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Abstract: In recent decades, the potential of robots’ understanding, perception, learning, and action
has been widely expanded due to the integration of artificial intelligence (AI) into almost every system.
Cooperation between AI and human beings will be responsible for the bright future of AI technology.
Moreover, for a perfect manually or automatically controlled machine or device, the device must
perform together with a human through multiple levels of automation and assistance. Humans and
robots cooperate or interact in various ways. With the enhancement of robot efficiencies, they can
perform more work through an automatic method; therefore, we need to think about cooperation
between humans and robots, the required software architectures, and information about the designs
of user interfaces. This paper describes the most important strategies of human–robot interactions
and the relationships between several control techniques and cooperation techniques using sensor
fusion and machine learning (ML). Based on the behavior and thinking of humans, a human–robot
interaction (HRI) framework is studied and explored in this article to make attractive, safe, and
efficient systems. Additionally, research on intention recognition, compliance control, and perception
of the environment by elderly assistive robots for the optimization of HRI is investigated in this
paper. Furthermore, we describe the theory of HRI and explain the different kinds of interactions and
required details for both humans and robots to perform different kinds of interactions, including the
circumstances-based evaluation technique, which is the most important criterion for assistive robots.

Keywords: artificial intelligence (AI); deep learning (DL); human–robot interaction (HRI); infrared
sensor; machine learning (ML); navigation; perception

1. Introduction

The use of artificial intelligence (AI) technologies has significantly improved human
perception, awareness, behavior, action, and learning abilities [1]. The robotics community
has expanded thanks to the Industry 4.0 initiative [2], allowing for more flexible interac-
tions between robots and their surroundings. To be able to detect environments, generate
findings, and carry out activities, mobile robots are equipped with actuators and integrated
processors [3]. Thus, mobile robots are capable of independent navigation throughout their
environment. Mobile robots are intelligent devices that employ preprogramming to observe,
recognize, collaborate, and execute a variety of tasks, including medical assistance, consumer
service, defense and civil monitoring, factory operations, and more [4]. Human–AI interac-
tion is essential to AI’s advancement in the future. Apart from completely automated or
manually operated devices, robots can collaborate with an operator partner with varying
degrees of support and automation [5]. Human–robot interaction (HRI) is the study of the
development, comprehension, and assessment of robotic systems in which humans and
robots interact. The robotics community has long focused on human–robot collaboration.
When humans need to be actively considered, a robot’s movement in a human-populated
environment presents unique challenges for mobility control and planning. The integration
of robots into everyday activities brings up an important issue that has been introduced as a
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typical problem of autonomous robots: the requirement for human interaction and involve-
ment in robotic surroundings. Figure 1 provides a complete illustration of the process of
HRI. This image illustrates the relationship between robots, humans, and the environment.
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Research in HRI aims to analyze, create, and assess robotic systems intended for
human usage or interaction. A robot must have a thorough understanding of its sur-
roundings, including the items that make it up, the other entities that are present, and the
relationships that exist between them before it can engage with people in that environment.
The relationship between robots and humans must be considered at every stage of the
robot’s design as a way for them to “coexist” with people. Hentout et al. [6] state that HRI
might be divided into three distinct types: (i) human–robot collaboration, (ii) human–robot
cooperation, and (iii) human–robot cohabitation, which might be further classified into
contactless collaboration and physical collaboration. HRI can be classified on the basis of
the degree of cooperation in the following ways: supervised autonomy (robot operates au-
tonomously but under human supervision); full autonomy (robot operates independently);
teleoperation (human controls robot remotely); collaborative control (human and robot
work together); and direct control (human controls robot directly through physical gestures
or interfaces). The scientific community, testing facilities, technological companies, and
television have recently given HRI much interest. By definition, interaction necessitates
human–robot collaboration. Robot assistants are one example of close engagement with
mobile robots, and physical contact might be a part of this type of interaction. There are
various ways in which a person and a robot can communicate, but the type of interaction
that occurs is mostly determined by their closeness to one another. As a result, HRI falls
into two broad categories [7].

1. Remote HRI: If humans and robots are not placed together but rather exist apart
while interacting with each other, then this type of interaction is called Remote HRI.
For example, the Mars Rovers communicate with humans.

2. Proximate HRI: If humans and robots are placed together while interacting with each
other, then this type of interaction is called Proximate HRI. For example, the assistive
robot and an elderly person are in the same room.

HRI is an interdisciplinary field incorporating industrial applications, computer sci-
ence, communications, engineering, medical support systems, psychology, science, en-
tertainment, and much more. Advancements in AI, ML, hardware development, and



Electronics 2024, 13, 3285 3 of 19

user-friendly design have transformed the area of HRI into a quickly expanding discipline
of study [8]. These developments have enhanced the capabilities, intelligence, and respon-
siveness of robotic assistants that meet clients’ demands, eventually enhancing the standard
of living for those seeking support. HRI advances the notion that robots might stay beside
people in restaurants, homes, and healthcare facilities, helping senior citizens with a variety
of duties as companions. Effective HRI enables robots to fulfill human demands in life
and work, relieving people of hazardous and repetitive activities and enabling them to
focus on more complex tasks [9]. Moreover, the global pattern of aging populations has
made the demand for assistance robots imperative. The present assistive robots, though,
remain far from this level and are unable to perform well in our houses and offices. Thus,
building a peaceful and productive human–robot collaboration ecosystem is necessary for
an advanced assistive robot.

A robot’s perception is restricted by the capability of its sensors; thus, it cannot be
suitable for every application. Manual control techniques are usually used in situations
where the system has a lot of unknown components, including unorganized, dynamic,
and time-dependent parameters. Under this control technique, the system primarily relies
on humans to interpret external data, make appropriate decisions, and produce control
instructions. However, humans might tend to perceive the world incompletely owing
to unknown cognitive and physical reasons, and occasionally, there can be significant
mistakes and variances. To make up for human limitations, robots must help augment
human perception and provide assistance in control [10]. Thus, HRI is an important
technique. When humans and robots possess complementary or opposite abilities, a
human–robot collaborative controller can be implemented. Figure 2 illustrates the human–
robot collaborative command framework.
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The capacity to figure out HRI is essential for a robotic device to be able to take
actions in its surroundings, converse about it, and make assessments about it. The bilateral
interaction that begins between the human user and the robot is the primary component
of HRI. Collaboration can lead to adaptive automaton or tunable autonomy. Certain
issues that are organized, linearized, statistically computed, or challenging for humans
to answer can be solved autonomously by robots using their developed autonomous
intelligence. Robots are capable of autonomously detecting their surroundings, making
decisions according to relevant experience and knowledge, and generating commands
to operate using a collaborative controller [11]. Human interference is limited to specific
situations or influences the creation of autonomous operations using excellent instructions.
When users possess equal or different skills, human–robot collaborative command is
utilized. The collaborative controller distributes the different tasks or combines human and
robot commands according to a variety of criteria, including confidence and trust.

HRI is defined in a variety of ways, from collaborative physical responsibilities [12]
to cognitive functions [13]. HRI can be more advanced and highly applicable after the
implementation of human activity recognition [14,15] and human pose estimation [16]
techniques in robotics. Physical interaction for elderly assistive robots concentrates on
giving the robotic devices the tools that are required to fulfill the diverse demands of senior
citizens in daily life. Conversely, cognitive features focus more on factors that include emo-
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tional interaction, intention recognition, and human–robot trust, which affect how robots
and elderly people interact. The ability of the assistive robot to assess multidimensional
responses from the surroundings, plan movements, and generate plans is crucial for a
robot to be capable of adjusting to changing circumstances and selecting an appropriate
policy for a given job. Nowadays, the majority of research in HRI is concentrated on elderly
support robots because of the high demand in the senior citizen care sector.

Numerous assistive robotic possibilities will be realized in the future due to the rapid
growth of AI and hardware advances. Although studies of HRI in the field of assistive
robots have advanced significantly, there are still several substantial research shortcom-
ings. The emphasis on universal methods in modern research frequently minimizes the
significance of tailored and adaptable interaction technologies that meet the demands of
specific users. For robots to improve the dynamics of relations with humans, they require
higher levels of psychological intelligence and awareness. Moreover, there is a dearth of
multimodal interaction skills, thorough assessments of usability, and multidisciplinary
techniques that incorporate knowledge from other domains. Furthermore, the use of assis-
tive robots is severely constrained by the costly, single-functional, and undeveloped state
of current robotics technology [17]. Substantial real-world implementation research is re-
quired to comprehend real-world difficulties, and greater focus must be placed on inclusion
for a variety of users. Though still lacking, efficient feedback systems and sophisticated
adaptation and learning techniques are essential for enhancing HRI. The development
of robotic assistants and integrating them into everyday activities depends on filling all
of these above-discussed shortcomings. Driven by social demands, including the elderly
population, assistive devices can be helpful in subject training and motor functioning. This
article provides a comprehensive overview of the recent advances in HRI, various control
approaches for HRI, and different techniques for intention recognition for assistive robots.
This work offers an up-to-date description of how sensors give the increasing number of
assistive robots that communicate with people direct perceptual capacities.

With the intention of giving researchers who are new to this area of study a head
start, this article reviews the essential approaches of senior assistance robots within the
wider discipline of robotics. As part of the literature review for Section 2, we start this
paper by briefly reviewing the research on HRI from the viewpoint of assistive robots.
Section 3 provides the most important techniques of robotics perception for the purpose
of improvement of HRI, including sensor fusion, and illustrates intention recognition
methodologies for the purpose of HRI to assist elderly or physically disabled people.
Section 4 contains different types of assistive robots. Section 5 discusses the challenges
and future directions of study for assistive robots in human–robot cooperation, and lastly,
Section 6 concludes this article by providing a conclusion.

2. Literature Survey

One interesting and difficult area of modern robotics research is assistive technology.
The majority of interactions between users and robots remain restricted to teleoperation
features, where the user is typically presented with footage streamed from robotic platforms
along with a sort of interface for controlling the robot’s trajectory. Beyond allowing a robot
to operate from a distance, HRI enables the robot to do a variety of independent tasks.
This might be anything from a robot adjusting a control arm in response to a human’s
incredibly precise directions to a more advanced robot system that plans and executes a
route from a starting point to a final location that the user supplies. It has become feasible
for humans to connect with robots in the last ten years due to developments in robotics
(perceptions, reasoning, and computing) that enable partially autonomous systems. In
recent years, several researchers have been dedicated to creating the most advanced state-
of-the-art papers regarding HRI for assistive devices. A literature survey of some of the
most well-known articles is given below.

Beckerle et al. [18] provide a viewpoint on the prospects and problems currently facing
the domain of HRI. Control and ML techniques that assist without diverting attention
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are examined in this study. This study presents options for providing sensory user input
that robotic technologies do not yet offer. In addition, the need for methods of functional
evaluation related to real-life duties is addressed. This study addresses various factors with
the goal of providing new ideas for potential robotic solutions in the years ahead.

Olatunji et al. [19] provide a conceptual framework for combining levels of trans-
parency (LoT) and levels of automation (LOA) in assistive robots to meet the needs and
demands of senior citizens. There are established benchmarks for assessing LOA and LoT
architectural configurations. This study creates two unique test cases with the goal of
investigating interaction design problems for robots serving this group in daily duties. One
involves a mobile robot accompanying a human, and the other involves the manipulator
of robots arranging a table. Assessments from user studies with senior citizens show that
interaction aspects are influenced by combinations of LOA and LoT.

Casper et al. [20] describe an HRI that occurred at the World Trade Center during robot-
assisted urban search and rescue operations. An extremely difficult chance to research HRI
during an actual unstaged rescue is presented by the World Trade Center rescue reaction
in this study. The data gathered during the reaction were analyzed for a subsequent
evaluation, which produced 17 observations about the influence of the surroundings and
circumstances on the HRI. The information expressed at what moment, the specifics of
the urban search and rescue assignment, the expertise required and demonstrated by both
humans and robots, and interpersonal information systems for the urban search and rescue
field. Through the provision of a case analysis of HRI in urban search and rescue derived
using an unstaged urban search and rescue operation, the study’s outcomes have had an
influence on the robotics community.

Asbeck et al. [21] designed an assistive technology that has no need for external
force transmission and only offers a small portion of the normal physiological torques.
Exosuits are a promising way to modify the human body using wearable devices that
are compact, lightweight, and sensitive. According to this study, it might be possible to
improve these systems to the point where they are sufficiently low-profile to wear beneath
the user’s clothes. This study’s preliminary findings show that the technology might
significantly preserve regular biomechanics and have a favorable impact on a wearer’s rate
of metabolism. Although much of the work in this area has been on gait aid so far, there
are many more potential uses, such as upper body assistance, rehabilitation, and assisting
with other actions.

Yu et al. [22] proposed a gait rehabilitation robot interaction control approach. In
this study, a unique modular series elastic actuator powers the robot and offers inherent
compliance and reverse driving capability for secure HRI. The actuator design serves as the
foundation for the control layout, which takes interaction dynamics into consideration. It is
augmented with an interference investigator and primarily comprises friction compensation
and compensation for human contact. While the robot is working in a force-controlled
manner, it can accomplish precise force monitoring; while it is working in a human-in-
charge manner, it can attain a small output impedance. The assured reliability of the
closed-loop system using the suggested controller is demonstrated theoretically. The
outcomes of this method are easily transferable to other assistive and rehabilitative robots
that are powered by cooperative actuators.

Modares et al. [23] provide an HRI system that maximizes the functionality of the
human–robot system while assisting its human operator to complete a job with the least
amount of effort. Inspired by research on human factors, the control structure described
is made up of two loops of control. First, an inner loop designs robotic-specific neuro-
adaptive controllers to make the unfamiliar nonlinear robot act the way the specified robot
impedance models might be seen by the human operator. Secondly, the ideal specifications
of the suggested robot impedance model are determined by an outer loop controller tailored
to the job at hand for the purpose of reducing tracking errors and adapting the dynamics
of the robot to the operator’s abilities. The provided linear quadratic regulator issue is
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solved using integral reinforcement learning, which eliminates the need for expertise of the
human model.

Feingold-Polak et al. [24] propose employing socially assistive robots (SARs) as a post-
stroke training tool. Whether prolonged engagement with a SAR can enhance a person’s
functional skills after a stroke is still unknown. This preliminary study compared the effects
of three different long-term approaches to upper-limb rehabilitation for post-stroke patients:
(1) training using a SAR along with regular treatment, (2) training using a computer along
with regular treatment, and (3) regular care without any extra assistance. The objective
was to assess variations in motor functioning and standard of life. This study shows
that utilizing a SAR for continuous interaction with stroke survivors as an aspect of their
rehabilitation strategy is clinically beneficial and feasible.

Lu et al. [25] present a wearable device that allows human–machine interaction to op-
erate a robotic arm system that drives a wheelchair. People with serious motor impairments
are unable to use wheelchair autonomous arm equipment due to the limits of conventional
manual human–machine interaction instruments (HMIs), which negatively affects their
freedom and standard of life. To solve this issue and satisfy the real-world needs of those
with serious motor limitations, this study constructed a wearable multimodal HMI. Ac-
cording to the study, the suggested HMI provides a viable option for non-manual control
in intricate assisted rehabilitation systems. The usefulness of the suggested HMI was
confirmed by enlisting 10 healthy volunteers to participate in three tests: a wheelchair au-
tonomous arm system assessment, a wheelchair control assessment, and a blink-detecting
assessment. It might assist a greater number of people with motor impairments, enhancing
their quality of life.

Saunders et al. [26] suggest the application of assistive robots for caring for elderly
people. The robot’s customization to an elderly individual’s evolving demands over the
years is an obstacle. One method is to let the elderly individual, their caretakers, or family
members educate the robot on what to do in their smart home and how to respond to
various activities. The method of design for the robot, smart house, and teaching and
learning mechanisms is described in this study, along with the findings of an assessment of
the instructional element conducted with twenty participants and an early assessment of the
learning element conducted with three people involved in an HRI experiment. According
to the findings, participants believed that this method of personalizing robots was simple
to use, practical, and something they might benefit from to assist themselves and other
individuals in everyday settings.

Katzschmann et al. [27] introduce ALVU (Array of LiDARs and Vibrotactile Units),
a wearable technology that is electronic, hands-free, easy to use, and discreet. It enables
people with visual impairments to identify physical constraints and barriers that are
either high or low in their immediate vicinity. The method lets an individual discriminate
between barriers and open areas, allowing for secure local navigation across small and
large environments. The described gadget consists of two components: a vibrating strap
and a sensor belt. The sensor belt, which is a collection of time-of-flight measurement
devices positioned across the outer edge of a user’s waist, measures the separation between
the individual and nearby objects or barriers with accuracy and dependability thanks to
infrared radiation pulses. Through a series of vibrating motors wrapped across the user’s
top abdomen, the sensory strap transmits distance measurements and provides haptic
feedback. To provide the individual with separated vibrations, the linear vibration motor is
paired to a point-loaded pretensioned actuator. The device’s wearers were able to navigate
corridors, avoid obstructions, and identify staircases with ease.

Ao et al. [28] explore the possibility of improving human–robot collaboration con-
trol efficiency using an ankle power-assist wearable robot by employing an extra phys-
iologically suitable model. To accomplish this, a linear proportional model (LPM) and
an electromyography-assisted Hill-type neuromusculoskeletal model (HNM) were con-
structed and evaluated using maximum isometric voluntary dorsiflexion (MIVD). HNM is
more precise and can consider variations in the angle of joints and muscular dynamics than
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the other control framework, which only predicts ankle joint torque in continuous motion.
Subsequently, a group of eight fit individuals was enlisted to don the wearable ankle robot
and carry out a sequence of vertical oscillating monitoring exercises. The individuals were
told to perform dorsiflexion and plantarflexion positions at the ankle to follow the goal
presented on the display as closely as possible, with varying amounts of support according
to both of the calibrated models.

E. Martinez-Martin et al. [29] provide a vision framework for assistive robots that
can instantly identify and locate items based on visual input in common areas. Drawing
motivation from vision research, the technique estimates color, movement, and form
signals, integrating them in a stochastic approach to precisely perform object detection and
classification. The suggested methodology has been put into practice and assessed using
a humanoid robot torso situated in real-life settings. With the goal of obtaining further
practical validation, an object detection public image library was utilized that enables
quantitative comparison to state-of-the-art approaches whenever real-life situations are
considered. Lastly, a spatial assessment of the demonstration was given in relation to the
quantity of objectives in the environment and picture resolution.

3. Robotics Perceptions

Most of the jobs that were formerly performed exclusively by humans can now be
completed by robots because of the quick advancement of robotics. The possible uses
for robots have, therefore, increased significantly. It is reasonable to assume that human
expertise and familiarity with robotics will vary significantly. The capacity for social
interaction with people will continue to play a significant role since most of the latest
applications require robots to operate in close proximity to humans compared to the past.
In the context of HRIs, an efficient control system is required for assistive robots, which is
an important aspect of allowing robots to navigate while providing assistance to elderly or
impaired people. The sensory framework for assistive robots addressed here concentrates
on the three-dimensional (3D) surroundings and perception of objects since these tasks are
necessary to achieve efficient HRI, especially given the unorganized and uncertain nature
of the surroundings [30]. Its major goal is to use robot sensors to gather environmental data,
identify important characteristics from noise, and, ultimately, comprehend the environment
around it. Elderly support robots are more capable of helping humans with everyday tasks
such as making food, walking, and feeding if they have an accurate awareness of their
surroundings. An illustration of the robotics perception system is shown in Figure 3, where
sensors, environment perception, perception techniques, and decision-making steps are the
most crucial parts of the system.
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Future industrial settings will need a high degree of automation in order to be suffi-
ciently flexible and adaptable to meet the ever-increasing demands in the marketplace for
inexpensive, quicker products. Robots that are cooperative, intelligent, and can adjust to
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changing and dynamic environmental conditions, including the existence of people, will
play an increasingly important role in this scenario. However, a workspace including both
people and robots can hinder production and cause potential danger to humans when a
robot seems unaware of the human’s location and purpose [31]. For HRI, perception skills
are crucial for robots. Thus, robots that can operate autonomously while collaborating with
humans will probably be used more often in tasks that call for a shared workspace. The
next generation of smart industries, senior care facilities, and healthcare facilities will place
an increasing emphasis on robotic perceptions. Most of the tasks will require preventing ob-
stacles, interacting with people, and independently finding and determining the elements
that need to be transferred or performed. The three essential perceptual and sensory skills
are mobility control, human–machine interfaces, and awareness of the surroundings and
navigation. The most important parts of the robotics perception system, which are also
useful for HRI from the perspective of assistive robots, are described below.

3.1. Sensors

Sensors are gadgets that can sense their surroundings, translate that information into
electrical impulses or additional required forms in accordance with regulations, and send
that information to different gadgets. The growing number of robotic devices that have
feet or wheels, hands, joints, and both lower and upper limbs has advanced quickly in
recent decades. These devices all need sensor actuator signals that accurately represent the
user’s desired motions. Numerous sensor devices that fit into one of the two classifications
are in use. In the most traditional method, the movement of the robotics device is started
by the user using a keyboard or other user interface equipment and is monitored by
sensors with mechanical factors, which usually depend on microelectromechanical system
(MEMS) technologies [32]. Examples of these sensors include accelerometers, degree and
location sensors, and gyroscopes. The second type, myoelectric, is still in its infancy within
the robotics domain. This measures impulses of electricity directly related to human
muscular movement and reacts according to the desired activities of the elderly person
or patient [32,33]. These sensors, which are also known as electromyographic or EMG
sensors, depend on many technologies. However, the most extensively researched ones
comprise surface electrodes that identify electrical impulses on skin layers and electrodes
with needles inserted into the muscle [33]. Figure 4 illustrates the link between robots with
different sensors and various application scenarios.
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Automation and AI have entered a new age as a result of the rapid growth of robotics
and are further accelerated by the integration of improved sensing technologies. Robotics
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perception technology is a key aspect of robotics technology that has gained increased
interest because of its fast improvements [34]. Notably, the area of robotics has effectively
and widely deployed sensors and sensor fusion methods that are seen to be vital for
improving robotics perception techniques. Therefore, a viable strategy that allows for
adaptability to different tasks in novel conditions is the combination of sensors and sensor
fusion technologies with robotics perception technologies. Perceiving its surroundings is
essential for a robot to carry out complicated tasks. Robots use a range of sensors to identify
various elements in their surroundings. Thus, better sensor fusion approaches in robotics
perception systems can be an effective way to enhance the capability of assistive robots to
provide assistance to elderly or impaired humans. Some of the most important sensors
used by assistive robots are described as follows.

3.1.1. Infrared Sensors

Robots must have the ability to satisfy human demands and requests to continue to
be valuable to us, and this will involve some sort of interaction. Although technologies
for communication between humans and robots are becoming more advanced, natural
conversation continues to be far ahead. Thus, the infrared sensor plays a vital role in
assistive robotics for natural interactions. An optoelectronic equipment with a radiation
sensitivity and a spectral sensitiveness spanning the infrared wavelength band of 780 nm
to 50 µm is called an infrared sensor (IR sensor) [35]. Nowadays, IR sensors are frequently
found in motion detection systems employed in alarm systems to identify unusual activity
or in buildings for switching on lights. The sensor components identify thermal radiation
(infrared radiation) that varies with time and place as a result of human activity within a
predetermined angle range. Due to its sensitivity to variances in infrared heat caused by
human mobility and resistance to environmental variations, the infrared sensor remains
the preferred option for person detection. We provide an efficient illustration of an infrared
sensor-based navigation approach for blind people in this section based on [36–39].

Nowadays, infrared sensors are widely used to provide assistance to blind people
for efficient navigation in crowded cities. The blind individual’s hand has an IR sensor
mounted to the upper part of it for navigation. Every piece of equipment and software
is comparable to a mobile robot. The warning unit receives the gathered impulses and
processes them into vibrations that represent information that people can comprehend.
Figure 5 shows the location of the notice module and sensor module on the arm of a blind
person. A mathematical technique eliminates the IR sensor vibrating in synchronization
with the hand activity. This approach makes it possible for people to distinguish between a
building’s end and only its inner edge. There will be no difference in temperature at the
interior portion of the corridor, which is crucial information for both humans and robots.
Figure 6a,b depicts the look of the sensor system and the notice system, respectively.

Electronics 2024, 13, x FOR PEER REVIEW  9  of  19 
 

 

Automation and AI have entered a new age as a result of the rapid growth of robotics 

and are further accelerated by the integration of improved sensing technologies. Robotics 

perception  technology  is a key aspect of robotics  technology  that has gained  increased 

interest because of its fast improvements [34]. Notably, the area of robotics has effectively 

and widely deployed sensors and sensor fusion methods that are seen to be vital for im-

proving robotics perception techniques. Therefore, a viable strategy that allows for adapt-

ability to different tasks in novel conditions is the combination of sensors and sensor fu-

sion technologies with robotics perception technologies. Perceiving its surroundings is es-

sential for a robot to carry out complicated tasks. Robots use a range of sensors to identify 

various elements in their surroundings. Thus, better sensor fusion approaches in robotics 

perception systems can be an effective way to enhance the capability of assistive robots to 

provide assistance to elderly or impaired humans. Some of the most important sensors 

used by assistive robots are described as follows. 

3.1.1. Infrared Sensors 

Robots must have the ability to satisfy human demands and requests to continue to 

be valuable to us, and this will involve some sort of interaction. Although technologies for 

communication between humans and robots are becoming more advanced, natural con-

versation continues to be far ahead. Thus, the infrared sensor plays a vital role in assistive 

robotics for natural interactions. An optoelectronic equipment with a radiation sensitivity 

and a spectral sensitiveness spanning the infrared wavelength band of 780 nm to 50 µm is 

called an infrared sensor (IR sensor) [35]. Nowadays, IR sensors are frequently found in 

motion detection systems employed in alarm systems to  identify unusual activity or  in 

buildings for switching on lights. The sensor components identify thermal radiation (in-

frared radiation) that varies with time and place as a result of human activity within a 

predetermined angle range. Due to its sensitivity to variances in infrared heat caused by 

human mobility and resistance to environmental variations, the infrared sensor remains 

the preferred option for person detection. We provide an efficient illustration of an infra-

red sensor-based navigation approach for blind people in this section based on [36–39]. 

Nowadays, infrared sensors are widely used to provide assistance to blind people for 

efficient  navigation  in  crowded  cities.  The  blind  individual’s  hand  has  an  IR  sensor 

mounted to the upper part of it for navigation. Every piece of equipment and software is 

comparable to a mobile robot. The warning unit receives the gathered impulses and pro-

cesses them into vibrations that represent information that people can comprehend. Fig-

ure 5 shows the location of the notice module and sensor module on the arm of a blind 

person. A mathematical technique eliminates the IR sensor vibrating in synchronization 

with the hand activity. This approach makes it possible for people to distinguish between 

a building’s end and only its inner edge. There will be no difference in temperature at the 

interior portion of the corridor, which is crucial information for both humans and robots. 

Figures 6a and 6b depict the look of the sensor system and the notice system, respectively. 

 

Figure 5. Illustration of arm-mounted IR sensor and data processor [39]. Figure 5. Illustration of arm-mounted IR sensor and data processor [39].



Electronics 2024, 13, 3285 10 of 19Electronics 2024, 13, x FOR PEER REVIEW  10  of  19 
 

 

 
(a) 

 
(b) 

Figure 6. Illustration of complete IR sensor-based navigation system for the blind: (a) Description 

of Sensor module; (b) Description of Notice module [39]. 

3.1.2. Light Detection and Ranging (LiDAR) Sensors 

LiDAR  is a robust sensor system used  to measure distances and create  incredibly 

accurate three-dimensional (3D) models of surroundings and objects [40]. A LiDAR sys-

tem begins the sensing operation by directing laser pulses at a predetermined region. Part 

of the light is reflected backward toward the LiDAR sensor whenever these pulses come 

into contact with obstacles. LiDAR determines the desired distance by timing the come-

back of every  laser pulse and using the light’s steady speed. When LiDAR is used me-

thodically over wide regions and combined with other data to calculate distance, it creates 

Figure 6. Illustration of complete IR sensor-based navigation system for the blind: (a) Description of
Sensor module; (b) Description of Notice module [39].

3.1.2. Light Detection and Ranging (LiDAR) Sensors

LiDAR is a robust sensor system used to measure distances and create incredibly
accurate three-dimensional (3D) models of surroundings and objects [40]. A LiDAR system
begins the sensing operation by directing laser pulses at a predetermined region. Part of
the light is reflected backward toward the LiDAR sensor whenever these pulses come into
contact with obstacles. LiDAR determines the desired distance by timing the comeback of
every laser pulse and using the light’s steady speed. When LiDAR is used methodically over
wide regions and combined with other data to calculate distance, it creates a point cloud,
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which is an array of many points in three-dimensional space [41]. The 3D characteristics and
geometry of the region or item are successfully mapped by these points. LiDAR is widely
used for robot navigation. Robots use simultaneous localization and mapping (SLAM)
extensively to create real-time localized mappings depending on odometry algorithms
and perception sensor inputs. Sensor data from cameras, IMUs, LiDAR, and other devices
can be used by odometry systems; in certain cases, combining several data sources can
increase precision and the rate of convergence. Nowadays, LiDAR is an important sensor
for robotics navigation in the human-centered environment that plays an important role in
HRI for assistive purposes.

3.1.3. Inertial Measurement Unit (IMU) Sensors

The use of robots, particularly mobile robots, has grown quickly and is now widespread.
A collection of sensors called IMU sensors is crucial to the navigation of autonomous robots.
When usable information is computed regarding location, orientation, and speed, the data
gathered using the IMU sensors by an autonomous robot are appropriately transformed.
Technology has advanced to the point that IMUs are now tiny, adaptable, and reliable
instead of bulky and complicated. The accelerometer, gyroscope, and magnetometer are
the three primary sensors found in an IMU. There are additional sensors as well, including
an attitude sensor, pressure sensor, temperature sensor, and barometer. An IMU is made
up of several components, with the primary distinctions being the technologies they incor-
porate, the goals of the designers, and the manufacturer’s standards [42]. Together with
gyroscopes, tiny accelerometers and magnetometers have also been developed, and these
days, they are produced as micro-electro-mechanical systems (MEMS), which are incredibly
compact, dependable, and affordable IMU sensors. The growth of wearable IMU sensors
offers numerous advantages in the discipline of human motion assessment with regard to
the sensory framework for HRI applications, including mobility, precise measurement, and
simplicity of use in unorganized environments [43]. Future assistive robots and medical
applications are predicted to be made possible by the combination of wearable sensors and
autonomous robots in sophisticated interaction settings.

3.1.4. EMG Sensors

Electromyography (EMG) is an important sensor in assistive technology. Exoskeleton
robots and other assistive robots have been widely controlled by electromyography (EMG)
signals, eliminating the need for the user to activate a separate device to operate the robot.
As electromyography (EMG) signals can be applied to specifically identify the movement
intent of the wearer, they are now widely employed to drive assistive and rehabilitative
robots. Over the past decade, a lot of robotic arm prostheses have been created that are
operated by a variety of sensing devices, including surface EMG, digital vision, and haptic
sensing. However, considering the disturbance and the high processing overhead, using
EMG signals as an operator control signal within robotics is quite challenging [44].

3.2. Environment Perception

Intelligent robots must be able to see their surroundings in order to carry out certain
activities. This perception serves as the foundation for further control and decision-making.
Goal detection and recognition of targets are examples of vision-based perception of
environments techniques that have advanced significantly in recent decades due to the
rapid growth of DL and the notable enhancement of hardware capabilities. However,
the majority of vision models are created using pictures that have consistent lighting and
few notable anomalies. In the real world, robots frequently have to work in complicated,
unstructured settings or in ones with poor visual quality. The demands of the work are
unable to be fulfilled just by visual perception since it is not environment-adaptive. As
a result, multi-sensor fusion-based environmental perception technologies are gaining
popularity as a study area [45]. The complexity of data is reduced via the combination of
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data from different sensors and sensory modules; lacking this, the computational task of
analyzing signals from sensors becomes uncontrolled [46].

The vision system for support robots addressed here concentrates on surrounding
modeling and recognizing objects since these tasks are necessary to achieve good HRI,
especially in light of the uncertain and unorganized surrounding environment. Its major
goal is to use robotic sensors to gather environmental data, identify important character-
istics from disturbances, and, ultimately, comprehend its surroundings [47]. The robot’s
environmental perception technology is constantly presented with a wide variety of com-
plicated environmental information. Ensuring environmental perception for data fusion
techniques requires two fundamental specifications: resilience and concurrent processing
capacity. Multiple sensors function differently, gather data in distinct manners, and are not
all equally able to adapt to their surroundings. The multi-sensor fusion-based perception
technique might overcome the inherent constraints of just one sensor, integrate the benefits
of several sensors, and produce more precise and dependable data for later robot operation.
Fusion of sensors in a robotic environmental perception unit has become prevalent, with
IMU (inertial measurement unit), vision cameras, LiDAR, and combining implementations
being the most popular uses [48].

Several fundamental technological advances in robotics, including mechanical plan-
ning, visual perception, and robot control, are necessary to enable authentic HRI. Robots
need to be able to perceive things in order to build models of both their internal and
external environments [49]. The inbuilt perception models enable the robot to carry out its
mission precisely, quickly, and securely. Multiple sensor classes that collect exteroceptive
and proprioceptive data enable perception. The process of perception is challenging for
assistive robots, particularly ones that are movable. This is because the numerous articula-
ble components in a mobile robot provide a high degree of autonomy, which can lead to
jerks and shaky movements of the attached sensors. For the sake of this part, we catego-
rize the primary domains of robot perception into two main topics that converge: robot
state estimation and navigation environment knowledge. Various efficient environmental
perceptions have been carried out in [50–53] for HRI applications.

3.3. Visual Perception

The capacity to analyze and comprehend visual data from the surroundings through
vision is known as visual perception. Accurately recording the 3D movements of humans
and robots in the field of assistive technology is essential for adaptive and secure HRI. The
eyes’ perception of light is the first stage in this sophisticated procedure, which concludes
with the brain’s analysis of all visual information. Through the recognition, organization,
and interpretation of forms, colors, spatial connections, motion, and other visual prop-
erties, visual perception enables robots to interpret and interact with their surroundings.
Autonomous robots need visual perception as a basic skill in order to appropriately and
securely navigate around humans in real life. Technological developments in DL have
recently brought about some amazing advancements in vision technologies. Visual percep-
tion is an extremely desired paradigm because of its intrinsic passive and friendly qualities.
It does not require the surroundings to be transformed, nor does it necessitate heavy
equipment, which prospective humans engaging with the robot will have to manage [54].
Since there is not one specific vision algorithm or approach that works well for every
vision job, the seamless operation of various visual systems depends on their effective and
efficient integration.

Robotics perception has been transformed by ML advances, which have improved its
applications in a number of fields, including medical services and assisted living. Deep
neural networks (DNNs) specifically, which are DL algorithms, have been crucial in enhanc-
ing robotic devices’ visual capabilities. Combining multiple-sensor integration approaches
is essential to improving vision-based perception approaches for robotic assistants in com-
plex, cluttered, and low-visual-quality situations. The accuracy of visual data can also be
enhanced by using effective image augmentation and preprocessing techniques, and more
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dependable functionality for real-time applications can be guaranteed by sophisticated
algorithms that continuously adapt to dynamic situations. Robots can now analyze and
interpret enormous volumes of sensory input thanks to these techniques, which improves
their ability to understand and communicate with their surroundings [55]. Furthermore,
these developments in AI have aided in the creation of more durable and adaptive robotic
devices that can adjust to evolving and unpredictable surroundings. Some of the most
important visual perception techniques are described as follows.

3.3.1. Object Classification

Computer vision, which analyzes visual input from cameras, is essential for improving
robotics perception. Robots are capable of deriving valuable data from images and videos
that their cameras acquire using vision-based techniques. Recognition of objects has become
a key use of vision technology for robot perceptions. Robots can recognize and categorize
objects from their surroundings using sophisticated algorithms, which improves their
ability to interact and navigate [56]. To accurately recognize objects according to their visual
properties, vision-based object identification systems use methods including extraction
of features, pattern recognition, and DL. Robots need this capacity to carry out activities,
including manipulating objects, navigating on their own, and comprehending scenes.
Generally, recognition of objects and vision algorithms play a key role in allowing robots
to see and communicate with their environment more intelligently and independently.
Various efficient object classifications have been carried out in [57–59] for HRI applications.

3.3.2. Intention Recognition

Improving navigational ability is a key benefit of integrating robotics perception into
assistive technology. For self-driving cars and robotics to navigate effectively and securely
in dynamic environments, navigation is an essential feature. Robotics perception systems
can improve their perception and comprehension of their surroundings, including obstacles,
symbols, intentions of humans, and various other related information using ML. Many
robots utilize sensors to prevent injury to people, but because they are unable to understand
human intentions or actions, they are essentially passive recipients of information rather
than communicative partners [60]. Though intention-based technologies are capable of
deducing human intentions and forecasting future behavior, their increased proximity to
people creates trust issues. A new type of user-focused assistance system called intentions-
based technologies can determine the user’s intention and respond accordingly, allowing
them to participate in their interaction both actively and passively [61].

Improving medical operations and care for patients by using robotics perceptions to
enhance healthcare skills is an important development in the industry. Medical profession-
als might perform procedures in a whole new way because of robotic perception. Robotic
perception can reduce mistakes and increase safety for patients in surgeries by improv-
ing accuracy and offering real-time feedback. Significant advancements within robotic
perception are also being made in the field of senior care. Elderly people frequently need as-
sistance with everyday tasks. Perception-capable robots can help with drug administration,
detecting falls, and critical condition monitoring, among other activities. Assistive robots
also meet the social and psychological requirements of the elderly by offering companion-
ship and emotional assistance. Various efficient intention recognitions, including human
activity recognition [62,63], human pose estimations [64–66], gesture recognition [67,68],
and emotion recognition [69–71], have been carried out for HRI applications.

4. Different Types of Assistive Robots

The physical and psychological well-being of senior citizens might be significantly
impacted by assistive social robots, which are a specific kind of assistive robot, intended
for social contact with humans. For children with impairments, those going through
rehabilitation, elderly persons, and disabled working-age adults, assistive robots have
great promise as a support tool. Any robot, piece of technology, or device that helps
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the elderly and those who have impairments live normally at a residence, at work, in
educational institutions, and in neighborhoods is referred to as an assistive robot. Although
robotic assistants have much potential to help the elderly with crucial personal care, ethical
considerations have made it difficult for them to be widely accepted. Throughout the
commercial sector, cobots and cooperative robots have stepped up as two of the most
widespread and necessary uses. Cobots and cooperative robots are described below.

4.1. Cobots

The initial purpose of collaborative robots, which are also known as cobots, was to
help people in industrial settings. Cobots, in contrast to traditional robots, are made to
work with humans instead of replacing them [72]. Contrarily, traditional industrial robots
cannot operate alongside humans since they need a physical safeguard to ensure their safety.
Cobots are robots that can collaborate directly with people without the need for traditional
safeguards. By employing a range of tools, including vision systems, force and torque
sensors, and ML algorithms, cobots are able to detect and adapt to the existence of humans,
ensuring a secure and effective work environment. The direct human–cobot association has
several advantages, including safe completion of difficult jobs, high manufacturing quality,
simple and user-friendly cobot training and computing, and assistance for the elderly or
disabled. Cobots and cooperative robots are both excellent options for automation since
they each have unique benefits and skills. Figure 7 shows an illustration of an elderly
assistive cobot widely used in Japan.
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4.2. Cooperative Robots

Manufacturing robots that have a virtual barrier separating them from their human
operators are referred to as cooperative robots. The cooperative robot occupies an inter-
mediate place in the service line between cobots and industrial robots, leveraging safety
sensors (usually laser scanning devices) to combine the advantages of both collaborative
and industrial robots [74]. Because cooperative robots are more complicated, cooperative
robots need more sophisticated programming knowledge to operate. Cooperative robots
are typically more costly as a result.

5. Future Research Trends and Challenges

While most robotic assistants are still in the prototype stage, they can only partially
mimic the dynamics of HRI. Robotic wheelchairs are an exception to the rule that many
robotic devices to serve the impaired or elderly have not yet achieved a substantial degree
of adoption, partly due to expense and partly because of the wide range of demands. These
are the subject of in-depth study, have a sizable prospective marketplace, and have more
precisely specified criteria. Scientists are quickly working to build an assistive robot that can
help us, inspire us, instruct us, support labor-intensive tasks with precision, and perhaps
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provide the ideal interactive companion, depending on its intended function [75]. To do this,
though, we will need a significant leap beyond the current state-of-the-art robotic solutions
which rely heavily on interpersonal interaction as the foundation of HRI. The fascinating
world of teleoperated robots, which is always changing due to the blending of scientific
research and technological advancement, offers a wide range of amazing possibilities.
As we make progress across this revolutionary terrain, we are pushing the envelope of
comprehension to imagine a time when useful apps enable people to travel to remote areas
easily and make everyday activities easier. An efficient sensor fusion technique will be
required for better HRI.

Research on HRI is a comparatively new field. The research area is wide and varied,
and there are many exciting and unexplored problems in the software and hardware design
procedures. The research community is now investigating the use of robotic assistants
across a variety of sectors. Due to these factors, the emergence of HRI draws on the
expertise of several fields, from broader social studies to those with a stronger mathemat-
ical/engineering orientation. Future research will focus further on fostering logical and
natural interactions in addition to enhancing robot comprehension and reactivity to human
emotions. This can be resolved by developing robots that resemble human beings and will
be accomplished by integrating emotion synthesis and recognition technologies [76]. The
application of multi-robot frameworks, in which several robots collaborate to complete a
job, will represent another development. Revolutionary developments in assistive robots
keep improving the lives of those who require assistance. The advanced robotic assistant
needs to be designed to participate in a special three-way conversation between the in-
dividual in need of support, the caretaker, and the robot. Thus, more work is required
to enhance the software of assistive robots. Novel innovations in programming provide
the path forward for an improved, inclusive, and helpful era by showcasing not just the
possibility of robotics to improve daily living but also the cooperative symbiosis between
caregivers and robotic assistants. Future advancements in hardware and DL will greatly
improve the versatility and reliability of vision systems for real-world applications. The
ability of assistive systems to more effectively generalize from a variety of intricate inputs
will be made possible by advancements in neural network topologies, including more
resilient and accurate convolutional neural networks (CNNs) and transformers.

Additionally, emotions and generating algorithms will be included, but there will
be an emphasis on building robots that can adjust to human variances in communication
interests and styles. Moreover, geometric integration into robots is a critical component
that accelerates learning and requires accurate encoding. While learning algorithms are
important, intuitive software is equally important since it ensures accessibility and usabil-
ity [77]. In the near future, many modes of communication, such as hearing, voice, seeing,
touching, and learning, will be required for robots to engage with people efficiently. The
field of human–robot cooperation has witnessed encouraging advancements in the creation
of technologies that can improve the effectiveness of robots functioning alongside human
collaborators in recent times. These developments have made it possible for robots to help
people with jobs that could be hazardous, repetitive, or very precise [78]. A key challenge
in the corresponding setting is the robot’s ability to respond in real-time and reliably to
a wide range of potential tasks. Techniques for adaptability and tailored learning might
help achieve this. Research on ethics and other legal concerns regarding human–robot
interactions is crucial to ensuring long-term, robust, and peaceful contact between the el-
derly and robots [79]. In conclusion, ethical issues pertaining to HRI will gain significance,
necessitating the establishment of ethical protocols and rules to guarantee the responsible
and secure deployment of robots in diverse fields.

6. Conclusions

This study covers a variety of topics related to assistive robotics for the elderly or
disabled. We explore a number of areas related to human–robot interaction, including
intention recognition, robotics perception, sensor fusion, and environment perception. As-
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sistive robots that attend to and care for the elderly and impaired need to be integrated with
advanced sensors that can sense their unpredictable and unorganized surroundings. This
fascinating study seeks to understand the fundamental human sensation of existence from
a distance rather than focusing just on the research of remotely operated robotic assistance.
The process of collaboration between humans and robots is believed to be successful when
the robot accurately discerns the human purpose and effectively completes the associated
task. Lastly, we present a number of future research directions and challenges in preserving
steady and peaceful human–robot collaboration and communication. We consider that
early-stage researchers passionate about robotics science for assistive technology can use
this review as their starting point, as it covers the wide range of fundamental issues of
assistive robots for the elderly or disabled.
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