(𝑈 (𝑙)

𝑓
ℎ
(𝑙)
𝑡−1 +𝑊

(𝑙)
𝑓
𝑥𝑡 + 𝑏

(𝑙)
𝑓
)

9: Update the hidden state:

ℎ
(𝑙)
𝑡 = (1 − 𝑓

(𝑙)
𝑡) ⊙ ℎ

(𝑙)
𝑡−1 + 𝑓

(𝑙)
𝑡 ⊙ ℎ̃

(𝑙)
𝑡

10: end for
11: Step 3: Output
12: Return the hidden states ℎ

(𝑙)
𝑡 for all layers

3.4. Analysis

In this section, the properties and behavior of the proposed LRU are discussed.
First, LRU can be regarded as a gated RNN derived from LSTM, but with many

fewer parameters. This property makes the learning process faster and less vulnerable to
overfitting. Assuming the input vector dimension is 𝑚 and the hidden state dimension is
𝑛, LSTM has four sets of parameters that determine f, i, o, and c̃, resulting in a parameter
number of 4 ×𝑚 × 𝑛 + 4 × 𝑛 × 𝑛 (bias term omitted for simplicity). Meanwhile, LRU only
has two sets of parameters, one for calculating the forget gate f, the other for h̃. The
total parameter number in LRU is only 2 × 𝑚 × 𝑛 + 𝑛 × 𝑛. In the case where 𝑚 = 𝑛, the
parameter number of LRU is 37% of LSTM; in the case of 𝑚 ≪ 𝑛, LRU has only 25% the
parameter size of that of LSTM. In short, given the fact that LRU has only one gate and no
recurrent connections, LRU can be regarded as a minimal design of any gated RNN units.
Despite the simplicity, the utilization of the forget gate allows LRU to process sequence
learning without suffering from the gradient vanishing problem, as demonstrated later in
the experimental section on various tasks.

Second, the removal of recurrent connections in LRU also allows us to describe the
learned model in a quite straightforward perspective. Since the hidden state in LRU is
updated in an additive, non-recurrent fashion, at each step, the hidden state can be regarded
as a weighted average of all previous inputs in the same layer. Formally,

h(𝑙)
𝑡 = (1 − f(𝑙)𝑡) ⊙ h(𝑙)

𝑡−1 + f(𝑙)𝑡 ⊙ h̃𝑡
(𝑙)

=

𝑡∑︁
𝑖=1

w𝑖,𝑡
(𝑙) ⊙ h̃𝑖

(𝑙) ,
(8)

w𝑖,𝑡
(𝑙) =

𝑡∏
𝑘=𝑖+1

f(𝑙)
𝑘

⊙ (1 − f(𝑙)
𝑖
). (9)

Therefore, the hidden state at time 𝑡 can be tracked back to all previous inputs in the
same layer, with assigned weights indicating the inputs’ relative importance. It is easy to
prove that all w𝑖,𝑡

(𝑙) sum up to 1 for each 𝑙. Therefore, h(𝑙)
𝑡 can be viewed as a weighted

average of previous inputs. It should be noted that these weights are also component-

Electronics 2024, 13, 3204 8 of 18

wise vectors, allowing us to analyze the behavior of each neuron of the hidden state. This
property can also be regarded as a soft attention mechanism, as will be shown in Section 4.2.

Despite the simplicity, the utilization of the forget gate allows LRU to process sequence
learning without suffering from the gradient vanishing problem. In traditional RNNs, the
gradient vanishing phenomenon during training primarily arises from two sources. Firstly,
the repeated multiplication of the hidden state weight matrix causes the gradient to be
suppressed in most positions, a problem that becomes particularly pronounced during
long sequence training, ultimately leading to gradient vanishing. Secondly, commonly
used activation functions such as sigmoid and 𝑡𝑎𝑛ℎ lead to an overall scale reduction in
gradient back-propagation, further exacerbating the gradient vanishing problem. The
LRU effectively mitigates the gradient vanishing issues associated with traditional RNNs
by introducing a simplified gate structure and a direct candidate hidden state update
mechanism. As demonstrated later in the experimental section, across various tasks, the
LRU excels in sequence learning tasks.

4. Experiments

In this section, the performance of the proposed LRU is tested on various tasks, includ-
ing the adding problem in Section 4.1, pixel-wise MNIST handwritten digit classification in
Section 4.2, and word-level language modeling in Section 4.3. These tasks cover a broad
range of application domains and sequence lengths. The codes for training and evaluating
the models are written in Pytorch. Experiments are performed on a server equipped with
8 NVIDIA Tesla K40m GPUs (NVIDIA Corporation, Santa Clara, CA, USA), dual Intel
Xeon E5-2620 (Intel Corporation, Santa Clara, CA, USA) 2.00 GHz processor, CUDA 8.0,
and cuDNN 6021.

4.1. The Adding Problem
4.1.1. Task Description

The adding problem [10] is a widely used benchmark for testing the memorizing
ability of RNNs. It requires RNNs to solve a complex long-time lag problem involving
distributed, high-precision, continuous-valued representations. Each element of an input
sequence is a pair of components. The first component is a real value uniformly sampled
from the range [−1, 1]; the second is a marker, which is either 1.0 or −1.0. The objective is
to calculate the sum of the first components of the first two pairs that are marked by the
second component equal to 1.0. The RNNs are trained to minimize the mean square error
(MSE) on the training set. It should be noted that a baseline MSE for this task is 0.167, in
which case the model always predicts 1.0 regardless of the input [10].

4.1.2. Setup

RNN models included in this test are basic RNN, LSTM, IRNN, and the proposed
LRU. Four different sequence lengths—𝑇 = 100, 400, 750, 1500—are tested. For all models,
one hidden layer of 100 neurons is used. The optimizer is SGD with an initial learning
rate of 0.1 and a momentum of 0.9. No learning rate decay is performed. Gradients are
clipped when they exceeded 10 to avoid gradient exploding. A mini-batch of 32 is used to
accelerate training. Processing a mini-batch is referred to as “a training step” in this test
for simplicity. The model performance is evaluated on a validation set of 100 mini-batches
every 1000 training steps. Training stops after processing 100,000 mini-batches. Both the
training and validation data are randomly generated after each model evaluation.

4.1.3. Results

The test results are shown in Figure 3, where 𝑇 = 𝑁 indicates a sequence length of
𝑁 . The problem becomes much more difficult as the sequence length grows, since the
dependency between output and the two input numbers becomes more distant. It is
observed from Figure 3 that simple RNN and IRNN fail to converge when 𝑇 grows to 400
and 750, respectively. Therefore, the results of these two models on longer sequences are

Electronics 2024, 13, 3204 9 of 18

not presented. Both LSTM and LRU can reach convergence even when the sequence length
is 1500, exhibiting their abilities to reserve a very long memory. However, LRU converges
faster than LSTM when the sequence length is long (≥750). When 𝑇 = 750, LRU takes
fewer than 30,000 steps before obtaining a validation error lower than 0.01, while LSTM
takes more than 45,000 steps. When 𝑇 = 1500, LSTM spends more than 75,000 steps before
the validation error becomes lower than 0.1, and the validation error fluctuates even after
training for all 100,000 steps. On the other hand, LRU performs significantly better than
LSTM under this setting, being able to reach stable convergence (validation error ≤ 0.01)
within 50,000 steps. Results in this task demonstrate that LRU can effectively address the
gradient vanishing problem by labeling long sequences. The performance of LRU is at least
comparable to LSTM under different settings and is even better when the sequence length
is very long and the parameter number is much lower.

Figure 3. Test errors for the adding problem of different lengths. Basic RNN and IRNN fail to
converge when 𝑇 is 400 and 750, respectively.

4.2. MNIST Handwritten Digit Classification
4.2.1. Dataset

The MNIST database [40] is a large database of handwritten digits that is commonly
used for training various image processing systems. The database has a training set of
60,000 examples and a testing set of 10,000 examples. The digits have been size-normalized
and centered in a fixed-size image (28 × 28). Some sample test images are shown in Figure 4.
In this experiment, the object is to classify the digits by presenting the 784 pixels in each
sample image sequentially to the RNN, one pixel at a time. This task is called “sequential
MNIST” in the following sections. The sequential MNIST problem has a very long time
dependency since the network needs to keep a 784 time step length of memory. To make
the task even harder, another experiment is carried out where all pixels within each sample
image are randomly permuted before feeding it to the network, which will be referred to as
“permuted MNIST”.

Electronics 2024, 13, 3204 10 of 18

Figure 4. Sample images in the MNIST database labeled from ‘0’ to ‘9’.

4.2.2. Setup

We tested our implemented LSTM, IRNN, and LRU on this dataset, and results of
other models from previous publications are also presented. The training script is derived
from the “MNIST example” in the Pytorch official repository (https://github.com/pytorch/
examples/tree/master/mnist), accessed on 8 August 2024, with necessary modifications
to add support for sequential classification using RNN. The examples in the training set
are randomly shuffled at the beginning of every epoch. Both training and testing sets are
pre-normalized using the statistics in the training set. For all models, the input layer size
is 1, and a softmax layer of 10 units form the output, where each unit corresponds to one
digit ranging from ‘0’ to ‘9’. The 28 × 28 image is flattened to a 784-dimensional vector as
the input to the RNN. One hidden layer of 100 units is used in all the models. Adam [41] is
chosen as the optimizer to adjust the learning rate for each parameter automatically. For
all models, the initial learning rate is set to 1 × 10−4. The learning rate is halved every
20 epochs. The gradient clip threshold is set to 10. No further regularization techniques
are utilized. A batch size of 128 is used to accelerate training. All models are trained for
100 epochs, and the best performance on the testing set is reported.

4.2.3. Results

The test results of different RNN models are reported in Table 1. LRU achieves better
overall test accuracies than does LSTM, while LRU has only 30,000 parameters, which is
38% of LSTM’s 79,000 parameters. On sequential MNIST, our implemented LSTM model
achieves a 97.0% accuracy, while LRU is slightly better at 98.5%. On permuted MNIST,
LRU achieves a test accuracy of 91.5%, which outperforms LSTM by a relative 5.3% margin.
The training curves of LSTM and LRU on the two tasks are displayed in Figure 5. It is
observed that LRU converges much faster than LSTM, especially in the first 25 epochs,
which is consistent with the results in the adding task.

Table 1. Test accuracy of different models on the MNIST and permuted MNIST (pMNIST) digit
classification task.

Model MNIST (%) pMNIST (%)

SRU [38] 89.0 -

IRNN [22] 95.0 82.0

IRNN (our implementation) 96.1 88.9

uRNN [25] 95.1 91.4

RIN [29] 95.4 86.2

np-RNN [24] 96.8 -

LSTM (our implementation) 97.0 86.9

LRU (our implementation) 98.5 91.5

As discussed in Section 3.4, the hidden states of an LRU can be considered as the
weighted average of all previous inputs’ transformations. In the MNIST task, the input

https://github.com/pytorch/examples/tree/master/mnist
https://github.com/pytorch/examples/tree/master/mnist

Electronics 2024, 13, 3204 11 of 18

is a flattened vector of a 2D image, allowing us to visualize the learned weight vector
by reshaping it into a 2D image. We discover that, among all hidden states, about 10%
represent very similar distributions as the whole input image, while some other states
also show interesting features that might be interpreted as a specific position of the input
image. Figure 6a,b show some selected states that are observed to have certain semantic
functionalities. It is observed that these states learn to focus on pixels that are discrimi-
native by assigning high weights to these positions (white pixels). Positions that are less
discriminative (black pixels) are vastly skipped.

(a)

(b)

Figure 5. Test set classification accuracy comparison (LRU vs. LSTM) on the MNIST dataset. (a)
Accuracy plot for sequential MNIST. (b) Accuracy plot for permuted MNIST.

Electronics 2024, 13, 3204 12 of 18

(a)

(b)

Figure 6. Learned weight visualization in the MNIST experiment. (a) Learned weights in LRU that
display similar distributions as the whole input image. (b) Learned weights in LRU that display
similar distributions as specific positions of the input image.

4.2.4. Weight Visualization

This phenomenon also suggests that the hidden state in LRU can be seen as a feature
pyramid of input sequence on different levels. This is just a glimpse of the inner functionali-
ties of RNNs that make the model efficient for learning the latent feature of input sequences.
Perhaps in the future, more detailed analysis can provide future insight into what RNNs
are really learning.

4.3. Language Modeling
4.3.1. Dataset

In this section, the performance of LRU is evaluated on two widely used benchmarks
for word-level language modeling: Penn Treebank (PTB) and WikiText2 (WT-2).

The PTB dataset (http://www.cis.upenn.edu/treebank/), accessed on 8 August 2024,
is a plain-text corpus dedicated to natural language processing (NLP) tasks. It is one of
the most commonly used datasets in the language model domain. The dataset includes
2499 English articles from the 1989 Wall Street Journal, totaling approximately 1 million
words. The dataset comes with a dictionary of 10,000 words.

The WT-2 dataset (https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-
2-v1.zip), accessed on 8 August 2024, is another widely used dataset in NLP research. It
consists of 720 articles sourced from Wikipedia, retaining capitalization, punctuation, and
numbers. It is about twice the size of the PTB dataset, featuring a vocabulary of over
33,000 words.

4.3.2. Setup

For the two language modeling benchmarks, we mainly follow the configuration of
previous work [42]. The test model uses three layers of LRU with an embedding size of 400
and a hidden size of 1150. We use a batch size of 20 and truncated back-propagation with
70 steps. The dropout probability is 0.4 for the input embedding and output softmax layers.
The optimizer is SGD with an initial learning rate of 10.0, and gradients with a magnitude

http://www.cis.upenn.edu/treebank/
https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip
https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip

Electronics 2024, 13, 3204 13 of 18

larger than 0.25 are clipped during training. The model is trained up to 500 epochs. A
weight decay of 1.2 × 10−6 is applied to control the magnitude of the weight matrices.

4.3.3. Results

The test results of LRU on PTB and WT-2 datasets are given in Table 2. The proposed
LRU achieves comparable or even better performance with existing models. On the PTB
dataset, LRU outperforms existing models by achieving a validation PPL (perplexity) of
60.5 and a test PPL of 58.2, which improves 0.7% and 0.2%, respectively, over a four-layer
LSTM that has 3× more parameters. On the WT-2 dataset, the proposed LRU achieves
a validation PPL of 69.4 and a test PPL of 66.1, which is comparable with the four-layer
skip-connection LSTM. The fact that LRU achieves good accuracy with a relatively small
number of parameters makes the model very efficient in training and storage. This result
suggests that LRU could be a candidate alternative RNN model for real-time applications
that have space or time requirements.

Table 2. Performance of RNN models on PTB and WT-2 word-level language modeling tasks,
measured by perplexity. A lower perplexity value represents better performance.

PTB WT-2

Model #Params Val Test #Params Val Test

LSTM [32] 20 M 83.3 79.8 - - -

LSTM+regularization [43] 20 M 86.2 82.7 - - -

LSTM+regularization [43] 66 M 82.2 78.4 - - -

Variational LSTM [44] 20 M 81.8 79.7 - - -

Variational LSTM [44] 66 M 77.3 75.0 - - -

Variational LSTM+augmented loss [45] 24 M 75.7 73.2 28 M 91.5 87.0

Variational LSTM+augmented loss [45] 51 M 71.7 68.5 - - -

Variational Recurrent Highway
Network [46] 23 M 67.9 65.4 - - -

4-layer skip-connection LSTM [47] 24 M 60.9 58.3 24 M 69.1 65.9

AWD-LSTM [42] 24 M 60.7 58.8 33 M 69.1 66.0

LRU 8 M 60.5 58.2 8 M 69.4 66.1

4.4. Ball Bearing Health Monitoring
4.4.1. Dataset

In this section, by utilizing the ball bearing dataset from Case Western Reserve Univer-
sity (CWRU), we aim to assess the efficacy of the Light Recurrent Unit (LRU).

The bearing dataset from Case Western Reserve University (CWRU), provided by
the Department of Electrical Engineering and Computer Science, is widely used for fault
diagnosis and prediction research. This dataset records vibration signal data from bearings
used in rotating machinery systems. The experimental setup, as shown in Figure 7, includes
a 1.5 KW (2 horsepower) motor, a torque sensor/encoder, and a power meter.

The dataset contains vibration signals from both normal operating conditions and
various fault types (inner race fault, outer race fault, ball fault) at a sampling frequency of
12 kHz. Each fault type includes multiple fault depths (0.007, 0.014, 0.021, and 0.028 inches).
Additionally, the dataset provides experimental data under different working conditions,
with multiple samples for each fault mode, making it suitable for diverse experimental
needs. Table 3 provides an overview of the dataset specifically utilized in this research.

Electronics 2024, 13, 3204 14 of 18

Figure 7. Experimental setup utilized by CWRU.

Table 3. Fault depth, fault type, and fault abbreviations.

Fault Depth Fault Type Fault Abbreviations

Healthy bearing N

Inner race IRF_007
Ball BF_007

0.007 inch Outer race (Centered) ORF1_007
Outer race (Orthogonal) ORF2_007
Outer race (Opposite) ORF3_007

Inner race IRF_0014
0.014 inch Ball BF_0014

Outer race (Centered) ORF_0014

Inner race IRF_0021
Ball BF_0021

0.021 inch Outer race (Centered) ORF1_0021
Outer race (Orthogonal) ORF2_0021
Outer race (Opposite) ORF3_0021

0.028 inch Inner race IRF_028

4.4.2. Setup

In this experiment, we utilized the CWRU dataset to evaluate the performance of a
custom Light Recurrent Unit (LRU) model. The model consists of a single LRU layer with
a hidden size of 16. We set the batch size to 128 and applied dropout to both the input
embedding and output softmax layers, with a dropout probability of 0.2. The cross-entropy
loss function was employed for training, and the Adam optimizer was chosen with a
learning rate of 0.05. Alongside this, we used an exponential learning rate scheduler with
a decay rate (gamma) of 0.99. Training was conducted for 500 epochs. All experiments
were performed on a GPU-equipped computing platform. These configurations were
selected to ensure efficient training and robust model performance, aiming to achieve high
classification accuracy in the task of bearing fault diagnosis.

4.4.3. Results

As illustrated in Figure 8, the confusion matrix demonstrates the model’s classifica-
tion accuracy across various fault types. The experimental results, as shown in Table 4,
demonstrate that our Light Recurrent Unit (LRU) model achieved a classification accuracy
of 97.14% in the task of bearing fault diagnosis. Compared to other benchmark models
reported in the literature [48], our LRU model demonstrated superior accuracy: CNN
at 90.46%, MAML at 92.51%, Reptile at 92.63%, and Reptile with Gradient Consistency

Electronics 2024, 13, 3204 15 of 18

at 93.48%. Although our model’s accuracy is slightly lower than the more complex and
specifically designed EML model (98.78%), the LRU model features a simpler design and
lower computational resource requirements, significantly reducing complexity and resource
demands while maintaining high classification accuracy. Additionally, our model considers
all available fault depths (0.007 inches, 0.014 inches, 0.021 inches, and 0.028 inches), offering
broader fault coverage compared to the models in the literature.

Figure 8. Confusion matrix for LRU model performance on the CWRU dataset.

Table 4. Comparison with existing literature for the CWRU dataset.

References Models Accuracy

[48]

CNN 90.46%
MAML 92.51%
Reptile 92.63%
Reptile with GC 93.48%
EML 98.78%

Ours LRU 97.14%

Additionally, we conducted a hyperparameter search to evaluate the impact of differ-
ent settings on the performance of the LRU model. Specifically, (a) in Table 5 presents the
classification accuracy of the model with different learning rates while keeping the batch
size fixed at 128, and (b) in Table 5 shows the model performance with different batch sizes
while the learning rate is fixed at 0.05.

Table 5. Comparison of different hyperparameters on LRU model performance. (a) Different learning
rates (batch size = 128). (b) Different batch sizes (learning rate = 0.05).

(a) (b)

Learning Rate Accuracy (%) Batch Size Accuracy (%)

0.05 97.14 64 97.06

0.01 96.03 128 97.14

0.005 80.1 256 95.90

Electronics 2024, 13, 3204 16 of 18

Despite the EML model being specifically designed for bearing fault diagnosis, our
LRU model still performs excellently in this task. This indicates that the LRU model pos-
sesses strong generalization and adaptability, achieving efficient performance across various
tasks. Its simplified structure and efficient computation make it particularly advantageous
in resource-constrained environments.

5. Conclusions

This paper introduces the Light Recurrent Unit (LRU), a novel RNN model designed
to capture long-term dependencies in sequences with enhanced interpretability of learned
states. Experimental results on extensive datasets demonstrate that the proposed LRU model
converges quickly on long sequence tasks and often surpasses state-of-the-art RNN models
in performance. Based on the evaluation results, LRU emerges as a promising alternative
RNN for real-time applications, offering reduced memory usage and training times. More
importantly, the high interpretability of LRU enhances our understanding and facilitates
progress in learning RNNs. Beyond analysis and understanding, the effectiveness of LRU will
be evaluated in more diverse and complex tasks, and advanced regularization techniques
will be used on LRU to further improve its accuracy. Our future research will extend the
modifications of the LSTM architecture, aiming to develop even more efficient models. These
future studies will address emerging challenges in the field of machine learning.

Author Contributions: Conceptualization, H.Y.; Formal analysis, H.Y.; Investigation, H.Y. and X.L.;
Software, H.Y., Y.Z., and J.C.; Validation, H.Y., Y.Z., and J.C.; Writing—original draft preparation, H.Z.;
Writing—review and editing, Y.Z., J.C., and H.Z.; Data curation, Y.Z. and J.C.; Methodology, H.L.;
Project administration, H.Z.; Supervision, H.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data supporting reported results are available from the corresponding
author upon reasonable request.

Conflicts of Interest: Author Huizhou Liu was employed by the company State Grid Anhui Electric
Power Co., Ltd. Author Xuannong Li was employed by the State Grid Hefei Country Electric Power
Supply Company. The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Andrianandrianina Johanesa, T.V.; Equeter, L.; Mahmoudi, S.A. Survey on AI Applications for Product Quality Control and

Predictive Maintenance in Industry 4.0. Electronics 2024, 13, 976. [CrossRef]
2. Xie, Z.; Du, S.; Lv, J.; Deng, Y.; Jia, S. A hybrid prognostics deep learning model for remaining useful life prediction. Electronics

2020, 10, 39. [CrossRef]
3. Song, H.; Choi, H. Forecasting stock market indices using the recurrent neural network based hybrid models: Cnn-lstm, gru-cnn,

and ensemble models. Appl. Sci. 2023, 13, 4644. [CrossRef]
4. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.

1994, 5, 157–166. [CrossRef] [PubMed]
5. Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain.

Fuzziness Knowl.-Based Syst. 1998, 6, 107–116. [CrossRef]
6. Hochreiter, S.; Bengio, Y.; Frasconi, P.; Schmidhuber, J. Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term

Dependencies; Wiley-IEEE Press: New York, NY, USA, 2001.
7. Zhao, J.; Huang, F.; Lv, J.; Duan, Y.; Qin, Z.; Li, G.; Tian, G. Do RNN and LSTM have long memory? In Proceedings of the

International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 11365–11375.
8. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the International

Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1310–1318.
9. Landi, F.; Baraldi, L.; Cornia, M.; Cucchiara, R. Working memory connections for LSTM. Neural Netw. 2021, 144, 334–341.

[CrossRef] [PubMed]
10. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
11. Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D

Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

http://doi.org/10.3390/electronics13050976
http://dx.doi.org/10.3390/electronics10010039
http://dx.doi.org/10.3390/app13074644
http://dx.doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
http://dx.doi.org/10.1142/S0218488598000094
http://dx.doi.org/10.1016/j.neunet.2021.08.030
http://www.ncbi.nlm.nih.gov/pubmed/34547671
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.physd.2019.132306

Electronics 2024, 13, 3204 17 of 18

12. Yadav, H.; Thakkar, A. NOA-LSTM: An efficient LSTM cell architecture for time series forecasting. Expert Syst. Appl. 2024,
238, 122333. [CrossRef]

13. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734.

14. Zhang, J.; Xie, X.; Peng, G.; Liu, L.; Yang, H.; Guo, R.; Cao, J.; Yang, J. A Real-Time and Privacy-Preserving Facial Expression
Recognition System Using an AI-Powered Microcontroller. Electronics 2024, 13, 2791. [CrossRef]

15. Al-Nader, I.; Lasebae, A.; Raheem, R.; Khoshkholghi, A. A Novel Scheduling Algorithm for Improved Performance of Multi-
Objective Safety-Critical Wireless Sensor Networks Using Long Short-Term Memory. Electronics 2023, 12, 4766. [CrossRef]

16. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008.

17. Huang, C.; Tu, Y.; Han, Z.; Jiang, F.; Wu, F.; Jiang, Y. Examining the relationship between peer feedback classified by deep learning
and online learning burnout. Comput. Educ. 2023, 207, 104910. [CrossRef]

18. Zheng, W.; Gong, G.; Tian, J.; Lu, S.; Wang, R.; Yin, Z.; Yin, L. Design of a Modified Transformer Architecture Based on Relative
Position Coding. Int. J. Comput. Intell. Syst. 2023, 16, 168. [CrossRef]

19. Pirani, M.; Thakkar, P.; Jivrani, P.; Bohara, M.H.; Garg, D. A comparative analysis of ARIMA, GRU, LSTM and BiLSTM on
financial time series forecasting. In Proceedings of the 2022 IEEE International Conference on Distributed Computing and
Electrical Circuits and Electronics (ICDCECE), Ballari, India, 23–24 April 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6.

20. Lindemann, B.; Maschler, B.; Sahlab, N.; Weyrich, M. A survey on anomaly detection for technical systems using LSTM networks.
Comput. Ind. 2021, 131, 103498. [CrossRef]

21. Al Hamoud, A.; Hoenig, A.; Roy, K. Sentence subjectivity analysis of a political and ideological debate dataset using LSTM and
BiLSTM with attention and GRU models. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 7974–7987. [CrossRef]

22. Le, Q.V.; Jaitly, N.; Hinton, G.E. A simple way to initialize recurrent networks of rectified linear units. arXiv 2015, arXiv:1504.00941.
23. Wang, J.; Li, X.; Li, J.; Sun, Q.; Wang, H. NGCU: A new RNN model for time-series data prediction. Big Data Res. 2022, 27, 100296.

[CrossRef]
24. Neyshabur, B.; Wu, Y.; Salakhutdinov, R.R.; Srebro, N. Path-normalized optimization of recurrent neural networks with relu

activations. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016;
pp. 3477–3485.

25. Arjovsky, M.; Shah, A.; Bengio, Y. Unitary evolution recurrent neural networks. In Proceedings of the International Conference
on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1120–1128.

26. Talathi, S.S.; Vartak, A. Improving performance of recurrent neural network with relu nonlinearity. arXiv 2015, arXiv:1511.03771.
27. Dhruv, P.; Naskar, S. Image classification using convolutional neural network (CNN) and recurrent neural network (RNN): A

review. In Machine Learning and Information Processing: Proceedings of ICMLIP 2019; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 367–381.

28. Mikolov, T.; Joulin, A.; Chopra, S.; Mathieu, M.; Ranzato, M. Learning longer memory in recurrent neural networks. arXiv 2014,
arXiv:1412.7753.

29. Hu, Y.; Huber, A.; Anumula, J.; Liu, S.C. Overcoming the vanishing gradient problem in plain recurrent networks. arXiv 2018,
arXiv:1801.06105.

30. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. In Proceedings of the 1999 Ninth
International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), Edinburgh, UK, 7–10 September 1999.

31. Ali, M.H.E.; Abdellah, A.R.; Atallah, H.A.; Ahmed, G.S.; Muthanna, A.; Koucheryavy, A. Deep Learning Peephole LSTM Neural
Network-Based Channel State Estimators for OFDM 5G and Beyond Networks. Mathematics 2023, 11, 3386. [CrossRef]

32. Jozefowicz, R.; Zaremba, W.; Sutskever, I. An empirical exploration of recurrent network architectures. In Proceedings of the
International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 2342–2350.

33. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. In
Proceedings of the NIPS 2014 Workshop on Deep Learning, Montreal, QC, Canada, 13 December 2014.

34. Zhou, G.B.; Wu, J.; Zhang, C.L.; Zhou, Z.H. Minimal gated unit for recurrent neural networks. Int. J. Autom. Comput. 2016,
13, 226–234. [CrossRef]

35. Ravanelli, M.; Brakel, P.; Omologo, M.; Bengio, Y. Light gated recurrent units for speech recognition. IEEE Trans. Emerg. Top.
Comput. Intell. 2018, 2, 92–102. [CrossRef]

36. Khan, M.; Wang, H.; Riaz, A.; Elfatyany, A.; Karim, S. Bidirectional LSTM-RNN-based hybrid deep learning frameworks for
univariate time series classification. J. Supercomput. 2021, 77, 7021–7045. [CrossRef]

37. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw.
Learn. Syst. 2017, 28, 2222–2232. [CrossRef] [PubMed]

38. Oliva, J.B.; Póczos, B.; Schneider, J. The statistical recurrent unit. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, Sydney, Australia, 6–11 August 2017; pp. 2671–2680.

39. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Training very deep networks. In Proceedings of the Advances in Neural Information
Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2377–2385.

http://dx.doi.org/10.1016/j.eswa.2023.122333
http://dx.doi.org/10.3390/electronics13142791
http://dx.doi.org/10.3390/electronics12234766
http://dx.doi.org/10.1016/j.compedu.2023.104910
http://dx.doi.org/10.1007/s44196-023-00345-z
http://dx.doi.org/10.1016/j.compind.2021.103498
http://dx.doi.org/10.1016/j.jksuci.2022.07.014
http://dx.doi.org/10.1016/j.bdr.2021.100296
http://dx.doi.org/10.3390/math11153386
http://dx.doi.org/10.1007/s11633-016-1006-2
http://dx.doi.org/10.1109/TETCI.2017.2762739
http://dx.doi.org/10.1007/s11227-020-03560-z
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231

Electronics 2024, 13, 3204 18 of 18

40. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

41. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
42. Merity, S.; Keskar, N.S.; Socher, R. Regularizing and optimizing LSTM language models. In Proceedings of the International

Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
43. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329.
44. Gal, Y.; Ghahramani, Z. A theoretically grounded application of dropout in recurrent neural networks. In Proceedings of the

Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 1019–1027.
45. Inan, H.; Khosravi, K.; Socher, R. Tying word vectors and word classifiers: A loss framework for language modeling. arXiv 2016,

arXiv:1611.01462.
46. Zilly, J.G.; Srivastava, R.K.; Koutník, J.; Schmidhuber, J. Recurrent highway networks. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, Sydney, Australia, 6–11 August 2017; pp. 4189–4198.
47. Melis, G.; Dyer, C.; Blunsom, P. On the state of the art of evaluation in neural language models. In Proceedings of the International

Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018
48. Che, C.; Wang, H.; Xiong, M.; Ni, X. Few-shot fault diagnosis of rolling bearing under variable working conditions based on

ensemble meta-learning. Digit. Signal Process. 2022, 131, 103777. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.dsp.2022.103777

	Introduction
	Background for RNN
	RNN with Special Initialization
	RNN with Structure Constraints

	Proposed Model
	RNN and LSTM
	Proposed LRU
	Stack Recurrent Cells
	Analysis

	Experiments
	The Adding Problem
	Task Description
	Setup
	Results

	MNIST Handwritten Digit Classification
	Dataset
	Setup
	Results
	Weight Visualization

	Language Modeling
	Dataset
	Setup
	Results

	Ball Bearing Health Monitoring
	Dataset
	Setup
	Results

	Conclusions
	References

