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Abstract: Aspect-level sentiment classification has received more and more attention from both
academia and industry due to its ability to provide more fine-grained sentiment information. Recent
studies have demonstrated that models incorporating dependency syntax information can more
effectively capture the aspect-specific context, leading to improved performance. However, existing
studies have two shortcomings: (1) they only utilize dependency relations between words, neglecting
the types of these dependencies, and (2) they often predict the sentiment polarity of each aspect
independently, disregarding the sentiment relationships between multiple aspects in a sentence. To
address the above issues, we propose an aspect-level sentiment classification model based on a hybrid
graph neural network. The core of our model involves constructing several hybrid graph neural
network layers, designed to transfer information among words, between words and aspects, and
among aspects. In the process of information transmission, our model takes into account not only
dependency relations and their types between words but also sentiment relationships between aspects.
Our experimental results based on three commonly used datasets demonstrate that the proposed
model achieves a performance that is comparable to or better than recent benchmark methods.

Keywords: aspect-level sentiment classification; hybrid graph neural network; dependency syntax
information; sentiment relationships

1. Introduction

Sentiment analysis has a wide range of applications across various industries and
fields—for example, consumer feedback analysis [1] and public opinion analysis [2,3].
As a subtask of sentiment analysis, aspect-level sentiment classification (ASC) aims to
automatically distinguish the sentiment polarity of aspects in text [4], which is one of the
research hotspots in the field of natural language processing. Based on the sentence shown
in Figure 1, given the aspects ‘food’, ‘service’, and ‘environment’, aspect-level sentiment
classification models should predict the corresponding polarities as positive, negative, and
negative, respectively. An aspect typically refers to an entity or an attribute of an entity
mentioned in text, which can be represented by a word or a text segment. Aspect-level
sentiment classification offers finer granularity of sentiment information compared to
sentence-level and document-level classifications. It has garnered increasing attention from
academia and industry.

In recent years, aspect-level sentiment classification models based on deep learning
have outperformed traditional models based on artificial features by automatically learn-
ing contextual information related to a given aspect in a sentence [5–9]. Among these
models, the attention mechanism-based ones are noted for their simplicity and effective-
ness, receiving considerable attention [10,11]. This type of model can more accurately
capture contextual information related to a specific aspect in a sentence through attention
mechanisms, improving sentiment polarity judgment. While attention-based models have
historically achieved excellent performance, they can often be susceptible to noise. For
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example, assuming that the given aspect is ‘service’ in Figure 1, attention-based models
may consider both ‘good’ and ‘horrific’ as its relevant contexts, making it challenging
to accurately predict sentiment polarity. To address the above issue, researchers have
endeavored to integrate dependency syntax information into aspect-level sentiment clas-
sification models. This integration aims to enhance the models’ ability to capture context
information related to specific aspects, thereby improving performance. For example,
Zhang et al. [12], Sun et al. [13], and Wang et al. [14] leveraged the dependency syntax
information of sentences through graph convolutional networks [15] and achieved notable
performance improvements. From the example depicted in Figure 1, we can clearly observe
the critical role of dependency syntax information. The aspect ‘service’ in the sentence
depends on the word ‘horrific’, which conveys its negative polarity.
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Figure 1. An example with dependency relations between words (above the sentence) and adjacency
relationships between aspects (below the sentence).

Promising performance has been achieved by existing aspect-level sentiment classifi-
cation models that incorporate dependency syntax information. However, these methods
suffer from two shortcomings: (1) They only leverage the dependency relations between
words in the dependency syntax tree, disregarding the categories of these relations. As
shown in Figure 1, the words dependent on the aspect ‘food’ include ‘The’ and ‘good’.
Without considering the categories of dependency relations, classification models still strug-
gle to determine which word is crucial for ‘food’. When the related words are uncommon,
knowing the categories of dependency relations becomes crucial for classification models
to distinguish the importance of words. Therefore, a robust aspect-level sentiment clas-
sification model should simultaneously consider both the dependency relations between
words and their categories. (2) Existing models typically predict the sentiment polarity
of each aspect independently, overlooking the sentiment relationships between aspects
within a sentence. Specifically, these models first decompose multiple aspects within a
sentence. They then take the sentence and one aspect at a time as the input to predict the
sentiment polarity for each aspect. Although the above strategy simplifies the design of
ASC models, it fails to capture the sentiment relationships between multiple aspects within
a sentence. For example, for the two aspects ‘food’ and ‘service’ shown in Figure 1, it is
easy to infer that their sentiment polarities are opposite because there is a conjunction
‘but’ between them. When the sentiment polarity of an aspect is expressed implicitly—for
example, ‘food and service are horrific’—it becomes crucial for ASC models to understand
the sentiment relationships between multiple aspects in a sentence in order to infer the
sentiment polarities of these aspects.

To address the two aforementioned issues, we propose an aspect-level sentiment
classification model based on hybrid graph neural networks. Specifically, we begin by
constructing a hybrid graph based on both the dependency syntax tree and the adjacency
relations between aspects. The constructed hybrid graph includes two types of nodes:
words and aspects. It incorporates two types of edges: the dependency relations between
words or between words and aspects (represented above the sentence in Figure 1) and the
adjacency relations between aspects (represented below the sentence). Then, building upon
the context coding layer (Section 3.1), we introduce multiple layers of hybrid graph neural
networks to facilitate information transfer among words, between words and aspects, and
among aspects (Section 3.2). In the process of information transmission, we consider not



Electronics 2024, 13, 3263 3 of 17

only the dependency relations between words and their categories but also the sentiment
relationships between aspects. Finally, the classification layer takes the semantic vector
representations of aspects learned by the hybrid graph neural networks as the input and
jointly predicts the sentiment polarities of all aspects in a sentence (Section 3.3).

Existing models [5,16] use LSTM or graph neural networks to capture the sentiment
relationships between multiple aspects within a sentence. However, a limitation of their
models is its tendency to predict multiple aspects in a sentence as having the same sentiment
polarity. By modeling both dependency types between words and adjacency relations
between aspects, our model can place greater emphasis on connectives like and and but.
This enables our model to effectively capture whether multiple aspects have the same or
opposite sentiment polarities. Our experimental results based on three commonly used
datasets show that our proposed model achieves performance comparable to or better than
recent benchmark methods.

2. Related Work

This work is primarily related to research on aspect-level sentiment classification based
on deep learning and graph neural networks, which is introduced below.

2.1. Aspect-Level Sentiment Classification

The key problem of aspect-level sentiment classification (ASC) is how to effectively
identify the context information related to a specific aspect in the text. In recent years, mod-
els based on deep learning, particularly those utilizing attention mechanisms, have achieved
promising performance in ASC. For example, Tang et al. [17] introduced two LSTM net-
works to capture the context information of an aspect from left to right and right to left,
respectively. Wang et al. [10] first concatenated the representations of a given aspect and
each word in the sentence as the input to an LSTM network to learn the aspect-specific word
representations. They then used attention mechanisms to learn the final representation for
classification. Ma et al. [11] adopted two attention mechanism modules to separately learn
the representation of an aspect and its corresponding context, which were then combined
for sentiment classification. Sun et al. [18] and Du and Liu [19] developed multi-head atten-
tion mechanisms and helical attention networks for aspect-level sentiment classification,
respectively, achieving better performance on multiple datasets.

To better capture the aspect-specific context, researchers have integrated the depen-
dency syntax information of sentences into ASC models, further improving the perfor-
mance. For example, Huang and Carley [20] leveraged dependency syntax information
via a graph attention network for ASC. Wang et al. [21] defined a variant of a dependency
syntax tree for ASC to construct a graph neural network, achieving promising results.
Tang et al. [22] combined the separately learned semantic vector representations via a trans-
former layer [23] and a graph neural network layer constructed on the dependency syntax
tree in an interactive manner. To avoid possible errors caused by a single dependency
syntax parser, Hou et al. [24] combined the dependency trees from multiple parsers to
construct a graph neural network layer. Instead of incorporating syntactic structures of
sentences, Ma et al. [25] made full use of semantic structures (abstract meaning representa-
tion, AMR). Wang et al. [14] developed a dual graph network to capture both the syntactic
and semantic information. Additionally, both Zhu et al. [6] and Gu et al. [7] incorporated
external knowledge via graph neural networks.

Most of the methods mentioned above predict the sentiment polarity of each aspect
in a sentence independently, thereby overlooking the sentiment relationships between
multiple aspects within the same sentence. To address this problem, Hazarika et al. [16]
learned the contextualized representation of each aspect separately. These representations
were then used as inputs to an LSTM network to capture the sentiment relationships
between them, aiming for improved classification. Hu et al. [26] attempted to retrieve the
different context of multiple aspects in a sentence using a constraint attention mechanism.
Zhao et al. [5] modeled the sentiment dependency relations between aspects using a graph
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neural network. Han et al. [27] proposed a gate-based network to dynamically merge the
sentiment of words and inter-aspect dependency.

Previous studies have achieved impressive performance improvements in aspect-level
sentiment classification. The key differences between our method and existing approaches
are summarized as follows: (1) Our model simultaneously considers the relationships
among words, between words and aspects, and among aspects, whereas existing methods
typically focus on only some of these relationships. (2) To capture these relationships,
we design a hybrid graph neural network that includes both type-aware dependency
edges and adjacency edges. Existing methods usually do not consider types of word
dependencies. (3) Despite its simplicity, our method achieves comparable or superior
performance compared to recent baseline models.

2.2. Graph Neural Networks

Graph neural networks (GNNs) [28] are deep learning models commonly used for
processing graph-structured data. By facilitating information transmission between nodes
in a graph, GNNs effectively model semantic relationships between nodes. In recent years,
GNNs have been widely employed in the field of natural language processing. For example,
Yao et al. [29] adapted a GNN for text classification and achieved state-of-the-art results
at that time. They constructed a graph with nodes representing words and documents to
capture relationships between documents and words, as well as the relationships between
words. Yin et al. [30] fused information from text and images using a GNN for multi-
modal machine translation. Wu et al. [31] employed a GNN to encode hierarchical label
information for multi-level discourse relation recognition. Yan et al. [32] constructed several
simpler local hyper-graphs to capture nested named entities instead of using a complex
global hyper-graph. Mao et al. [33] developed a hierarchical graph fusion network for
multi-party dialogue discourse parsing to integrate diverse contexts. Many existing studies
have confirmed that GNNs can effectively model relationships between nodes in a graph,
thereby improving the learning of semantic representations of nodes.

Our work is also related to the language and visual entity relationship graph model
for agent navigation [34], which effectively captures both the inter-modal relationships
between text and vision and the intra-modal relationships among visual entities. The main
distinctions between these two methods are as follows: (1) Constructing an appropriate
graph is critical for GNN-based models. These authors started by building a language
attention graph and then a language-conditioned visual graph. In contrast, we construct
a hybrid graph that integrates the dependency tree of a sentence with its aspects. (2) The
two methods differ in how they propagate information between nodes. These authors’
method relies on information fusion mechanisms for information transfer, while our method
combines attention and gated mechanisms for this purpose.

3. Method

A sentence S = x1, . . . , xi, . . . , xn may contain m aspects, where each aspect can be a
word or a text segment within the sentence, and n represents the total number of words in
the sentence. Most previous studies take the sentence S and one aspect as the input at a time
to predict the sentiment polarity of that aspect, overlooking the sentiment relationships
between multiple aspects with the sentence. Differing from these methods, our proposed
model is based on a hybrid graph neural network, which takes both the sentence and all
aspects contained within it as the input to jointly infer the sentiment polarities of these
aspects. The main contribution of our work is the development of a hybrid graph neural
network that fully leverages both the dependency syntax information and the relationships
between aspects.

As shown in Figure 2, the proposed aspect-level sentiment classification model com-
prises the input layer, the encoding layer, the hybrid graph neural network layers, and the
classification layer. The input layer transforms words in a sentence into low-dimensional
semantic vectors. The encoding layer then utilizes a BiLSTM network to further learn
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the contextualized representations of both words and aspects. The hybrid graph neural
network layers first organize the aspects and words in a sentence into a hybrid graph.
Subsequently, they capture relationships between words, between words and aspects, and
among aspects. This approach enables the model to jointly learn improved semantic vector
representations of multiple aspects within a sentence. Finally, the classification layer is
responsible for generating the sentiment classification results. In the following subsec-
tions, we will elaborate on the input layer and the encoding layer (Section 3.1), the hybrid
graph neural network layers (Section 3.2), and the classification layer, along with the loss
function (Section 3.3).
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Figure 2. Hybrid graph neural network-based model for aspect-level sentiment classification.

3.1. Input Layer and Encoding Layer

Most natural language processing models based on deep learning typically represent
words and other inputs as semantic vectors. Specifically, the input layer first converts the
i-th word xi in a sentence into the corresponding static word vector xglove

i , according to
the pretrained GloVe [35] embeddings. Then, based on the pretrained BERT [36], the i-th
word xi in the sentence is represented as the dynamic contextualized word embedding xbert

i .
Lastly, BIO tags, which are commonly used in sequence tagging, are introduced to mark
the aspect words in a sentence. The corresponding tag vector of the i-th word xi is denoted
as xbio

i . The tags B, I, and O represent the first word of an aspect, the subsequent words of
an aspect, and words not in an aspect, respectively. Concatenating the above three types of
information yields the complete semantic representation of a word, which serves as the
input to the encoding layer:

wi = [xglove
i ; xbert

i ; xbio
i ]. (1)

The encoding layer further learns the representation of each word conditioned on its
sentence-level context as follows:
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h1, . . . , hi, . . . , hn = BiLSTM(w1, . . . , wi, . . . , wn), (2)

where BiLSTM refers to a bidirectional long short-term memory network.
An aspect in a sentence can be a single word or a text segment containing multiple

words. For an aspect consisting of a single word, we directly use the word representa-
tion in Equation (2) as its semantic representation. For an aspect containing multiple
words, we compute its semantic representation by averaging the word representations.
For convenience, we denote the semantic representations of m aspects in a sentence as
h̃1, . . . , h̃m, respectively.

3.2. Hybrid Graph Neural Network Layers

We combine multiple aspects in a sentence, along with words not belonging to these
aspects, into a hybrid graph to jointly learn better semantic representations of these aspects.
By introducing the hybrid graph neural network layers, we consider not only the depen-
dency relations of words and their categories but also the sentiment relationships between
multiple aspects.

3.2.1. Construction of Hybrid Graph

For a sentence S, we construct a hybrid graph G =< V, E >, where G is an undirected
graph, V is the set of nodes, and E is the set of edges in the graph. There are two types of
nodes: aspect nodes and word nodes. Specifically, each aspect in the sentence corresponds
to an aspect node vp, p ∈ [1, m] in the graph, and each word not in any aspect corresponds
to a word node vp, p ∈ [m + 1, m + c], where m is the number of aspects in the sentence and
c is the number of words not in any aspect. As shown in Figure 3, the boxes denote aspect
nodes, and the circles represent word nodes.
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Figure 3. The corresponding hybrid graph for the sentence in Figure 1. The boxes denote aspect
nodes and the circles represent word nodes.

A hybrid graph contains two kinds of edges: dependency edges and adjacency edges.
Dependency edges exist between an aspect node and a word node, or between two word
nodes. These dependency edges are derived from the dependency syntax tree of the
sentence. Adjacency edges exist between aspect nodes and are based on the adjacency
relationship between two aspects in a sentence.

The definition of a dependency edge is as follows: (1) A dependency edge exists
between two word nodes if and only if there is a dependency relation between the two
corresponding words in the dependency tree. (2) When there is a dependency relation
between a word in an aspect and a word not in any aspect, a dependency edge exists
between the corresponding aspect node and the word node. (3) The type of the dependency
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relation in the syntax tree is directly used as the category of the corresponding edge in the
graph. There are two points that need to be noted. First, a hybrid graph does not contain
the dependency edges between words within the same aspect because each aspect is treated
as a cohesive unit. Second, there may be multiple dependency edges between an aspect
node (which contains multiple words) and a word node. For convenience in processing,
only the dependency edge with the smallest span (the shortest distance between two words
involved) is retained.

The definition of an adjacency edge is as follows: (1) There is an adjacency edge
between any two aspect nodes in the graph. (2) If two aspects are adjacent in the sentence,
the category of the adjacency edge is ‘adjacent’ (AS.adj in Figure 1); otherwise, the category
of the edge is ‘interval’ (AS.inter in Figure 1).

3.2.2. Information Transfer Mechanism

The hybrid graph neural network layers can effectively model the semantic relation-
ships between nodes by transferring information among neighbor nodes, thereby enhancing
the learning of semantic representations of nodes. To model the semantic relationships
between nodes that are not directly connected, we stack L hybrid graph neural network
layers. Specifically, we initialize the corresponding aspect nodes and word nodes in a graph
with outputs from the encoding layer. The aspect nodes are initialized as the obtained
semantic vectors h̃1, . . . , h̃m, and the words’ nodes are initialized as the learned contextual-
ized vectors hi as defined in Equation (2). For convenience, the initial representations of
all nodes are uniformly referred to as h0

p, p ∈ [1, m + c]. Each edge category is randomly
initialized as a low-dimensional vector, which serves as the parameters of our model. Then,
we calculate the semantic representations of nodes at the l-th (l ∈ [1, L]) hybrid graph
neural network layer based on the representations at the l − 1-th layer. Formally, we obtain
the semantic representation of the node vp at the l-th layer as follows:

hl
p = Gatel(hl−1

p , ∑
q∈N(p)

αp,q ĥl−1
q ),

αp,q =
(hl−1

p )
T ĥl−1

q

∑
q∈N(p)

exp((hl−1
p )

T
ĥl−1

q )
,

ĥl−1
q = FFNl([hl−1

q ; rp,q]),

(3)

where N(p) is the set of indices of nodes adjacent to the node vp, αp,q represents the weight
obtained via the attention mechanism for the corresponding node, rp,q is the semantic
vector of the edge between nodes vp and vq, FFNl is a multi-layer feed-forward neural
network used to calculate the edge category-enhanced node representation ĥl−1

q , and Gatel
is a gating mechanism used to fuse representations of the node itself and its neighbor nodes.
Lastly, the node representations hL

p , p ∈ [1, m] at the L-th graph layer are used as the final
semantic representations of m aspects in the sentence S, respectively.

In our hybrid graph neural network, the information transfer mechanism comprises
three steps. First, edge category information is integrated with related nodes through a
multi-layer feed-forward neural network (FFNl), resulting in edge category-enhanced node
representations. Next, we employ an attention mechanism to selectively aggregate informa-
tion from neighboring nodes, ensuring that more significant information receives greater
weight. Finally, a gated mechanism is utilized to combine a node’s own information with
that of its neighbors. This helps in filtering out noise and irrelevant information, leading to
more accurate sentiment predictions. To some extent, the attention mechanism functions as
a local information filter, while the gated mechanism serves as a global information filter,
together improving the model’s contextual understanding.
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3.3. Classification Layer and Loss Function

Based on outputs of the last graph neural network layer, the classification layer
calculates the final classification results as follows:

ȳp = softmax(WshL
p + bs), p ∈ [1, m], (4)

where ȳp is the predicted result for the p-th aspect, and Ws and bs are the parameters of the
classification layer.

The commonly used cross-entropy loss function is adopted to guide the model training,
defined as follows:

Jce = −
m

∑
p=1

Eyp [log ȳp], (5)

where yp is the ground-truth label (one-hot vector) of the p-th aspect and E[] represents the
expected value of the predicted result about the ground-truth label.

4. Experiments
4.1. Datasets and Settings

To verify the effectiveness of our proposed method, we compared it with benchmark
methods based on three datasets: Laptop, Restaurant, and MAMS. The Laptop and Restau-
rant datasets are derived from review data provided by the SemEval 2014 competition [37].
The MAMS dataset [38] contains at least two aspects with different sentiment polarities
in each sentence, making the dataset more challenging. The statistics of the three datasets
are shown in Table 1. The officially provided Laptop and Restaurant datasets were split
into only training and test sets, without validation sets. To determine the optimal hyper-
parameters, we randomly selected 10% instances from the official training set to create our
validation set. The remaining 90% instances were used as our training data. For MAMS,
we directly used the officially provided validation set.

In the Laptop dataset, more than 70% of sentences contain multiple aspects, and
about 60% of sentences contain more than one aspect in the Restaurant dataset. For
MAMS, each sentence contains multiple aspects. From the above statistical results,
it is evident that modeling the sentiment relationships between multiple aspects in a
sentence is necessary. The experimental results in the following subsections further
verify this necessity.

Table 1. Statistics of experimental datasets.

Dataset Split Positive Negative Neutral

Laptop Training 980 858 454
Test 340 128 171

Restaurant Training 2159 800 632
Test 730 195 196

MAMS
Training 3380 5042 2764

Validation 403 604 325
Test 400 607 329

In our experiments, we used pretrained 300-dimensional GloVe word embeddings as
static word vectors, which were not fine-tuned during model training. Additionally, we
used the pretrained BERT-base model with 12 hidden layers to obtain dynamical word
embeddings, which have 768 dimensions. The semantic vectors of BIO tags and the edge
categories were randomly initialized from a uniform distribution between [−0.01, 0.01].
Other parameters in the model were set to their default initial values in PyTorch 1.8. To
mitigate overfitting, we applied the dropout strategy [39] to the input layer. We used the
Biaffine dependency parser [40] to obtain the dependency syntax tree of each sentence. The
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values of the hyper-parameters were determined based on achieving the best performance
on the validation sets as depicted in Table 2.

Table 2. The values of hyper-parameters.

Hyper-Parameter Value

Dimension of BIO tag vectors 50
Dimension of category vectors (d1) 50
Sizes of BiLSTM hidden units (d2) 300 (Forward), 300 (backward)

Dimension of node vectors 600
Hybrid graph layers (L) 2

Dropout rate (r) 0.3
Optimizer Adam

Learning rate 0.00001
Batch size 32

As with most previous work for this task, we used accuracy (denoted as ACC) and
macro-F1 as the performance metrics. ACC is the ratio of correctly predicted instances (T)
to the total number of instances (N). It is calculated as follows:

ACC =
T
N

. (6)

The F1 score is a harmonic mean of precision (P) and recall (R). For each class, it is
calculated as follows:

F1 = 2 × P × R
P + R

, P =
TP

TP + FP
, R =

TP
TP + FN

, (7)

where TP, FP and FN are the true positives, false positives, and false negatives, respectively.
In a multi-class setting, we first calculate the F1 score for each class separately, treating that
class as the positive class and all others as negatives. Then, the macro−F1 is defined as:

macro-F1 =
1
C

C

∑
i=1

Fi
1, (8)

where C is the number of classes and Fi
1 is the F1 score for the i-th class.

We further utilized ROC (Receiver Operating Characteristic) and AUC (Area Under
the Curve) metrics to evaluate the performance of our model [41]. Specifically, we calculated
the macro-averaged ROC curve with the one vs. rest approach.

4.2. Results

We verified the effectiveness of our proposed hybrid graph neural network model
based on the ASC task in two scenarios: HGNN (without the BERT word embeddings) and
HGNN-BERT (with the BERT word embeddings). Specifically, we compared our method
with the following two types of benchmark methods.

The first type of method only uses static word embeddings, such as GloVe, and
includes the models that utilize the dependency syntax information as follows:

• IAN [11]: Two LSTM networks are employed to learn the semantic representations of
an aspect and the corresponding sentence, respectively. The interaction between these
representations is also taken into account.

• RAM [42]: The multi-layer attention mechanism and memory network are combined
to learn the representation of context related to a specified aspect, which is then used
for classification.

• MIAD [16]: Multiple aspects in a sentence are considered as a sequence, and an LSTM
network is adopted to capture the sentiment relationships between them.
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• ASGCN [12]: A graph convolution neural network based on a dependency syntax
tree is proposed to better capture the long-distance dependencies between a specified
aspect and other words in a sentence.

The second type of method uses dynamical word embeddings from pretrained lan-
guage models, such as BERT, and includes the models that utilize the dependency syntax
information and external knowledge as follows:

• AEN-BERT [43]: BERT word embeddings are used as inputs, and an attention mecha-
nism learns the representation of the context related to a specified aspect. The learned
representation is then used for sentiment classification.

• SDGCN-BERT [5]: A bidirectional attention mechanism serves as the encoder, followed
by a graph neural network to capture sentiment dependencies between multiple
aspects in a sentence.

• ASGCN-BERT: The BERT-enhanced ASGCN model.
• dotGCN [44]: To eliminate reliance on external dependency parsers, this model induces

aspect-specific discrete opinion trees as an alternative structure to dependency trees.
• KDGN [45]: A knowledge-aware dependency graph network is proposed to incorpo-

rate domain knowledge, dependency labels, and constituency syntax path.
• IDGNN [14]: This model first develops a graph attention network and a graph convo-

lutional network to encode the syntactic and semantic information, respectively. Then,
two fusion strategies are introduced to merge these information.

• APARN [25]: Instead of incorporating syntactic structures of sentences, APARN is
designed to make full use of the semantic structures of abstract meaning representa-
tion (AMR).

The experimental results based on the three datasets are shown in Table 3. It should be
noted that the results of IAN and RAM based on the MAMS dataset were extracted from the
previous work [46], while the results of T-GCN, dotGCN, and APARN were from [25]. We
executed the authors’ provided code to obtain the results of ASGCN on the MAMS dataset.
We enhanced the publicly available ASGCN code with BERT word embeddings to obtain
the results of ASGCN-BERT. The results for other benchmark methods were extracted from
the corresponding literature.

Table 3. Performance comparison with baselines. * means that the sentiment relationships between
multiple aspects within a sentence are considered. # indicates that the structure information of the
dependency syntax tree is used. The best results for each dataset under the two experimental settings
are marked in bold, and the second-best results are underlined.

Model Laptop Restaurant MAMS
ACC Macro-F1 ACC Macro-F1 ACC Macro-F1

IAN 72.0 67.4 79.3 70.1 70.0 68.8
RAM 72.1 68.4 78.5 68.5 75.5 74.4
MIAD * 72.5 - 79.0 - - -
ASGCN # 75.6 71.1 80.8 72.0 76.8 75.3
HGNN *,# 77.3 73.2 82.7 73.9 78.3 77.0

AEN-BERT 79.9 76.3 83.1 73.7 - -
SDGCN-BERT * 81.3 78.3 83.5 76.4 - -
ASGCN-BERT # 80.6 76.7 85.1 77.4 82.3 81.8
dotGCN 81.0 78.1 86.2 80.5 84.9 84.4
KDGN # 81.3 77.6 87.0 81.9 86.1 84.6
IDGNN # 81.1 77.7 87.3 81.2 84.6 83.4
APARN 81.9 79.1 87.8 82.4 85.6 85.1
HGNN-BERT *,# 81.6 79.5 87.0 82.2 84.8 85.4

From the experimental results in Table 3, we can conclude the following: (1) Integrat-
ing the dependency syntax information benefits the aspect-level sentiment classification
(ASGCN-BERT, KDGN and IDGNN vs. AEN-BERT). (2) Modeling sentiment relationships
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between multiple aspects in a sentence is necessary and improves ASC performance (MIAD
vs. RAM; SDGCN-BERT vs. AEN-BERT). (3) By leveraging both the dependency syntax
information and the sentiment relationships between multiple aspects, our proposed model
achieves a performance that is comparable to or better than baseline methods (HGNN-
BERT vs. methods in Part 2; HGNN vs. methods in Part 1). (4) While our method may not
always outperform KDGN, IDGNN, and APARN, this is because they leverage additional
information such as constituent syntax trees in KDGN and semantic information in IDGNN
and APARN.

Based on the above analyses, our proposed hybrid graph neural network ASC model
is proven to be effective.

4.3. Ablation Study

To verify the effectiveness of key components of our proposed model, we conducted
ablation experiments on the relatively larger Restaurant and MAMS datasets, and present
the results in Table 4. Specifically, we compared the proposed model (HGNN-BERT) with
the following three variants:

• W/o dependency edges: The hybrid graph does not include edges based on the
dependency syntax tree, meaning our model does not utilize information from the
dependency syntax tree.

• W/o categories of edges: The category of edges is not considered in the hybrid graph
neural network layer. In other words, we replace ĥl−1

q in Equation (3) with hl−1
q .

• W/o adjacency edges: The hybrid graph does not consider the adjacency relationships
between multiple aspects. That is to say, our model does not leverage the sentiment
relationships between multiple aspects.

• W/o AS.adj edges: Only the edges between adjacent aspects are excluded.
• W/o AS.inter edges: Only the interval edges are excluded.
• W/o an attention mechanism: An average operator is used in place of the atten-

tion mechanism.
• W/o a gated mechanism: An addition operator is used as a replacement.

Table 4. Experimental results of the ablation study.

# Model Restaurant MAMS
ACC Macro-F1 ACC Macro-F1

1 HGNN-BERT 87.0 82.2 84.8 85.4
2 w/o dependency edges 84.9 80.3 83.2 83.7
3 w/o categories of edges 85.7 81.7 84.1 84.9
4 w/o adjacency edges 86.1 81.6 83.7 84.4
5 w/o AS.adj edges 86.4 81.8 84.1 84.9
6 w/o AS.inter edges 86.7 82.0 84.3 85.0
7 w/o attention mechanism 85.8 81.2 83.6 84.9
8 w/o gated mechanism 86.7 82.1 84.3 85.1

From the results in Table 4, several observation can be made: (1) All three variants
of HGNN-BERT show varying degrees of performance degradation. These results clearly
demonstrate the necessity of introducing dependency edges and adjacency edges in the
hybrid neural network layer, as well as capturing the category information of these edges.
(2) When the category of edges is not considered, the variant model’s performance sub-
stantially declines on both datasets, despite many previous models ignoring this type of
information (Line 3 vs. Line 1). (3) Omitting the consideration of sentiment relationships
between multiple aspects results in performance degradation, particularly evident for the
MAMS dataset (Line 4, 5 and 6 vs. Line 1). As expected, the edges between adjacent aspects
have more of an impact on performance than the edges between non-adjacent aspects (Line
5 vs. Line 6). (4) When the attention mechanism is not used, the performance based on both
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datasets degrades significantly (Line 7 vs. Line 1). Excluding the gated mechanism leads to
a small but consistently decreased performance based on both datasets (Line 8 vs. Line 1).

On one hand, these findings highlight the advantage of jointly predicting sentiment
polarities of multiple aspects in a sentence, compared to independently predicting them as
in previous approaches. On the other hand, these results confirm that the attention and
gated mechanisms are both effective and necessary for information transfer.

4.4. Performance on ROC and AUC

To further validate the effectiveness of our model, we conducted a comparative
analysis against baseline models using the ROC and AUC metrics. Due to the lack of
open-source code for KDGN and APARN, our evaluation was limited to comparing our
model (HGNN-BERT) with the IDGNN model. The performance of these two models
across all three datasets is depicted in Figure 4.
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Figure 4. The macro-averaged ROC curves and AUC scores on three datasets.

Our model consistently achieved superior AUC values across all three datasets, high-
lighting its enhanced ability to discriminate between different classes across various thresh-
old settings. Specifically, our model attained AUC scores of 0.93, 0.95, and 0.95, showcasing
its high sensitivity and specificity in the ASC task. In comparison, the IDGNN model
yielded scores 0.92, 0.94, and 0.94, falling short of matching our model’s performance.
This disparity indicates that our model is more adept at handling the complexities of the
classification problem, particularly in situations where class distinctions are subtle or when
the data are imbalanced.

4.5. Weights of Dependency Types

To further analyze which types of dependencies are important for our model, we
averaged the weights assigned to each dependency type in the last graph neural network
layer. The top 10 dependency types with their average weights based on the Restaurant
dataset are listed in Figure 5. We can observe the following: (1) Our model assigns higher
weights to nsubj and acomp, which are typically employed to express a subjective attitude
toward a particular aspect (e.g., the macbook looks very beautiful). (2) The amod and advmod
types also receive significant attention, as they frequently occur in phrases like great battery
and extremely useful. (3) More importantly, our model assigns considerable weights to conj
and cc. In the sentence I have been impressed with the battery life and the performance for such a
small amount of memory, the aspects battery life and performance are connected by a conj edge,
while performance and and are connected by a cc edge. With these higher weights, our model
can easily deduce that the two aspects share the same sentiment polarity. Overall, these
observations suggest that our proposed model is capable of allocating suitable weights
to various dependency types, thereby better learning the context information related to
the aspects.
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Figure 5. Weights of dependency types based on the Restaurant dataset.

4.6. Effects of Hyper-Parameters

To explore the influence of different values of hyper-parameters on the performance of
our HGNN-BERT model, we varied these values and report the corresponding accuracies
in Figure 6. Specifically, we varied the number of hybrid graph neural network layers
L = [1, 2, 3, 4, 5], the dimension of the category vectors of edges d1 = [25, 50, 75, 100, 125],
the size of BiLSTM hidden units d2 = [100, 200, 300, 400, 500], and the dropout rate
r = [0.1, 0.2, 0.3, 0.4, 0.5], respectively. Please note that we changed one hyper-parameter at
a time and kept the others fixed.
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Figure 6. Effects of hyper-parameters.

From the results shown in Figure 6, we can observe that our model yielded rela-
tively stable results when L = [2, 3, 4], d1 = [25, 50, 75, 100], d2 = [200, 300, 400] and
r = [0.3, 0.4, 0.5]. This indicates that our proposed model is not highly sensitive to these
hyper-parameters.
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4.7. Time Analysis

Time consumption is crucial for practical applications, as it directly impacts the usabil-
ity and scalability of models. We compared the proposed model with baseline models in
terms of time efficiency. Specifically, we ran SDGNCN-BERT, ASGCN-BERT, IDGNN, and
our HGNN-BERT using an RTX 2080Ti GPU (MSI, Shanghai, China) with a batch size of 32.
We did not include the time required for dependency parsing, as this can be performed
in advance during training. During testing, the dependency parsing time was considered.
From Table 5, we can observe the following: (1) Compared to traditional graph-based
models (SDGCN-BERT and ASGCN-BERT), our model consumes more training and test
time. The main reason for this is that the hybrid graph we used is more complex than the
aspect graph or dependency graph used in these model. (2) IDGNN designs a dependency
graph and a global-word graph, based on which it transfers two types of information via
GAT and GCN, respectively. Our model requires less time than IDGNN while achieving
better performance.

Table 5. Time comparison with baseline models based on the Restaurant dataset. GCN and GAT
represent the graph convolutional network and the graph attention network, respectively. TR is the
training time of a single epoch and IN represents the inference time on the test set.

Model Input Layer Encoding Layer External Tools TR IN

SDGCN-BERT BERT+BiLSTM GCN on aspect graph - 242 s 32 s
ASGCN-BERT BERT+BiLSTM GCN on dependency graph Dependency Parser 286 s 36 s

IDGNN BERT+BiLSTM GAT on dependency graph,
GCN on global-word graph Dependency Parser 386 s 45 s

KDGN BERT+BiLSTM GAT on knowledge-aware
dependency graph

Dependency Parser,
Constituency parser,
Knowledge retriever

- -

APARN BERT Path aggregation layer AMR Parser - -
HGNN-BERT BERT+BiLSTM GAT on hybrid graph Dependency Parser 347 s 41 s

There is no open source code available for the baseline models KDGN and APARN,
and it is difficult to reproduce these two models. Therefore, we do not list their training
and test time. Theoretically, our model outperforms KDGN and APARN in terms of time
efficiency. The reasons are for this as follows: (1) KDGN requires more external tools: a
dependency parser, a constituency parser, and a knowledge retriever. The constructed
knowledge-aware dependency graph is also more complex than our hybrid graph. (2) As
described in the limitations of APARN [25], the path aggregation layer is more time-
consuming than the existing methods. Overall, our proposed model performs well in terms
of time consumption.

4.8. Case Study

To further explore the effectiveness of our proposed HGNN-BERT, we present several
examples in Table 6, along with the predictions of three models: SDGCN-BERT, IDGNN,
and HGNN-BERT. In the first example, SDGCN-BERT makes a mistake on both aspects
because it focuses more on like. With the help of the dependency information (not, version)
and (version, feature), both IDGNN and HGNN-BERT make correct predictions. In the
second example, both SDGCN-BERT and HGNN-BERT effectively capture the sentiment
relationships between adjacent aspects, resulting in accurate predictions. For example 3,
the sentiment polarity for the aspect vegetables is implicitly expressed. Our model assigns
higher weights to the relationships (but, needed, cc) and (vegetables, needed, nsubj), while
also considering the relationship between the aspects meat and vegetables, thereby accu-
rately predicting the different polarities of them. The above-mentioned examples clearly
demonstrate that it is essential to use both types of dependency relation and the sentiment
relationships between aspects.
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Table 6. Case studies. Aspects in reviews are underlined. P, N, and O represent positive, negative,
and neutral sentiment polarities, respectively. Underline means the aspects in a sentence.

# Review SDGCN-BERT IDGNN HGNN-BERT

1 Did not like the new Android version and the
new navigation bar feature.

P×, P× N✓, N✓ N✓, N✓

2 The pizza is very good, so is the atmosphere. P✓, P✓ P✓, O× P✓, P✓
3 The meat was great, but vegetables needed flavor

and etc.
P✓, P× P✓, O× P✓, N✓

4 The mobile phone can be just put in my pocket. N× O× O×
5 It is really thick around the battery. N× N× N×

All three models failed to classify examples 4 and 5 correctly. Understanding the
meanings of text like just put in my pocket and around is very challenging for current ASC
models. We leave the study of these issues for future work.

5. Conclusions

In this paper, we propose a novel aspect-level sentiment classification model based on
a hybrid graph neural network, achieving a performance comparable to or better than that
of recent baseline models based on three commonly used datasets. Specifically, we design
several hybrid graph neural network layers on the encoding layer to leverage both depen-
dency syntax information (relations and their types) and sentiment relationships between
multiple aspects. The primary distinction between our model and existing methods lies
in our comprehensive consideration of relationships: among words, between words and
aspects, and among aspects. In contrast, existing methods usually focus on only a subset of
these relationships. Comprehensive experimental results confirmed both the effectiveness
and efficiency of our method. The main drawback of our method is its reliance on the
results of dependency parsing. When the dependency parsing results are suboptimal or in
scenarios where a suitable dependency parser is unavailable, our method is not applicable.

In our future work, we plan to explore the application of hybrid graph neural net-
works in other natural language processing tasks. For instance, in multi-modal tasks, we
can utilize a hybrid graph neural network to model interactions between objects from
different modalities.
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