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Abstract: In recent years, graph convolutional neural networks (GCNs) and convolutional neural
networks (CNNs) have made significant strides in hyperspectral image (HSI) classification. However,
existing models often encounter information redundancy and feature mismatch during feature fusion,
and they struggle with small-scale refined features. To address these issues, we propose DCG-Net, an
innovative classification network integrating CNN and GCN architectures. Our approach includes
the development of a double-branch expanding network (E-Net) to enhance spectral features and effi-
ciently extract high-level features. Additionally, we incorporate a GCN with an attention mechanism
to facilitate the integration of multi-space scale superpixel-level and pixel-level features. To further
improve feature fusion, we introduce a feature aggregation module (FAM) that adaptively learns
channel features, enhancing classification robustness and accuracy. Comprehensive experiments on
three widely used datasets show that DCG-Net achieves superior classification results compared to
other state-of-the-art methods.

Keywords: hyperspectral image classification; graph neural network; superpixel segmentation;
attention mechanism; multi-space scale

1. Introduction

Hyperspectral images (HSIs) collected from satellites or aircrafts comprise hundreds
of contiguous bands and contain abundant spectral–spatial information [1]. HSIs provide
detailed spectral and spatial data, essential for precise classification. Consequently, HSIs
are crucial in fields such as target detection, ocean exploration, crop monitoring, and
environmental investigation [2–8]. HSI classification, a key tool in HSI processing, aims to
assign category labels to each pixel based on spectral and spatial information, facilitating
detailed analysis of target areas for precise management and research.

Initially, HSI classification relied on machine learning methods such as random
forests [9], support vector machines (SVMs) [10], principal component analysis (PCA) [11],
linear discriminant analysis (LDA) [12], and sparse representation classification (SRC) [13].
These traditional supervised methods focused solely on spectral data, ignoring spatial
information, which limited their classification effectiveness. Additionally, these methods
lacked robustness and accuracy.

Compared to traditional machine learning, deep learning enables end-to-end, auto-
matic, advanced feature extraction. Consequently, numerous deep learning-based models
have been proposed [14–16]. Convolutional neural networks (CNNs) have significant
advantages in HSI processing and have proven to be particularly effective [17,18]. Specif-
ically, 1D-CNNs [19], 2D-CNNs [20–22], and 3D-CNNs [23,24] extract spectral, spatial,
and spectral–spatial features, respectively. Zhong et al. [25] introduced residual blocks
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in their SSRN model, while Wang et al. [26] (FDSSC) incorporated dense connections,
enhancing network training and representation. Additionally, Yang et al. [27] developed
a two-channel CNN (TCCNN) for separate spectral and spatial feature extraction. The
attention mechanism [28–30] can extract more discriminative features and reduce the inter-
ference of irrelevant features in classification, making it widely used in HSI classification.
For instance, Li et al. [31] (DBDA) added channel attention and spatial attention blocks to
their network.

Recently, graph neural networks (GNNs) [32] have become crucial in HSI classification.
GNNs handle graph structures, overcoming CNN limitations with non-Euclidean data
and better extracting internal HSI relationships. For instance, Mou et al. [33] proposed a
nonlocal graph convolutional network to classify HSIs using both labeled and unlabeled
data. However, this method is computationally intensive because it directly uses each
pixel of the entire image as a graph node. To reduce computational demand, Wan et
al. [34] proposed multi-scale dynamic graph convolution (MDGCN), using superpixels
instead of individual pixels for graph construction. Liu et al. [35] introduced a classification
method based on multi-level superpixel structured graphs (MSSGU) to learn spectral
features at different scales. Ding et al. [36] proposed a multi-feature fusion network
(MFGCN) incorporating multi-scale GCNs and multi-scale CNNs to combine hyperpixel-
level and pixel-level features. Additionally, Liu et al. [37] developed a CNN-enhanced
GCN (CEGCN), and Dong et al. [38] proposed a convolutional neural and graph attention
network weighted feature fusion model (WFCG).

Although these models have achieved good classification results, challenges remain.
First, feature extraction for small-scale refined samples remains a prominent issue. Sec-
ond, CNN and GCN feature extraction and fusion occur only at a single spatial scale,
ignoring features at different scales. Finally, multiple features cannot be accurately fused,
often resulting in information redundancy. To address these issues, we propose an in-
novative classification network (DCG-Net) that integrates CNN and GCN architectures,
merging superpixel-level graph convolutional networks with pixel-level convolutional
networks [39]. Our contributions include designing an expanding network (E-Net) for fea-
ture extraction, integrating a GCN with an attention mechanism, and developing a feature
aggregation module (FAM) for adaptive channel feature learning. We demonstrate our
model’s effectiveness through comprehensive experiments on three widely used datasets,
achieving superior classification results compared to state-of-the-art methods.

The main contributions of this study are as follows:

• Innovative classification network (DCG-Net): We introduced DCG-Net, a novel clas-
sification network that integrates convolutional neural networks (CNNs) and graph
convolutional networks (GCNs). This hybrid architecture is designed to effectively
capture both large-scale regular features and small-scale fine features in HSIs, address-
ing issues of information redundancy and feature mismatch commonly encountered
in existing models.

• Expanding network (E-Net) for enhanced feature extraction: We developed a double-
branch expanding network (E-Net) based on a CNN architecture. E-Net enhances
the spectral features of HSIs and efficiently extracts high-level features by projecting
the image information into higher spatial dimensions. This approach balances the
extraction of both high-level and fine-grained features.

• Feature aggregation module (FAM): We designed a feature aggregation module (FAM)
that adaptively learns channel features. The FAM dynamically calibrates channel
responses within the network, enhancing the model’s feature representation and
extraction capabilities.
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2. Related Work
2.1. HSI Classification Based on Convolutional Neural Network

Convolutional Neural Networks (CNNs) can automatically extract both spatial and
spectral features from HSIs. They support an end-to-end learning framework, enabling
direct learning and classification of features from the original HSIs.

Lee et al. [40] (CDCNN) achieved feature mapping of HSIs by integrating local spatial–
spectral information of neighboring pixels through multi-scale dynamic convolution. To
alleviate the training difficulties of deep networks, Zhong et al. [25] incorporated residual
blocks into the spectral and spatial network using the 3D cube approach as training samples
to reduce network parameters. Wang et al. [26] employed end-to-end fast and dense
spectral–spatial convolution to facilitate the rapid classification of HSIs. Additionally,
Yang et al. [27] designed a dual-channel CNN for separate spectral and spatial feature
extraction. To overcome the limitations of fixed kernel shapes in conventional convolution,
Liu et al. [41] used dynamic convolution for classification, allowing the kernel shape
to adapt according to the spatial distribution of the HSI. This deformable convolution
helps suppress irregularities and accidental features at category boundaries, enhancing the
ability to learn features in cross-category regions. Furthermore, the attention mechanism
has been applied to CNN networks. For instance, Li et al. [31] designed two branches
to capture a large number of spectral and spatial features in the HSI, applying channel
attention blocks and spatial attention blocks to improve feature extraction accuracy. Given
that CNN networks often require a large number of computational parameters and are
computationally expensive during the training phase, Wang et al. [42] (LMAFN) designed
a lightweight spectral–spatial attention feature fusion network based on the network search
framework (NAS), which reduces computational parameters by adjusting the weights of
different channels through adaptive passbands.

Although various structural CNN networks have achieved good results in addressing
HSI classification problems, significant challenges remain in handling the internal connec-
tions within HSIs. This difficulty arises from the complex nature of hyperspectral data,
which often involves non-Euclidean relationships.

2.2. HSI Classification Based on Hyperpixel-Based Graph Convolutional Network

Using a superpixel segmentation [43] strategy to create the graphical structure ac-
curately captures the core information of the image and significantly reduces the pa-
rameter requirements of the graph convolutional network when processing HSIs. This
approach reduces model complexity while ensuring a sensitive and accurate interpretation
of image details.

Recently, various superpixel-based graph convolutional models for HSI classification
have been proposed. For example, Wan et al. [34] (MDGCN) used a multi-scale simple
linear iterative clustering (SLIC) approach to obtain superpixels, capturing multi-scale
feature information of the HSI as input nodes for the GCN. To address the problem of
superpixel segmentation accuracy, GAT-AGSM [44] designed the SFS mechanism, which
is able to assign different channel weights to the superpixel features. This can make
the superpixel segmentation generate finer classification results. To fuse pixel-level and
superpixel features, Liu et al. [37] first used SLIC to segment and encode the HSI into a
graph structure, then they constructed an association matrix between pixels and superpixels
to capture superpixel-level features with the GCN and combined them with the pixel-
level features extracted by the CNN. To learn spectral features at different scales, Liu
et al. [35] (MSSGU) constructed a multilevel graph structure by obtaining superpixels
using a region merging-based superpixel segmentation method, then they built graph
structures at different scales. This method effectively fuses multi-scale feature information,
thereby improving the classification accuracy of HSIs. In superpixel segmentation, pixels
with similar attributes in an image are organized into separate units, enhancing model
processing speed, the accuracy of feature extraction, and overall model expressiveness.
This demonstrates the significant value of superpixels in image processing and analysis.
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Superpixel segmentation organizes pixels with similar attributes into distinct units. This
approach improves processing speed, enhances feature extraction accuracy, and increases
the model’s expressiveness. This demonstrates the significant value of superpixels in image
processing and analysis.

Although these methods have achieved good classification results, they still face chal-
lenges in processing fine edge features. To address these issues, we constructed superpixel
graph structures at various spatial scales using superpixel-based graph convolution. Si-
multaneously, we fused GCNs and CNNs at multiple spatial scales to effectively enhance
texture feature extraction.

3. Proposed Method

In this paper, we propose DCG-Net, a novel HSI classification method. As shown
in Figure 1, HSIs exhibit complex edge features and unbalanced sample distributions. To
enhance the extraction of detailed and small-scale sample features, we propose a expanding
network (E-Net) based on a double-branch encoder–decoder architecture. The E-Net
effectively extracts regular spatial–spectral features and amplifies spatial features to refine
details and edge features through high-dimensional mapping. To enhance the extraction
of large-scale sample features, we incorporate a superpixel-based GCN. This integration
enables the fusion of pixel-level local spatial features with superpixel-level large-scale
spatial features. The graph convolution module is embedded in the encoder and decoder
of E-Net, facilitating a more effective fusion of local and global features. Additionally,
to enhance dual-channel feature aggregation, we designed a feature aggregation module
based on the attention mechanism. This module further optimizes feature extraction,
enhancing the accuracy and robustness of the classification process.

SSM

Encoder GCN

Encoder

Decoder

DecoderGCN

T-Conv Max
Pooling

SSM

FAMC
BI

1st Branch

2nd Branch

S

Superpixel Segementation Feature Extraction Feature Aggregation Feature Classification

T-Conv: Transposed Convolution 2D

BI: Bilinear Interpolation

SSM: Superpixel Segmentation Module

FAM: Feature Aggregation Module

Superpixel Segementation Stage

Feature Extraction Stage

Feature Aggregation Stage

Feature  Classification Stage

Channel Feature ConcatenationC

Softmax ClassifierS

Figure 1. DCG-Net architecture diagram. Our model is structured into four primary stages: superpixel
segmentation, feature extraction, feature aggregation, and feature classification. We employ a dual-
branch architecture, where each branch processes both pixel-level and superpixel-level features.
The 1st branch retains the original image resolution for feature processing, whereas the 2nd branch
processes upscaled feature images to facilitate multi-scale feature analysis.

We first use the superpixel segmentation module to construct the spatial topology
of HSIs and preserve their large-scale structural information. Then, we incorporate the
attention mechanism into GCN to enhance the correlation between graph nodes. Next, to
fully extract small-scale sample features, we integrate E-Net and GCN. This enables the
extraction of both pixel-level and superpixel spectral features, along with multi-spatial-scale
feature extraction. Then, we use the dynamically integrated feature aggregation module at
different scales. Finally, we predict the obtained features using a Softmax classifier.



Electronics 2024, 13, 3271 5 of 21

3.1. Expanding Network

HSIs exhibit complex edge features and unbalanced sample distributions. To enhance
the extraction of advanced features and small-scale samples, we designed a double-branch
encoding and decoding expanding network (E-Net), as shown in Figure 2. E-Net is capable
of projecting HSI to spatially higher dimensions and effectively combining GCN, enhancing
the extraction of pixel-level and superpixel features for multi-spatial-scale feature extraction.
We will now introduce E-Net in detail.
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Figure 2. E-Net structure diagram. Both the encoder and decoder use a customized convolution
module. E-Net can effectively combine GCN in the dual-branch encoding and decoding processes to
achieve the effective combination of different spatial features.

In E-Net, the first branch network consists of an encoder–decoder structure operat-
ing at the original image size. The encoder of the second branch network upscales the
feature output from the first branch encoding to a higher spatial scale and performs fea-
ture extraction. The decoder of the second branch network downsamples these features
and performs convolution operations, enabling efficient extraction of small-scale sample
features at this level.

Specifically, the encoder and decoder use a customized convolution module built
upon the CNN architecture. In this module, input features undergo batch normalization
first, followed by downsampling with a (1 × 1) pointwise convolution. Subsequently,
nonlinear transformation is performed using the Leaky ReLU activation function [45].
Then, the features are extracted by a (3 × 3) depth-separable convolution, followed by
another nonlinear transformation using the Leaky ReLUs [45] activation function. After
the first branch of the encoder, the input features are up-sampled, and the resulting output
features are then up-sampled as follows:

Yu = TConv(Y), (1)

where Y represents the feature output from the first branch encoder, TConv denotes the
transpose convolution that doubles the spatial size of the input features, and Yu is the
resulting feature with doubled spatial dimensions. The feature output Y from the first
branch encoder is also fed into the first branch GCN network. The specific operation of
the GCN network will be described below. After extracting the superpixel-level features
using the GCN network, we obtain the new feature Yg. At this point, Yg is input into the
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customized convolution module for decoding, and the superpixel-level features are fused
with the pixel-level features to produce the feature Yc.

Simultaneously, the upsampled feature Yu passes through the second branch encoder
for additional pixel-level feature extraction. The extracted feature is also input into the
GCN network to obtain the upsampled superpixel-level feature output Yug, which is
subsequently decoded to yield Yuc. This decoded feature is then downsampled, as follows:

Yp = MaxPooling(Yuc), (2)

where MaxPooling refers to the MaxPool2d function and Yp represents the feature output
after downsampling. At this point, the features Yp and Yc have the same spatial size. They
are then concatenated to generate the output features of E-Net.

3.2. Superpixel Structured Graph

Graph convolutional networks accept only graph-structured data as input, necessi-
tating the construction of a graph structure. We use a superpixel segmentation method to
construct the graph structure. This method groups pixels with similar features into units,
simplifying the graph representation while preserving crucial image information.

As shown in Figure 3, to reduce information redundancy and noise pollution of the
HSI, we first apply a principal component analysis (PCA) to reduce the dimensionality of
the original HSI. Subsequently, we apply superpixel segmentation to obtain a specified
number of superpixels [43]. Each superpixel is treated as a node, and we construct the
graph structure using the K-nearest neighbor (KNN) method [46]. Specifically, assuming
the number of superpixels is Z, we define G = (V , E) as an unweighted graph, where
V and E represent the nodes and edges of the graph, respectively. Here, the edges E are
represented by the adjacency matrix A ∈ RZ×Z, where Ai,j denotes the edge of the node in
the j-th column of the i-th row. The adjacency matrix A is constructed using the K-nearest
neighbor approach and is computed as follows:

Ai,j =

{
1, if pi is one of the K-Nearest-Neighbors of pj
0, otherwise

, (3)

where pi and pj denote the i-th and j-th superpixel in the superpixel, respectively.
Meanwhile, to establish the relationship between pixel features and superpixel features,

influenced by MSSGU [35], we construct the association matrix M ∈ R(HW)×Z. As shown
in Figure 3, we define Gk =

(
V k, E k

)
as the original HSI 4-connected graph. We take the

first three principal components extracted by the PCA as the node features in Gk and define
xi as the i-th pixel of the original HSI after dimensionality reduction via PCA. The final
correlation matrix Mi,j is computed using the following formula:

Mi,j =

{
1, if xi ⊆ pi
0, otherwise

(4)

Finally, node V can be represented by the node matrix H. The computation can be
expressed as follows:

H =
(

M̂i,j
)TV k, (5)

where M̂i,j denotes the association matrix normalized by columns, M̂i,j = Mi,j/ ∑m Mm,j,
and Vk is the node matrix of the 4-connectivity graph of the original HSI. Specifically, we
construct the 4-connectivity map of the original HSI to obtain its node matrix V k, which is
directly constructed from the original pixels. At this stage, V k represents the pixel-level
node information. Consequently, the constructed H-matrix allows the node features to be
transferred from the pixel level to the superpixel level. At this point, in order to transfer
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from superpixel-level features to pixel-level features, we construct the adjacency matrix Ĥ,
which can be calculated as follows:

Ĥ = M̂i,jV k (6)

For the 2nd step of DCG-Net, we perform bilinear interpolation on the original HSI to
construct a new HSI graph. We then repeat the process to construct a graph structure that
aligns with the spatial scale.

SHPCA

K
N

N

4-Connected Graph

SH: Superpixel Hierarchy

PCA: Principal Component Analysis

Superpixel Graph
Structure

(a) (b) (c)

Figure 3. Flowchart of superpixel segmentation and graph structure construction. (a) Original
hyperspectral image. (b) Hyperspectral image after PCA downscaling, with the 4-connected graph
as a feature graph constructed using the pixels of (b) as nodes. (c) Hyperspectral image after
superpixel segmentation, with the superpixel graph structure as a feature graph constructed using
the superpixels of (c) as nodes. The orange dots represent the graph’s nodes, and the orange dotted
lines represent the graph’s edges.

3.3. Graph Convolutional Network

We used superpixel segmentation to divide the image into multiple superpixels,
which forms the basis for constructing the graph structure. We then employed a graph
convolutional network (GCN) [47] to focus on extracting features at the superpixel level,
improving the model’s feature extraction capabilities. Additionally, we incorporated an
attention mechanism into the GCN to enhance the correlation between graph nodes.

We will outline the specific implementation method, beginning with the calculation of
the attention coefficient between a node and its neighbors:

Ai,j = Sigmoid(HM · (HM)T), (7)

Ai,j denotes the attention coefficient between the i-th node and the j-th neighbor,
where M is the learnable parameter and H is the adjacency matrix. Next, the attention
coefficient matrix is obtained using normalization Âi,j:

Âi,j = So f tmax(Ai,j), (8)

Finally, the attention coefficient matrix Âi,j is weighted and averaged over the node fea-
tures, and Leaky ReLU [45] is used as the activation function to perform the graph convolution:

f g(H, A) = LeakyReLU(
W

∑
j=1

Âi,j · outi,j), (9)
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where H represents the node matrix, A is the adjacency matrix, W is the number of
neighbors, and outi,j denotes the feature representation between the j-th neighbor and the
i-th node.

3.4. Feature Aggregation Module

After obtaining the dual-branch features, we need to perform feature fusion to dynam-
ically calibrate the channel response within the network and enhance the model’s feature
perception. As shown in Figure 4, we designed a feature aggregation module (FAM) that
includes a channel attention module and a customized convolution module. Next, these
two modules will be introduced in detail.

Pool

Linear ReLu Linear Sigmod

FC

PoolyAdaptiveAvgPool2d yAttention operates on each channel

W

H

C

1

1

C
C

1

1 H

W

C

Customized Convolution ModuleChannel Attention Module

Figure 4. Feature aggregation module structure diagram. The module begins with channel feature
learning through the channel attention module, then it continues with feature extraction using the
customized convolution module.

Channel attention module: We use the channel attention module to dynamically
reweight the fused features. As shown in Figure 4, we apply global adaptive pooling to
the input features, compressing their spatial scale from BC × H × W to B × C × 1 × 1 to
extract global information, expressed as follows:

Y = AvgPool(X), (10)

where X is the input feature and Y is the feature output. Then, the features pass through
two MLP layers. The first MLP layer conducts a fully connected operation followed by
ReLU activation, and the second MLP layer also performs a fully connected operation
followed by sigmoid activation to constrain the attention weights within the range of (0, 1).
This process is specifically illustrated as follows:

Ys1 = Linear(Y,
chin

reduction
)

Ys2 = ReLU(Ys1)

Ys3 = Linear(Ys2, chin)

Yout = Sigmoid(Ys3)

, (11)

where Ys1, Ys2, Ys3 are the intermediate features, Yout is the normalized attention feature,
chin is the number of input feature channels, and reduction is the feature reduction factor.
Finally, the attention features are applied to each channel.

Customized convolution module: After extracting features using the channel atten-
tion module, we input these features into the customized convolution module for further
extraction of pixel-level features. In this module, features are first batch normalized, then
downsampled using (1 × 1) point-wise convolution and subjected to a nonlinear trans-
formation using the Leaky ReLU activation function [45]. Next, features are processed
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with (3× 3) depthwise separable convolution for extraction, followed by another nonlinear
transformation using Leaky ReLU [45], resulting in the final output features.

Through these processes, we globally and adaptively learn the weights of each channel,
assigning varying degrees of importance. We then use the customized convolution module
to enhance the model’s representation capability and feature extraction, thus enhancing the
robustness and accuracy of classification.

4. Experimental Results and Analysis
4.1. Experiment Design

To comprehensively evaluate DCG-Net, we used three well-known datasets: Indian
Pines, Salinas, and Kennedy Space Center. We compared DCG-Net with six state-of-the-
art methods: contextual CNN-based deep networks (CDCNNs) [40], dual-branch dual
attention networks (DBDAs) [31], dual-branch multi-attention networks (DBMAs) [48],
fast dense spectral–spatial convolutional networks (FDSSCs) [26], spectral–spatial residual
networks (SSRNs) [25], and CNN-enhanced graph convolutional networks (CEGCNs) [37].
The overall accuracy (OA), average accuracy (AA), and Kappa statistics were used as the
performance evaluation criteria.

4.1.1. HSI Datasets

To validate the robustness and effectiveness of DCG-Net, we used three datasets:
Indian Pines (IN) [49], Salinas (SA) [49], and Kennedy Space Center (KSC) [49], as shown in
Figures 5–7. In Figures 5–7, ‘Train’ indicates the number of training samples, ‘Val’ represents
the number of validation samples, and ‘Test’ represents the number of test samples.

Indian Pines dataset: This dataset was captured by the US AVIRIS sensor in the
Indian remote sensing experiment (IRSE) area, with an image size of 145 × 145 and a spatial
resolution of 20 m. The 20 bands covering the water vapor absorption region are removed,
and the remaining 200 spectral bands are taken. In addition, there are a total of 16 unevenly
distributed classes containing 10,366 labeled samples. Figure 5 shows a pseudo-color
visualization of this dataset, where each color denotes a distinct label category.

Class Legend Name Train Val Test

1 Alfalfa 3 3 48

2 Corn_notill 72 72 1290

3 Corn_mintill 42 42 750

4 Corn 12 12 210

5 Pasture 25 25 447

6 Trees/Grass 38 38 671

7 Pasture_mowed 2 2 22

8 Hay_windrowed 25 25 439

9 Oats 1 1 18

10 Soybeans_notill 49 49 870

11 Soybeans_mintill 124 124 2220

12 Soybeans_cleantill 31 31 552

13 Wheat 11 11 190

14 Woods 65 65 1164

15 Building_grass 19 19 342

16 Stone_steel_towers 5 5 85

Total 524 524 9318

Figure 5. Description of Indian Pines dataset.

Kennedy Space Center dataset: This dataset comprises images captured by the U.S. at
the Kennedy Space Center, Florida using the AVIRIS sensor with a size of 512 × 614 pixels
and a resolution of 18 m. The water vapor absorption and noise bands were removed, and
the remaining 176 spectral bands were taken. This HSI has 13 categories, with a total of
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5211 labeled samples. Figure 6 shows a pseudo-color visualization of this dataset, where
each color denotes a distinct label category.

Class Legend Name Train Val Test

1 Srub 23 23 715

2 Willow_swamp 8 8 227

3 CP_hammock 8 8 240

4 Slash_pine 8 8 236

5 Oak/Broadleaf 5 5 151

6 Hardwood 7 7 215

7 Swamp 4 4 97

8 Graminoid 13 13 405

9 Spartina_marsh 16 16 488

10 Cattail_marsh 13 13 378

11 Salt_marsh 13 13 393

12 Mud_flats 16 16 471

13 Water 28 28 871

Total 162 162 4887

Figure 6. Description of Kennedy Space Center dataset.

Salinas dataset: This dataset was captured by the United States in Salinas Valley
in California using the AVIRIS sensor. Its image size is 512 × 217, and it has a spatial
resolution of 3.7 m. Twenty water vapor absorption bands were removed, and the remaining
204 spectral bands were taken. This HSI has 16 categories, totaling 54,129 labeled samples.
Figure 7 shows a pseudo-color visualization of this dataset, where each color denotes a
distinct label category.

Class Legend Name Train Val Test

1 Brocoli_green_weeds_1 11 11 1987

2 Brocoli_green_weeds_2 19 19 3688

3 Fallow 10 10 1956

4 Fallow_rough_plow 7 7 1380

5 Fallow_smooth 14 14 2650

6 Stubble 20 20 3919

7 Celery 18 18 3543

8 Grapes_untrained 57 57 11,157

9 Soil_vinyard_develop 32 32 6139

10 Corn_senesced_green_weeds 17 17 3244

11 Lettuce_romaine_4wk 6 6 1056

12 Lettuce_romaine_5wk 10 10 1907

13 Lettuce_romaine_6wk 5 5 906

14 Lettuce_romaine_7wk 6 6 1058

15 Vinyard_untrained 37 37 7194

16 Vinyard_vertical_trellies 10 10 1787

Total 279 279 53,571

Figure 7. Description of the Salinas dataset.

4.1.2. Evaluation Indices

Four performance metrics were used in this experiment to evaluate the classification
ability of the model: per-class accuracy (PA), overall accuracy (OA), average accuracy (AA),
and statistics (Kappa). The formulas for each metric are as follows:

PA =
Ti
Fi

, (12)
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OA =
∑i Ti

∑i Fi
, (13)

AA =
1
I ∑

i
PA, (14)

Kappa =
OA − ∑i Ti Fi

(∑i Fi)
2

1 − ∑i Ti Fi
(∑i Fi)

2

, (15)

In Equations (12)–(15), I indicates that the dataset has I categories of samples, i
represents the i category of samples, Ti indicates the number of samples in the i-th category,
and Fi indicates the number of samples correctly categorized in the i category.

4.1.3. Environment Configuration

All experiments were conducted in PyCharm using Python 3.11, PyTorch 2.0.1, and
an NVIDIA GeForce RTX 3090 Ti GPU server manufactured by Kuankes Co., Shanghai,
China. The loss function used in this experiment is category-weighted cross entropy. All
activation functions are Leaky ReLU. The network parameters were updated using the
Adam optimizer with a learning rate of 0.0005, and the total number of iterations was set to
600. The number of superpixels was set to 512, and the number of neighbors for KNN was
set to 15.

4.2. Experiment Results
4.2.1. Comparative Analysis of Classification Performance

In this section, we compare the proposed DCG-Net with six recent methods. For a fair
comparison, we used the hyperparameter settings reported in the respective references.
Each experiment was repeated ten times to calculate the mean and standard deviation for
each metric. The statistical classification results of all the methods are shown in Tables 1–3.
Additionally, to further analyze the classification performance of our proposed network,
the classification results for all the methods are visualized in Figures 8–10.

(a) Results of comparative experiments on the IN dataset. For the IN dataset, as
shown in Figure 5, the training, validation, and test sets comprised 5%, 5%, and 90%,
respectively. The proposed DCG-Net achieved an overall accuracy (OA) of 98.37%, an
average accuracy (AA) of 97.64%, and a Kappa coefficient of 98.15; the highest among all
the compared models, as shown in Table 1. Compared to CDCNN, DBMA, FDSSC, SSRN,
DBDA, and CEGCN, DCG-Net improved the OA by 22.59%, 4.45%, 2.11%, 3.65%, 1.57%,
and 1.16%, respectively. The IN dataset has an uneven sample distribution across its classes,
especially with very few training samples in classes 1, 7, 9, and 16. In CDCNN, DBMA,
SSRN, DBDA, and FDSSC, these classes exhibit poor classification performance due to
limited sample sizes. For instance, despite CEGCN’s combined double-branch structure of
convolutional and graph networks, it still lacks the ability to effectively extract features
from small-scale samples. Conversely, DCG-Net achieved classification accuracies of over
93% in these four challenging classes, demonstrating its strong ability to extract features
from small-scale samples.

Figure 8 shows the predicted labeled images for the seven methods for the IN dataset.
CDCNN displays significant noise in its classification results, while DBMA, SSRN, DBDA,
FDSSC, and CEGCN exhibit varying levels of noise and misclassification. In contrast, the
proposed DCG-Net generates smoother and more accurate classification results with fewer
noise artifacts and errors. This visualization result clearly demonstrates the superiority of
our proposed method.

(b) Results of comparative experiments on the KSC dataset. The KSC dataset, known
for its high spatial resolution and low noise levels, is particularly suitable for classification
tasks. As shown in Figure 6, due to the dataset’s limited sample size, only 5% of the samples
were used as training data, resulting in fewer than 30 training samples per category. As
shown in Table 2, DCG-Net achieved exceptional performance, with an overall accuracy
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(OA) of 99.49%, an average accuracy (AA) of 99.43%, and a Kappa coefficient of 99.44;
the highest among all the compared models. Specifically, DCG-Net improved the OA by
11.30%, 5.07%, 1.82%, 4.19%, 2.67%, and 0.31% compared to CDCNN, DBMA, FDSSC,
SSRN, DBDA, and CEGCN, respectively. Our model achieved 100% classification accuracy
in six categories: 2, 4, 6, 7, 8, and 13, highlighting its robust classification abilities.

Table 1. Classification results of different methods in terms per-class accuracy, OA (%), AA (%), and
Kappa for the Indian Pines dataset.

Class CDCNN DBMA FDSSC SSRN DBDA CEGCN DCG-Net

1 31.86 90.69 76.02 93.68 90.08 69.79 98.95
2 68.65 90.68 76.02 93.36 96.14 96.71 98.03
3 62.57 95.53 93.44 92.64 97.45 98.05 98.42
4 58.52 94.16 96.18 88.95 97.11 91.61 98.09
5 96.37 97.02 98.77 99.42 97.93 93.02 94.94
6 90.16 98.30 99.08 98.31 78.73 99.40 99.35
7 39.54 70.19 76.15 88.56 78.39 90.90 94.09
8 88.17 98.14 96.86 98.04 99.86 99.97 99.97
9 74.32 75.43 77.12 84.63 79.96 23.33 93.12

10 66.52 89.32 93.97 91.81 94.27 94.71 96.88
11 75.81 95.02 97.30 94.28 97.65 98.81 98.61
12 49.91 92.64 95.78 94.21 95.78 96.99 97.60
13 93.39 98.39 99.84 99.33 96.04 99.36 99.26
14 88.69 97.29 96.80 98.25 98.80 99.67 99.99
15 78.82 87.86 96.80 93.61 97.03 94.18 98.73
16 95.32 94.19 97.42 91.83 86.62 93.52 96.23

OA (%) 75.78 ± 5.02 93.92 ± 1.54 96.26 ± 2.49 94.72 ± 0.72 96.80 ± 0.59 97.21 ± 0.51 98.37 ± 0.58
AA (%) 72.41 ± 7.97 91.55 ± 1.56 92.93 ± 6.73 93.81 ± 1.74 93.78 ± 2.25 90.00 ± 2.33 97.64 ± 0.86
Kappa 72.22 ± 5.97 93.07 ± 1.76 95.73 ± 2.86 93.98 ± 0.82 96.35 ± 0.68 96.82 ± 0.58 98.15 ± 0.66

(d) FDSSC

(h)DCG-Net

(c) DBMA

(g) CEGCN

(b) CDCNN

(f) DBDA

(a) GT

(e) SSRN

Figure 8. Classification maps of different methods for the Indian Pines dataset.

Figure 9 shows the predicted labeled images of these seven methods on the KSC
dataset. CDCNN’s predicted images exhibit more errors, while DBMA, SSRN, DBDA,
FDSSC, and CEGCN show fewer errors but still some noise. In contrast, DCG-Net demon-
strates a superior classification performance with minimal noise, closely aligning with the
true labels.
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Table 2. Classification results of different methods in terms of per-class accuracy, OA (%), AA (%),
and Kappa for the Kennedy Space Center dataset.

Class CDCNN DBMA FDSSC SSRN DBDA CEGCN DCG-Net

1 94.71 100.00 98.64 96.54 99.94 99.56 99.61
2 85.41 93.38 97.38 90.87 96.46 98.41 100.00
3 79.28 79.58 90.82 87.57 83.27 99.58 99.43
4 53.57 75.11 90.56 75.62 83.32 95.08 100.00
5 47.40 65.96 89.85 69.62 90.85 90.53 97.76
6 71.22 91.48 99.14 93.07 98.44 99.48 100.00
7 72.16 87.74 93.69 71.67 88.58 98.76 100.00
8 84.10 95.38 98.71 98.13 99.64 99.77 100.00
9 91.09 96.07 99.76 98.49 99.91 100.00 99.89

10 92.85 97.02 99.86 99.24 100.00 100.00 98.67
11 98.24 99.89 98.77 98.96 99.26 100.00 98.43
12 96.25 98.17 98.12 99.52 99.43 99.29 98.86
13 99.91 100.00 100.00 99.89 99.91 100.00 100.00

OA (%) 88.14 ± 2.57 94.42 ± 1.91 97.67 ± 1.12 95.30 ± 2.65 96.82 ± 1.31 99.18 ± 0.51 99.49 ± 0.34
AA (%) 82.02 ± 3.61 90.75 ± 2.93 96.65 ± 1.13 90.71 ± 8.00 95.31 ± 1.51 98.50 ± 0.89 99.43 ± 0.55
Kappa 86.78 ± 2.88 93.78 ± 2.13 97.41 ± 1.25 94.76 ± 2.96 96.46 ± 1.45 99.08 ± 0.57 99.44 ± 0.38

(f) DBDA

(b) CDCNN

(g) CEGCN

(c) DBMA

(h)DCG-Net

(d) FDSSC

(e) SSRN

(a) GT

Figure 9. Classification maps of different methods for the Kennedy Space Center dataset.

(c) Results of comparative experiments on the SA dataset. The SA dataset, character-
ized by simpler scenarios, explicit feature information, and a more continuous distribution,
is relatively easier to train for classification purposes. Consequently, as shown in Figure 7,
the dataset was divided into a training set of 0.5%, a validation set of 0.5%, and a test set
of 99%. As indicated in Table 3, DCG-Net achieved 99.53% OA, 99.22% AA, and a Kappa
coefficient of 99.49; the highest among all the methods. Compared to CDCNN, DBMA,
FDSSC, SSRN, DBDA, and CEGCN, DCG-Net improved OA by 10.69%, 3.01%, 3.51%,
6.36%, 2.78%, and 0.79%, respectively. In individual categories 1, 2, 3, and 9, DCG-Net
achieved a 100% accuracy, while CEGCN achieved a 100% accuracy only in categories 2 and
9. DBMA, FDSSC, and SSRN achieved a 100% accuracy only in category 1, while CDCNN
and DBDA did not achieve a 100% accuracy in any category. This highlights DCG-Net’s
superior classification performance across all the categories.

Figure 10 shows the predicted labeled images of these seven methods on the SA dataset.
Compared with the other six algorithms, DCG-Net demonstrates superior classification
results with minimal noise, closely aligning with the ground truth and showcasing excellent
visual classification performance.
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Table 3. Classification results of different methods in terms of per-class accuracy, OA (%), AA (%),
and Kappa for the Salinas dataset.

Class CDCNN DBMA FDSSC SSRN DBDA CEGCN DCG-Net

1 97.34 100.00 100.00 100.00 100.00 99.95 100.00
2 97.25 99.92 99.92 99.75 99.96 100.00 100.00
3 90.37 97.79 97.75 94.21 98.16 99.86 100.00
4 98.08 93.55 97.32 97.87 94.61 99.52 95.99
5 94.60 98.54 99.38 98.89 98.98 98.10 98.28
6 96.79 99.56 99.95 99.85 99.83 99.83 99.82
7 97.09 99.41 99.51 99.32 98.90 99.98 99.77
8 78.56 94.18 90.51 88.45 93.04 97.64 99.70
9 99.00 99.60 99.50 99.36 99.35 100.00 100.00

10 88.21 97.13 97.19 96.93 98.29 96.97 98.56
11 84.98 95.35 94.84 95.68 96.10 99.75 97.48
12 95.94 99.18 98.21 98.69 99.16 100.00 99.84
13 96.92 99.29 99.44 97.91 99.64 99.80 99.86
14 93.76 93.49 96.99 96.74 94.96 98.63 97.91
15 73.75 90.90 90.75 81.16 93.17 97.11 99.92
16 94.27 99.04 99.93 99.21 99.91 98.97 99.93

OA (%) 88.80 ± 1.03 96.52 ± 0.89 96.02 ± 1.15 93.17 ± 3.50 96.75 ± 0.64 98.74 ± 0.50 99.53 ± 0.29
AA (%) 92.31 ± 1.26 97.31 ± 0.66 97.58 ± 0.52 96.50 ± 0.74 97.75 ± 0.41 99.13 ± 0.18 99.22 ± 0.48
Kappa 87.52 ± 1.14 96.12 ± 0.99 95.56 ± 1.29 92.42 ± 3.82 96.38 ± 0.72 99.13 ± 0.55 99.49 ± 0.29

(d) FDSSC

(h) DCG-Net

(c) DBMA

(g) CEGCN

(b) CDCNN

(f) DBDA

(a) GT

(e) SSRN

Figure 10. Classification maps of different methods for the Salinas dataset.
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DCG-Net achieved the highest OA, AA, and Kappa scores across all three datasets,
demonstrating superior classification effectiveness. DCG-Net’s double-branch structure
enhances the extraction of features from small sample ranges, while the graph network
excels at capturing global features from larger ranges. This dual-branch network structure
enhances the complementarity between features at different scales, enabling the model
to effectively adapt to diverse target characteristics and achieve superior classification
performance. In regions with large-scale samples, DCG-Net produces smoother classifica-
tion maps, effectively suppressing noise. Conversely, in regions with small-scale samples,
DCG-Net delivers finer-grained classification results with a higher accuracy, highlighting
its robustness.

4.2.2. Comparison of Running Time between Different Methods

To compare the direct running efficiency for each model, this section records the
running time of the different methods. The experimental setup is the same as in Section 4.2.1.
Table 4 shows the time cost of each model for the three datasets.

Table 4 shows that the running efficiency of DBMA, FDSSC, SSRN, and DBDA across
the three datasets is generally low. This is because these models are based on 3D cubes,
which contain a large number of parameters and require longer running and testing times.
CDCNN is a 2D-CNN-based model with a comparatively shorter training time. However,
all five models utilize local blocks of HSIs as inputs, resulting in long computation times.
CEGCN and DCG-Net employ the whole HSIs as input, facilitating parallel computation,
and the GCN-based approach enhances the processing speed. Given that the 2nd branch
of DCG-Net processes super-resolution hyperspectral data, its structure is more complex,
leading to longer processing times than CEGCN. Nonetheless, among all the compared
methods, DCG-Net achieved the best classification results, underscoring the superiority of
our model.

Table 4. Comparison of running times between different methods.

Dateset Time (s) CDCNN DBMA FDSSC SSRN DBDA CEGCN DCG-Net

Indian Pines Train 47.10 451.78 584.42 407.85 436.5 4.74 17.52
Test 0.49 3.74 2.18 1.68 3.41 1.52 0.60

Salinas Train 25.40 237.50 312.99 213.95 229.71 17.92 79.95
Test 2.82 21.87 12.67 9.69 19.69 1.74 2.92

Kennedy Space Center Train 23.30 175.87 230.31 164.04 180.00 60.46 278.95
Test 0.24 1.67 0.99 0.76 1.53 2.43 8.39

4.2.3. Comparison of Classification Performance with Different Proportions of
Training Samples

The proportion of training samples significantly impacts model classification effective-
ness. In this study, we investigate how varying proportions of training samples influence
classification performance across different models. We assess training sample proportions
of 1%, 3%, 5%, and 7% for the IN and KSC datasets and 0.1%, 0.3%, 0.5%, and 0.7% for the
SA dataset. As show in Figure 11, it is evident that for the SA dataset, characterized by
distinct data boundaries, our model achieves a 98.78% classification accuracy using just
0.3% of the samples for training. This demonstrates our model’s reduced dependency on
training sample size compared to the other models. For both the KSC and IN datasets,
significant classification results were achieved using just 3% of the samples for training.

In contrast, the classification performance of the other networks varied significantly
across different training sample sizes, whereas DCG-Net maintained a stable performance.
This highlights DCG-Net’s robust generalization ability, consistently delivering excellent
classification performance, even with limited training samples.
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(c) Kennedy Space Center

Figure 11. Comparison of classification performance of seven methods with different training set
ratios for three datasets.

5. Discussion

The classification performance of the proposed DCG-Net is heavily influenced by
the characteristics of the constructed graph, particularly the number of nodes and their
connectivity properties. The number of superpixels dictates the number of nodes in the
graph, while the value of K in the KNN algorithm determines its connectivity characteristics.
We conducted two extended experiments to investigate the impact of these factors on DCG-
Net’s classification performance.

Furthermore, to assess the effectiveness of each module in our proposed DCG-Net, we
performed ablation experiments focusing on the two branches of DCG-Net and the feature
aggregation module.

5.1. Effects of the Number of Superpixels

The number of superpixels is proportional to the number of nodes in the graph, affect-
ing the classification results of DCG-Net. In this section, the same number of superpixels is
set for both the 1st and 2nd branches, with values of 64, 128, 256, 512, and 768. Figure 12
illustrates the impact of varying numbers of superpixels on the classification results across
the three datasets. Specifically, for the IN dataset, Figure 12 shows that increasing the
number of superpixels leads to a higher number of graph nodes and improves classification
accuracy. When the number of superpixels reaches or exceeds 512, the segmentation re-
sults are satisfactory, with little difference in the classification accuracy compared to using
768 superpixels. For the SA dataset, changing the number of superpixels has a minimal
effect on the classification accuracy. For the KSC dataset, the segmentation effect is poor,
with 64 superpixels, but it improves as the number of superpixels increases.
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Therefore, the number of superpixels determines the graph’s node count. More
superpixels result in more nodes. Consequently, as each node represents less sample
information, more details are retained, leading to improved classification performance.

(a) Indian Pines
(b) Salinas

(c) Kennedy Space Center

OA (%)

AA (%)

Kappa

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

64 64 128 128 256 256 512 512 768 768
98.80%

98.90%

99.00%

99.10%

99.20%

99.30%

99.40%

99.50%

99.60%

99.70%

64 64 128 128 256 256 512 512 768 768

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

64 64 128 128 256 256 512 512 768 768

Figure 12. Comparison results of different superpixel numbers on three datasets.

5.2. Effects of the Value of K in the KNN Algorithm

In our study, the structure of a graph, particularly its edges, is crucial for defining
its connectivity characteristics. Utilizing the K-nearest neighbors (KNN) algorithm, we
designate a predetermined number of neighboring edges for each node within the graph.
To examine how altering the number of neighboring edges influences the classification
outcomes, we experimentally set the parameter ‘K’ in the KNN algorithm to various
values—specifically, 5, 10, 15, 20, and 25. It is important to note that the quantity of
superpixels directly correlates with the total number of nodes in the graph; for consistency
across experiments, we maintain this number at 512.

Figure 13 shows the classification performance across three distinct datasets under
different configurations of ‘K’. It can be observed that setting the number of neighboring
edges too low results in poor node correlations and decreases the network’s adaptive
learning ability. Conversely, having too many neighboring edges causes the nodes to
cover different categories, which adversely affects training effectiveness. In the analysis of
Figure 13, when ‘K’ is set to 15, the classification results for all the datasets are the best.
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Figure 13. Comparison results of different K values on three datasets.

5.3. Ablation Study

In order to fully evaluate the algorithms we propose in this paper, we conducted a
comprehensive test of the double-branch DCG-Net and feature aggregation module using
ablation experiments. First, we evaluated the 1st branch and the 2nd branch of DCG-Net
on three datasets separately, then we tested the impact of the feature aggregation module
on the network. The experimental results are shown in Table 5.

Table 5. Comparison of different modules (× indicates that the module was not used in these
experiments, ✓ indicates that the module was used).

Indian Pines

No. 1st Branch 2nd Branch FAM OA (%) AA (%) Kappa

1 ✓ × × 97.78 ± 0.34 97.52 ± 0.89 97.47 ± 0.39
2 × ✓ × 97.29 ± 0.44 97.12 ± 1.20 96.19 ± 0.50
3 ✓ ✓ × 98.33 ± 0.57 96.60 ± 0.19 98.10 ± 0.66
4 ✓ ✓ ✓ 98.37 ± 0.47 97.64 ± 0.86 98.15 ± 0.66

Salinas

No. 1st Branch 2nd Branch FAM OA (%) AA (%) Kappa

1 ✓ × × 99.40 ± 0.20 98.96 ± 0.50 99.38 ± 0.25
2 × ✓ × 94.37 ± 0.46 93.83 ± 1.22 93.74 ± 0.52
3 ✓ ✓ × 99.40 ± 0.20 98.96 ± 0.50 99.38 ± 0.25
4 ✓ ✓ ✓ 99.53 ± 0.29 99.22 ± 0.48 99.49 ± 0.29

Kennedy Space
Center

No. 1st Branch 2nd Branch FAM OA (%) AA (%) Kappa

1 ✓ × × 98.65 ± 0.58 98.50 ± 0.86 98.59 ± 0.64
2 × ✓ × 94.37 ± 0.46 93.83 ± 1.22 93.74 ± 0.52
3 ✓ ✓ × 98.89 ± 0.67 98.47 ± 1.03 98.76 ± 0.75
4 ✓ ✓ ✓ 99.49 ± 0.34 99.43 ± 0.55 99.44 ± 0.38
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As shown in Table 5, the absence of any branch or module in DCG-Net impacts the
classification results. For the Indian Pines and Salinas datasets, FAM improves all three
metrics, particularly the average accuracy (AA). For the Kennedy Space Center dataset,
FAM significantly boosts all three metrics. For the 2nd branch, on the Kennedy Space Center
and Salinas datasets, the improvement in classification accuracy was smaller due to the
distinct class boundaries. However, for the Indian Pines dataset, the classification accuracy
showed a significant improvement. The 2nd branch refines the classification, enhancing the
extraction of fine and edge features. It addresses the 1st branch’s limitations in classifying
small samples. The feature aggregation module enhances the overall classification accuracy
of the network by dynamically learning channel features and combining them with the
CNN, thus improving the model’s robustness and adaptability.

6. Conclusions

In this study, we proposed DCG-Net, an innovative classification network that com-
bines convolutional neural networks (CNNs) and graph convolutional networks (GCNs) to
enhance hyperspectral image (HSI) classification. Our approach overcame the limitations
of traditional methods by combining pixel-level and superpixel-level features, effectively
handling both large-scale regular features and small-scale fine features. The key contribu-
tions of our work include the development of the expanding network (E-Net) for enhanced
feature extraction, the integration of GCNs with an attention mechanism, and the creation
of a feature aggregation module (FAM) for adaptive channel feature learning.

The comprehensive experiments conducted on three widely used hyperspectral
datasets, Indian Pines, Salinas, and Kennedy Space Center, demonstrate the superior-
ity of DCG-Net. Our model consistently outperformed state-of-the-art methods in terms
of overall accuracy (OA), average accuracy (AA), and the kappa coefficient. Specifically,
DCG-Net achieved an OA of 98.37% on the Indian Pines dataset, 99.53% on the Salinas
dataset, and 99.49% on the Kennedy Space Center dataset. These results highlight the ro-
bustness and effectiveness of our proposed network in various HSI classification scenarios.
Our findings indicate that the combination of CNN and GCN architectures, along with the
use of attention mechanisms and feature aggregation techniques, significantly improves
the classification performance of HSI.

However, our model has shortcomings in memory usage and running speed, and it
requires further optimization to improve its performance and efficiency. Future research
can explore further enhancements to this hybrid approach, including the incorporation
of additional data augmentation techniques and the investigation of alternative graph
structures to further optimize feature extraction and classification accuracy.
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